
Automatic Testing Based on Design by Contract™ 

Ilinca Ciupa, Andreas Leitner 

ETH (Swiss Federal Institute of Technology) Zurich, Chair of Software Engineering 
RZ Building, CH-8092 Zurich, Switzerland 

{Ilinca.Ciupa, Andreas.Leitner}@inf.ethz.ch 

Abstract. Although its importance is widely recognized, testing is seldom done 
properly. The reasons for this include under-allocation of resources for the 
testing activity, lack of proper tool support, and developers’ reluctance towards 
testing. To tackle these issues, we propose the full automation of the testing 
process for contract-equipped classes. According to the principles of Design by 
Contract™, assertions contain the specifications of the software elements. As 
such, they can be used to ascertain the correctness of these elements. In this 
paper we discuss the various issues involved in the full automation of the 
testing process and present our technical solution and its implementation in the 
tool called AutoTest1. We also look at ways of improving the current approach. 

1 Introduction 

The importance of testing in the software development process is recognized as a 
matter of fact nowadays. However, practice shows that, in spite of on-going research 
in the field, testing methodologies and tools have not yet managed to provide software 
developers with adequate support for testing activities.  

We suggest a different approach to testing: a fully automatic testing process. Our 
methodology is based on Design by Contract™. Contracts (routine preconditions and 
postconditions, class invariants, loop variants and invariants, and check instructions) 
are a valuable source of information regarding the intended semantics of the software. 
By checking that the software respects its contracts, we can ascertain its validity. 
Therefore, contracts provide the basis for the automation of the testing process.  

The goal of our work is to develop and implement this fully automatic contract-
based testing process. However, an automatic testing process is not by itself a 
guarantee of quality for the system under test. This process must, in turn, satisfy some 
high quality criteria. When the testing process becomes fully automated, there are 
several issues that we have to consider: 
• Generation of test data; 
• Tailorability of the testing process: identifying the parameters that the user must be 

able to tweak to adapt the process to his own needs and preferences; 
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• Automatic integration of results: test results must be evaluated automatically and 
we must develop a classification of possible results and determine the other 
information to provide to the user; 

• Finding failure-reproducing examples; 
• Fault isolation; 
• Estimation of the quality of the test suites and identifying a means to adapt test 

generation given such an estimation. 
These are the challenges we have identified in our work. We have already found 

solutions to some of them and we describe these in the rest of this paper. On the 
others there is work in progress, as presented in section 6. 

Although the idea of contract-based automatic testing is not new, our approach 
improves on previous and related work (as described in section 3) on three very 
important factors:  
• It is completely automatic (requires no intervention of the user whatsoever). 
• It has been applied to the programming methodology which introduced contracts in 

the software development cycle (Eiffel). 
• It has been tested on full-fledged, industrial-scale applications. 

Our approach is currently only applicable to the Eiffel language, but in the future 
we will extend it to other methodologies which support contracts. 

We must also mention that the target of our work is developing a complete process 
for automatic testing, not just one or several of its separate stages. It is with regard to 
this that our work is fundamentally different from other approaches, which focus on 
automating only certain aspects and do not deal at all with the others, as we show in 
section 3.  

In this paper we describe the complete testing process we have developed. Space 
constraints do not allow us to go into detail on all points presented, but we prefer to 
give an overview of the approach as a whole and of the way the different stages are 
integrated into a seamless process. The next section outlines the most important 
results we have obtained so far. Section 3 describes related work and in section 4 we 
provide an overview of the proposed testing process. Section 5 contains a detailed 
discussion of the results. We outline the directions of our future research in section 6. 
Finally, we draw some conclusions in section 7. 

2 Main Results 

The tool we have built to put our ideas into practice and to test our approach is called 
AutoTest2 [6, 8, 11]. It implements the fully automatic testing process that we have 
developed. Using AutoTest, we ran tests on some Eiffel libraries. Although these 
libraries had been thoroughly tested by developers, our tool was able to find several 
bugs in them, with various degrees of severity. We give examples of such bugs in 
section 5. This work has helped us identify several reasons why bugs had escaped 
manual testing: 
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• Numerous bugs are exposed when testing with extreme values (at either end of the 
valid interval) as inputs. 

• Other bugs were related to insufficient specification of routines’ preconditions. The 
developers had made some implicit assumptions about the use of those routines, 
but did not state these assumptions in preconditions. 

• Developers had tested certain routines only as part of specific usage scenarios. 
Running those routines outside the intended context (when their export status 
allowed it) revealed errors. 
Although some of these causes (or closely related ones) have already been 

identified in the literature, we want to highlight here that our experience has 
confirmed them and that automatic testing suffers from none of these disadvantages. 

Although the tool is not fully implemented yet and several aspects are still the 
subject of ongoing research, the results we have obtained so far are very encouraging. 
They prove the value of the approach and the effectiveness of fully automatic testing. 

3 Related Work 

The results published in several papers support the idea of using contracts for testing. 
[5] tries to estimate the improvement in the fault isolation effort that contracts bring. 
The authors use the notion of diagnosability to illustrate this concept: “diagnosability 
captures the fault isolation effort after the occurrence of a failure”. The results 
presented in the paper show that diagnosability improves considerably (about 8 times) 
in the presence of contracts defined with very high precision. [17] investigates the 
question of which types of assertions are most effective at detecting faults. The author 
develops a classification of assertions from this perspective. This classification is 
meant as a first step in creating a methodology of programming with assertions. 

Researchers have dedicated a large amount of work to automatic testing. The idea 
of using contracts as built-in test (as discussed in [3]) has been exploited as part of 
several approaches. [4] presents a method that is very similar to ours: the testing tool 
called Korat uses preconditions to generate valid and non-isomorphic inputs for each 
method under test and postconditions to evaluate the correctness of the methods. They 
place special emphasis on the technique of generating inputs based on parsing the 
method preconditions and on a user-provided finitization function on the inputs. Korat 
can automatically generate test cases for Java programs with associated JML [10] 
assertions. The disadvantage of this approach is that it is not fully automatic: although 
a skeleton for the finitization function is generated by the tool, in many cases users 
are required to edit it to get the behavior they want. 

Various research groups have investigated the idea of using specifications for 
testing. [16] is the original paper formalizing specification-based testing. They 
propose the extension of structural testing with specification-based techniques. Test 
cases contain preconditions and postconditions. Two of the approaches they develop 
(specification/error-based testing and specification/fault-based testing) assume that 
the specification itself may be faulty. The other two approaches (oracle/error-based 
testing and oracle/fault-based testing) treat the specification as an oracle, as is the case 



in our work. However, this is the only similarity between the work described in [16] 
and ours, as they only address the issue of automating the test oracle. 

[12] also uses method preconditions and postconditions to model the functional 
correctness of systems. The author views testing as a constraint solving or 
satisfiability problem: determining values for the input variables so that the system 
under test terminates and the conjunction between the precondition and the negated 
postcondition is satisfied. The approach is based on building an approximate model of 
the system by running several tests on it and then using this knowledge to estimate 
where a successful test case might be found. The idea is interesting, but evaluation of 
the performance of the algorithm was still in progress when the paper was written. 
The author provides only a simple case study, from which it is difficult to make any 
estimation about the general performance of the solution. 

[9] addresses the question of evaluating test quality. The authors focus on building 
trust into components by associating tests with them and evaluating the quality of 
these tests. The authors measure the quality of a test sequence by injecting faults in 
the components and evaluating the fault revealing power of the tests. In this approach, 
the user has to manually write the test code; class invariants and method 
postconditions are used as oracles. The focus of this paper is estimating test quality, 
not automating the testing process. As such, this work is complementary to ours. 

Several approaches focus on automating only certain aspects of testing. The 
methodology described in [1] requires the user to write a formal test specification and 
from this specification are generated test cases and test scripts. [18] focuses on 
automatic generation of test cases: they are represented as chromosomes and passed 
to a genetic algorithm, which mutates them to maximize coverage. 

4 Our Approach to Automatic Testing 

A testing process requires the following steps: 
• Determining the test scope 
• Generation of input data and establishing the conditions (the state of the system) 

under which the test case should be executed 
• Generation and compilation of the test code (the test cases and the test driver) 
• Running the test code and recording results 
• Interpretation of the test results 

When the testing process becomes automatic, all these individual stages must be 
performed without human intervention and they must be integrated automatically to 
form a continuous flow. The user is only involved at the beginning of the process, 
when he decides on the elements under test, and at the end, when he views the results.  

In the following subsections we describe our solutions for automating each of these 
stages, for integrating them into a seamless process, and our test configuration 
mechanism. 



4.1 The test scope 

For convenience, our tool allows users to set the test scope at various degrees of 
granularity: cluster3, class, or feature4. Any choice is reduced to the features contained 
in the tested elements, and it is at the feature level that we perform our tests. 
However, there are two issues to be considered when a user wants to test feature f of 
class A: 
• Do we also test f in descendants of A? Because of polymorphism this is a valid 

concern. 
• If class A is generic, which instantiations of the generic parameter(s) do we use to 

run the tests? 
In the case of the first question, if A is deferred (abstract), then the answer must be 

yes. Still, even in this case we have to ask if we stop at the first descendant that is 
effective (concrete) or also recursively test its descendants. The default that our tool 
offers is testing only A if it is effective and testing only its first level of effective 
descendants if it is deferred, but users can change these settings. 

The second question also arises when we have to instantiate feature arguments that 
take generic parameters. Again, the tool provides a default (instantiating the 
constraining type only), but users can change this behavior to using instances of: 
• The basic types if they conform to the constraining type. 
• All types in the system that conform to the constraining type. 

4.2 Generation of input data 

When testing a feature of a class, we need an instance of the current class and 
instances of the arguments. Our current algorithm for input data generation uses a 
random strategy: when an object of a certain type is needed, it is created by randomly 
calling one of the creation procedures of its class and it is added to the pool of 
available objects. Then a random modifier (routine with side-effects) is called on an 
object in the pool (to diversify it) and an object is randomly selected from the pool.  

We designed this algorithm as a first and temporary solution to the issue of test 
data generation. In spite of its obvious drawbacks (one of which is that it does not 
take into account any measure of code or data coverage), when integrated into the 
testing process it produces surprisingly good results, as shown in section 5. 
Nevertheless, improving our strategy for data generation is one of the main targets of 
our future work. 

4.3 Conditions for executing a test case 

As our current approach is targeted at testing individual features, the conditions for 
executing a certain test case reduce to fulfilling the precondition of the tested routine. 
A major drawback of our random strategy for generating input values is that it does 
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not take the precondition into account. Objects are generated randomly and therefore 
for some routines we might be unable to fulfill the preconditions. However, there is 
ongoing work in our project which focuses on using planning to obtain objects that 
satisfy routines’ preconditions. We do not describe this work in the present paper. 

4.4 Generation, compilation and running of the test code 

Currently we generate a class for every feature under test and every other feature that 
may be needed. The test code is then compiled and for execution AutoTest uses a 
two-tier approach: a test driver (master) and an interpreter (slave). The driver tells the 
interpreter which routine must be tested and provides it the identifiers of the slots in 
the object pool where the target object and the arguments are located. The interpreter 
is responsible only for running the tested routine and for returning the result to the test 
driver. The advantage of this approach is that test running does not have to start over 
for the whole system if the execution of one routine fails. In such a case, only the 
interpreter will be affected and the driver, seeing that it receives no response or an 
unexpected one, will reinitiate the interpreter. If several calls to the same routine fail 
(the interpreter does not respond), then the driver will decide to skip testing that 
particular routine and go on to the next. 

4.5 Interpretation of the test results 

Our tool provides the following information about the outcome of running the tests: 
• A classification of the test result: 

− Failed - the feature produced an assertion violation or some other exception 
occurred during its execution;  

− Could not be tested – AutoTest could issue no call to the feature, because it 
could not instantiate the target object or one of the arguments; 

− No call was valid – no call to the feature fulfilled its precondition, so the feature 
does not fail the test but does not pass either; it simply was not actually tested; 

− Passed – at least one of the feature calls succeeded (fulfilled the precondition) 
and its execution did not produce any exceptions or assertion violations. 

• The numbers of calls for which: 
− There was no exception 
− The test case violated the precondition of the routine under test 
− There occurred an assertion violation 
− There was some other exception 
Evaluation of test results is straightforward due to the presence of contracts in the 

code: we check the routine preconditions and postconditions, class invariants and 
other assertions present in the routine body (loop assertions and check instructions); 
if any test execution violates any of these assertions (except when the test case 
directly violates a routine’s precondition), we have found a bug and we report it to the 
user, indicating the routine where the violation occurred and the tag of the assertion. 
We also monitor other exceptions triggered during test execution and report them to 
the user separately. 



The cases mentioned above do not account for all possible bugs that may be 
present in the code. An example is that of infinite loops. Currently, we try to avoid 
them by using a timer; if the execution of the routine does not finish within the preset 
interval, we report an infinite loop. The evident drawback of this technique is that 
some correct executions which just require more time than our limit will be 
categorized as infinite loops. However, we must mention that this is the only case of 
false alarm we have identified. Our goal is to minimize such false positives and at the 
same time identify all real positives.  

4.6 Configuring the testing process 

In fully automatic testing there arises the need for mechanisms for tuning the process. 
Users must have means by which to adapt it to their particular requirements. 
Therefore, we have introduced a set of parameters which lets users configure the 
testing process: 
• The stress level associated with the various elements under test (this is currently 

mapped to the number of calls to tested features and whether or not we test features 
in descendants of a class) 

• The level of assertion checking: what type of assertions (preconditions, 
postconditions, class invariants, loop variants and invariants, and check 
instructions) are monitored 

• The testing order:  
− run all tests on a feature before testing the next one 
− test all features of a class before proceeding to the next one 
− execute each feature under test once before calling them a second time 

• The level of support for genericity (determines the types used for instantiating 
generic parameters) 

• The values used for instantiating basic types (INTEGER, REAL, DOUBLE, 
BOOLEAN, CHARACTER, STRING) 

• Instances for other types that will be part of the context5 
All these parameters have defaults, but users can also change their values. 

5 Discussion of Results 

One of the biggest advantages of our approach is that we were able to test it on 
existing large-scale applications and libraries. This is not the case for any of the 
related work (mentioned in section 3), because it is targeted at programming 
languages that do not natively incorporate assertions. Since assertions are added 
artificially on top of existing programming languages and they are mostly used in the 
research community, there are no real life applications on which the proposed 
methods were tested. 
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Listing 1: Function is_inserted of class ARRAYED_LIST [G] 
 

To give the reader an idea of the testing capabilities of our tool, we provide the 
following examples: in the test of class ARRAYED_LIST [G] from cluster list 
of the EiffelBase library, tests failed for 13 features, out of a total of 98 exported 
features that the class has; when testing class STRING from cluster 
kernel_classic of the EiffelBase library, tests failed for 25 features out of 157 
exported features. 

We present in the following a few examples of bugs we identified. When testing 
class ARRAYED_LIST [G] we noticed that all calls to feature is_inserted 
(whose code is shown in Listing 1) failed and all because of the same reason: the 
check instruction at the beginning of the routine body failed. The header comment 
of the routine points us to the most probable cause of the bug: the developer of the 
class intended for is_inserted to only be called as part of the postconditions of 
routines put (and its variants sequence_put and bag_put) and extend. 
However, the export status of is_inserted allows it to be called by any client of 
class ARRAYED_LIST [G], and in this case the condition contained in the check 
instruction does not make sense anymore. It is very likely that this bug escaped 
manual testing because the developers had a specific usage scenario in mind and they 
only tested the routine as part of that scenario.  

Another feature of ARRAYED_LIST [G] for which our tests failed was put 
(see code in Listing 2). The precondition of this feature only requires that our instance 
of ARRAYED_LIST [G] is extendible, and it checks this by calling the 
extendible feature, which returns a boolean value. Class ARRAYED_LIST [G] 
inherits this feature from DYNAMIC_CHAIN, in which it is defined as a constant and 
its value is set to True (as shown in Listing 2). Therefore, routine put has the 
weakest possible precondition (True). Its implementation does nothing else than call 
replace, but replace requires that the target object is writable (meaning that the 
current index has a valid value, i.e. it points to an element in the list, not before its 

is_inserted (v: G): BOOLEAN is 

   -- Has `v' been inserted at the end by 
the  

   -- most recent `put' or 

   -- `extend'? 

  do 

   check 

    put_constraint: (v /= last) implies 
not off 

   end 

   Result := (v = last) or else (v = 
item) 

  end 



beginning or after its end). Therefore, when calling put on an instance of 
ARRAYED_LIST [G] whose index is 0 and minimum valid index is 1, the 
precondition of replace is violated. The obvious problem here is the lack of a 
precondition for put. Actually, since all put does is call replace (and, as stated in 
the header comment of put, it should be a synonym of replace), the two routines 
should have the same preconditions. 
 

 
Listing 2: Features put, replace and Extendible of class 

ARRAYED_LIST [G] 
 

Another category of bugs we found were revealed by testing routines with extreme 
values for parameters, such as the minimum and maximum values for integers. 

put (v: like item) is 

   -- Replace current item by `v'. 

   -- (Synonym for `replace') 

   -- (from CHAIN) 

  require -- from COLLECTION 

   extendible: extendible 

  do 

   replace (v) 

  ensure -- from COLLECTION 

   item_inserted: is_inserted (v) 

  ensure then -- from CHAIN 

   same_count: count = old count 

  end 

replace (v: like first) is 

   -- Replace current item by `v'. 

  require -- from ACTIVE 

   writable: writable 

  do 

   put_i_th (v, index) 

  ensure -- from ACTIVE 

   item_replaced: item = v 

  end 

Extendible: BOOLEAN is True 

   -- (from DYNAMIC_CHAIN) 

 



Creation procedure make of class ARRAY [G] (whose code is shown in Listing 3) 
takes 2 parameters: a minimum index and a maximum index, both integers, and it 
should allocate an array whose indexes vary between the given values. When testing 
this feature, our tool tried to call it with the values -2147483648 (the minimum value 
for integers) and 10, respectively. The call was valid because these values fulfill the 
precondition of the routine. However, when the execution reached the call to 
make_area (max_index – min_index + 1) the precondition of routine 
make_area of class TO_SPECIAL [T] was violated, as it was called with 
argument -2147483639. What happened was that the calculation of the expression 
max_index – min_index + 1 produced a number that was greater than the 
maximum value for integers, so it was interpreted as a negative number. However, as 
a client of feature make of class ARRAY [G], our test fulfilled its precondition, so it 
was expecting make to fulfill the postcondition in return. As this was not the case, we 
conclude that we have found a bug. A possible correction for it would be to change 
the precondition of make to max_index – min_index + 1 >= 0. As the 
example shows, this is not the same as evaluating its current precondition 
(min_index <= max_index + 1) and it would ensure that the precondition of 
make_area is fulfilled. 
 
 
 

class ARRAY [G] 

… 

make (min_index, max_index: INTEGER) is 

  -- Allocate array; set index interval to 

  -- `min_index' .. `max_index'; set all 
values to default. 

  -- (Make array empty if `min_index' = 
`max_index' + 1). 

 require 

  valid_bounds: min_index <= max_index + 1 

 do 

  lower := min_index 

  upper := max_index 

  if min_index <= max_index then 

   make_area (max_index - min_index + 1) 

  else 

   make_area (0) 

  end 

 ensure 

  lower_set: lower = min_index 



 

 
Listing 3: Feature make of class ARRAY [G] and feature make_area of class 

TO_SPECIAL [T] 

6 Future Work 

One direction for our future research that has already been mentioned concerns the 
generation of input values for the tests. Currently this is done randomly, but we intend 
to also implement a measure of data coverage, which is strongly linked to code 
coverage. This development will also mean changing our test strategy from black-box 
to white-box. Currently we use no knowledge about the internal structure of the code, 
only its contracts. Any coverage solution has several parts: determining the actual 
coverage of the tests; feeding this measure back to the object generator, so that it will 
give us values which will increase coverage; determining the value of the coverage 
that we are aiming for and stopping when our tests reach that value. Naturally, this 
technique will only be applicable to systems for which we have the source code. For 
the systems for which we only have a binary form, we will not be able to perform any 
white-box testing. 

  upper_set: upper = max_index 

  items_set: all_default 

 end 

… 

end 

 

class TO_SPECIAL [T] 

… 

make_area (n: INTEGER) is 

  -- Creates a special object for `n' 
entries. 

 require 

  non_negative_argument: n >= 0 

 do 

  create area.make (n) 

 ensure 

  area_allocated: area /= Void and then 
area.count = n 

 end 

… 



In section 1 we identified finding failure-reproducing examples as an important 
issue involved in fully automatic testing. In our approach, such examples are already 
available when the execution of the tests ends (provided that at least one test fails). 
However, the size of these examples might not be optimal. We want to develop a 
method which, starting from these existing examples, trims them down to the minimal 
number of calls necessary to reproduce the failure. 

As we use contracts to evaluate test results, the quality of the test oracles is entirely 
dependent on the quality of the contracts. We will not be able to check any part of the 
functionality of the system that is not specified in its contracts. Consequently, we will 
try to develop a methodology of writing contracts with respect to their use as test 
oracles.  

When developers are introduced to Design by Contract™, they are at first reluctant 
to using contracts to specify the requirements and output of their systems. A great 
number of software developers novice in the Eiffel method fail to see the benefits that 
contracts bring. We believe that the use of contracts for testing can change this. We 
intend to conduct a survey to determine if the advantages of automatic testing using 
contracts do indeed increase their use and quality. 

One further direction of research concerns extending our approach to other 
programming languages and methodologies which support contracts. We believe that 
our method is general enough to allow this extension. Still, some details will need to 
be adapted according to the characteristics of each language regarding issues like 
inheritance of assertions or assertion actions (triggered when the condition is not 
fulfilled). 

7 Conclusions 

We have described our solution for developing and implementing a fully automatic 
testing process. We use contracts as the basis of our approach. By checking that a 
software element fulfills its contracts, we can determine if it meets its specification. 
We have also discussed our solutions to other issues involved in automatic testing, 
such as data generation, test execution, interpretation of results, and tailorability of the 
testing process.  

As demonstrated by the results, our current approach and its implementation are 
promising. The AutoTest tool is proof of concept for push-button testing. It 
implements a completely automatic testing process, by which we have been able to 
identify a great number of bugs in Eiffel libraries. 
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