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Abstract

The growing interest in peer-to-peer applications has un-
derlined the importance of scalability in modern distributed
systems. Not surprisingly, much research effort has been in-
vested in gossip-based broadcast protocols. These trade the
traditional strong reliability guarantees against very good
“scalability” properties. Scalability is in that context usu-
ally expressed in terms of throughput and delivery latency,
but there is only little work on how to reduce the overhead
of membership management at large scale.

This paper presents Lightweight Probabilistic Broad-
cast (lpbcast), a novel gossip-based broadcast algorithm
which preserves the inherent throughput scalability of tradi-
tional gossip-based algorithms and adds a notion of mem-
bership management scalability: every process only knows
a random subset of fixed size of the processes in the system.
We formally analyze our broadcast algorithm in terms of
scalability with respect to the size of individual views, and
compare the analytical results both with simulations and
concrete measurements.

1. Introduction

Large scale event dissemination. Peer-to-peer comput-
ing has recently received much attention, as shown by
the success of large scale decentralized applications like
Gnutella [22] or Groove [10]. In peer-to-peer computing,
every process acts as client and server, and scalability is a
major concern.

The scalability properties solicited from such applica-
tions have evolved from hundreds to thousands of partici-
pants, but adequate algorithms for reliable propagation of
events at large scale are still lacking. Network-level pro-
tocols have turned out to be insufficient: IP multicast [6]
lacks reliability guarantees, and reliable protocols do not
scale well. The well-known Reliable Multicast Transport
Protocol (RMTP) [17] for instance generates a flood of pos-
itive acknowledgements from receivers, loading both the
network and the sender. Any form of membership [2, 12] is
hidden by such network-level protocols, which makes them

difficult to exploit with more dynamic dissemination (fil-
tering, e.g., [15]), emphasizing the need for new forms of
application-level broadcast.

Gossip-based broadcast algorithms. Gossip-
based broadcast algorithms [4, 14, 19] appear to be more
adequate in the field of large scale event dissemination, than
the “classical” strongly reliable approaches [11]. Though
such gossip-based approaches have proven good scalabil-
ity characteristics in terms of throughput, they often rely on
the assumption that every process knows every other pro-
cess. When managing large numbers of processes, this as-
sumption becomes a barrier to scalability. In fact, the data
structures necessary to store the view of such a large scale
membership consume considerable memory resources, let
aside the communication required to ensure the consistency
of the membership.

Partial view. Message routing and membership manage-
ment are sometimes delegated to dedicated servers in order
to relief application processes [1, 5, 20]. This only defers
the problem, since those servers are limited in resources as
well. To further increase scalability, the membership view
should be split, i.e., every participating process should only
have a partial view of the system. In order to avoid the
isolation of processes or the partition of the membership,
especially in the case of failures, membership information
should nevertheless be shared by processes to some extent:
introducing a certain degree of redundancy between the in-
dividual views is crucial to avoid single points of failure.

Gossip-based membership. While certain systems rely
on a deterministic scheme to establish the individual views
[14, 21], we introduce here a new completely randomized
approach. The local view of every individual member con-
sists of a random process list which continuously evolves,
but never exceeds a fixed size. In short, after adding new
processes to a view, it is truncated to the maximum length
by removing randomly chosen entries. To ensure a uniform
distribution of membership knowledge among processes,
every gossip message – besides notifying events – also pig-



gybacks a set of process identifiers which are used to update
views. The membership protocol and the effective dissemi-
nation of events are thus dealt with at the same level.

Contributions. We present in this paper our strongly scal-
able decentralized algorithm for event dissemination, called
lpbcast, which we have used to implement a static pub-
lish/subscribe. We convey our claim of scalability in two
steps. First, we formally analyze our algorithm using a
stochastic approach, pointing out the fact that, with per-
fectly uniformly distributed individual views, the view size
has virtually no impact on the latency of delivery of an
event. We similarly show that for a given view size, the
probability of partition creation in the system decreases as
the system grows in size. Second, we give some practical
results that support the analytical approach, both in terms of
simulation and prototype measurements.

It is important to notice that our membership approach
is not intrinsically tied to our Lightweight Probabilistic
Broadcast (lpbcast) algorithm. We illustrate this by apply-
ing our membership scheme to the well-known pbcast [4]
algorithm.

Roadmap. Section 2 gives an overview of related gossip-
based broadcast protocols. Section 3 presents our lpbcast
algorithm and explains our randomized approach. Section 4
presents a formal analysis of our algorithm in terms of scal-
ability and reliability. Section 5 gives some simulation and
practical results supporting the formal analysis. Section 6
discusses the distribution of the views and also proves the
general applicability of our membership approach by com-
bining it with pbcast and contrasting the consolidated algo-
rithm with lpbcast.

2. Background: Probabilistic Algorithms

The achievement of strong reliability guarantees (in the
sense of [11]) in practical distributed systems requires ex-
pensive mechanisms to detect missing messages and initiate
retransmissions. Due to the overhead of message loss detec-
tion and reparation, protocols offering such strong guaran-
tees do not scale over a couple of hundred processes [18].

2.1. Reliability vs Scalability

Gossip, or rumor mongering algorithms [7], are a class
of epidemiologic algorithms, which have been introduced as
an alternative to such “traditional” reliable broadcast proto-
cols. They have first been developed for replicated database
consistency management [7]. The main motivation is to
trade the reliability guarantees offered by costly determin-
istic protocols against weaker reliability guarantees, but in
return obtain very good scalability properties.

Their analysis is usually based on stochastics similar to
the theory of epidemics [3], where the execution is broken
down in steps. Probabilities are associated to these steps,
and such algorithms are therefore sometimes also referred
to as probabilistic algorithms. The degree of reliability is
typically expressed by a probability; like the probability
1- � of reaching all processes in the system for any given
message, or by a probability 1-

�
of reaching any given pro-

cess with any given message. Ideally, � and
�

are precisely
quantifiable.

2.2. Basic Concepts

Decentralization is the key concept underlying the scala-
bility properties of gossip-based broadcast algorithms, i.e.,
the overall load of retransmissions is reduced by decentral-
izing the effort. More precisely, retransmissions are initi-
ated in most gossip-based algorithms by having every pro-
cess periodically (every � ms – step interval) send a di-
gest of the messages it has delivered to a randomly chosen
subset of processes inside the system (gossip subset). The
size of the subset is usually fixed, and is commonly called
fanout ( � ). Gossip protocols differ in the number of times
the same information is gossiped, i.e., every process might
gossip the same information only a limited number of times
(repetitions are limited) and/or the same information might
be forwarded only a limited number of times (hops are lim-
ited).

2.3. Membership Tracking in Gossip-Based Algo-
rithms

Membership tracking in gossip-based algorithms is a
challenging issue. Early approaches like [9] admit that
the individual views of processes diverge temporarily, but
assume that they eventually converge in “stable” phases.
These views however represent the “complete” member-
ship, which becomes a bottleneck at an increased scale. The
Bimodal Multicast [4] and Directional Gossip [14] algo-
rithms are representatives of a new generation of probabilis-
tic algorithms – aware of the problem of scalable member-
ship management.

Bimodal Multicast. Bimodal Multicast (also called pb-
cast) relies on two phases. A “classical” best-effort multi-
cast protocol (e.g., IP multicast) is used for a first rough dis-
semination of messages. A second phase assures reliability
with a certain probability, by using a gossip-based retrans-
mission: every process in the system periodically gossips a
digest of its received messages, and gossip receivers can so-
licit such messages from the sender if they have not received
them previously.



The membership problem is not dealt with in [4], but
the authors refer to another paper which describes Capt’n
Cook [21], a gossip-based resource location protocol for the
Internet, which can in that sense be seen as a membership
protocol. This protocol enables the reduction of the view
of each individual process: each process has a precise view
of its immediate neighbours, while the knowledge becomes
less exhaustive at increasing “distance”. The notion of dis-
tance is expressed in terms of host addresses. Capt’n Cook
however only considers the propagation of membership in-
formation and it is thus not clear how this membership in-
teracts with pbcast.

Directional Gossip. Directional Gossip is a protocol es-
pecially targeted at wide area networks. By taking into
account the topology of the networks and the current pro-
cesses, optimizations are performed. More precisely, a
weight is computed for each neighbour node, representing
the connectivity of that given node. The larger the weight
of a node, the more possibilities exist thus for it to be in-
fected by any node. The protocol applies a simple heuris-
tic, which consists in choosing nodes with higher weights
with a smaller probability than nodes with smaller weights.
That way, redundant sends are reduced. The algorithm is
also based on partial views, in the sense that there is a sin-
gle gossip server per LAN which acts as a bridge to other
LANs. This however leads to a static hierarchy, in which
the failure of a gossip server can isolate several processes
from the remaining system.

In contrast to the deterministic hierarchical membership
approaches in Directional Gossip or Capt’n Cook, our lpb-
cast algorithm has a probabilistic approach to membership:
each process has a random partial view of the system. lp-
bcast is lightweight in the sense that it consumes little re-
sources in terms of memory and requires no dedicated mes-
sages for membership management: gossip messages are
used to disseminate notifications and to propagate digests
of received events, but also to propagate membership infor-
mation.

3. Lightweight Probabilistic Broadcast (lpb-
cast)

In this section, we present our completely decentralized
lightweight probabilistic algorithm for event dissemination
based on partial views. Though the parts concerning the
event dissemination and the membership respectively can
be considered as independent, we present our solution as a
monolithic algorithm. This is done in order to simplify pre-
sentation, and to emphasize the possibility of dealing with
membership and event dissemination at the same level.

3.1. System Model

We consider a system of processes ���
	���
���������������� .
Processes join and leave the system dynamically and have
ordered distinct identifiers. We assume for presentation
simplicity that there is not more than one process per node
of the network.

Though our algorithm has been implemented in the con-
text of topic-based publish/subscribe [8], we present it with
respect to a single topic, and do not discuss the effect of
scaling up topics. In other terms, � can be considered as a
single topic or group, and joining/leaving � can be viewed
as subscribing/unsubscribing from the topic. Such subscrip-
tions/unsubscriptions are assumed to be rare compared to
the large flow of events, and every process in � can sub-
scribe to and/or publish events.

3.2. Gossip Messages

Our lpbcast algorithm is based on non-synchronized pe-
riodical gossips, where a gossip message contains several
types of information. To be more precise, a gossip message
serves four purposes:

Notifications: A message piggybacks notifications re-
ceived (for the first time) since the last outgoing gossip
message. Each process stores these notifications in a vari-
able events. Every such notification is only gossiped at
most once. Older notifications are stored in a different
buffer, which is only required to satisfy retransmission
requests.

Notification identifiers: Each message also carries a digest
(history) of notifications that the sending process has re-
ceived. To that end, every process stores identifiers of no-
tifications it has already delivered in a variable eventIds.
We suppose that these identifiers are unique, and include
the identifier of the originator. That way, the buffer can
be optimized by only retaining for each sender the identi-
fiers of notifications delivered since the last one delivered
in sequence.

Unsubscriptions: A gossip message also piggybacks a set
of unsubscriptions. This type of information enables the
gradual removal of processes which have unsubscribed
from local views. Unsubscriptions that are eligible to be
forwarded with the next gossip(s) are stored in a variable
unSubs.

Subscriptions: A set of subscriptions are attached to each
message. These subscriptions are buffered in subs. A
gossip receiver uses these subscriptions to update its
view, stored in a variable view.



Note that none of the outlined data structures contains
duplicates. That is, trying to add an already contained ele-
ment to a list leaves the list unchanged. Furthermore, every
list has a maximum size, noted � L � � for a given list L ( �
L, � L ����� L � � ). As a prominent parameter, the maximum
length of view ( � view � � ) will be denoted  .
3.3. Procedures

The algorithm is composed of two parts. The first part is
executed upon reception of a gossip message, and the sec-
ond part is repeated periodically in attempt to propagate in-
formation to other processes.

Gossip reception. According to the lists that are attached
to each gossip message, there are several phases in the han-
dling of an incoming message (Figure 1(a)).

I. The first phase consists in handling unsubscriptions.
Every unsubscription is applied to the local view
(view), and then added to the list of potentially for-
warded unsubscriptions unSubs. This list is then trun-
cated to respect the maximum size limit by removing
random elements.

II. The second phase consists in trying to add not yet
contained subscriptions to the local view. These are
also eligible for being forwarded with the next out-
going gossip message. Note that the subscriptions
potentially forwarded with the next outgoing gossip
message, stored in subs, are a random mixture of sub-
scriptions which are present in the view after the ex-
ecution of this phase, and subscriptions removed to
respect the maximum size limit of view. Finally, subs
is also truncated to respect the maximum size limit.

III. The third phase consists in delivering to the applica-
tion notifications whose ids have been received for
the first time with the last incoming gossip message.
Multiple deliveries are avoided by storing all iden-
tifiers of delivered notifications in eventIds, as pre-
viously outlined. Delivered notifications are at the
same time eligible for being forwarded with the next
gossip.

Gossip sending. Each process periodically (every �"!$# )
generates a gossip message – according to Section 3.2 –
which it gossips to � other processes, randomly chosen
among the local view (view) (Figure 1(b)). This is done
even if the process has not received any new notifications
since it last sent a gossip message. In that case, gossip
messages are solely used to exchange digests and maintain
the views uniformly distributed. The network thus experi-
ences little fluctuations in terms of overall load due to gossip

upon RECEIVE (gossip)%
Phase 1: Update view and unSubs with unsubscriptions &

for all unsub ' gossip.unSubs do
view ( view ) % unsub &
unSubs ( unSubs * % unsub &

while + unSubs +-,$+ unSubs + . do
remove random element from unSubs%

Phase 2: Update view with new subscriptions &
for all newSub ' gossip.subs / newSub 01 p 2 do

if newSub 0' view then
view ( view * newSub
subs ( subs * newSub

while + view +3,54 do
target ( random element in view
view ( view ) % target &
subs ( subs * % target &

while + subs +-,6+ subs + . do
remove random element from subs%

Phase 3: Update events with new notifications &
for all e ' gossip.events do

if e.id 0' eventIds then
events ( events * % e &
LPB-DELIVER(e)
eventIds ( eventIds * % e.id &

for all e.id ' gossip.eventIds do
if e.id 0' eventIds then%

Retrieving the notification &
RETRIEVE(e)
events ( events * % e &
LPB-DELIVER(e)
eventIds ( eventIds * % e.id &

while + eventIds +7,6+ eventIds + . do
remove oldest element from eventIds

while + events +7,6+ events + . do
remove random element from events

(a) Gossip reception

every 8 ms

gossip.subs ( subs * % p 29&
gossip.unSubs ( unSubs
gossip.events ( events
gossip.eventIds ( eventIds
choose : random members target ; , ... target < in view
for all =>' [1.. : ] do

SEND(target? , gossip)
events (A@
upon LPB-CAST(e)

events ( events * % e &
(b) Gossip emission

Figure 1. lpbcast algorithm

messages, as long as � and the number of processes inside� and remain unchanged.

3.4. Subscribing and Unsubscribing

For presentation simplicity we have not reported the pro-
cedures for subscribing/unsubscribing in Figure 1(a). In



short, a process �CB which wants to subscribe must know a
process �ED which is already in � . Process �CB will send its
subscription to that process � D , which will gossip that sub-
scription on behalf of � B . If the subscription of � B is cor-
rectly received and forwarded by � D , � B will be gradually
added to the system. Process � B will experience this by re-
ceiving more and more gossip messages. Otherwise, a time-
out will trigger the re-emission of the subscription request.

Similarly, when unsubscribing, the process is gradually
removed from local views. To avoid the situation where un-
subscriptions remain in the system forever (since unSubs is
not purged), there is a timestamp attached to every unsub-
scription. After a certain time, the unsubscription becomes
obsolete. It is important to notice that this scheme is not
applied to subscriptions: these are continuously dispatched
in order to ensure uniformly distributed views.

Due to the evolving nature of the membership scheme,
failed processes are gradually removed from all the views
in the system.

4. Analytical Evaluation

This section presents a formal analysis of our lpbcast al-
gorithm. The goal is to show the impact of the size  of the
individual views of processes both (1) on the latency of de-
livery and (2) on the stability of our membership. The anal-
ysis differs from the one proposed in [4], precisely because
our membership is not global and a same notification id is
not forwarded only a limited number of times (hops are not
limited), and can be forwarded several times by the same
process (repetitions are not limited). We first introduce a
set of assumptions without which the analysis becomes ex-
tremely tedious, but which have only very little impact on
its validity.

4.1. Assumptions

For our formal analysis we consider a system � com-
posed of F processes, and we observe the propagation of a
single event notification. We assume that the composition
of � does not vary during the run (consequently F is con-
stant). According to the terminology applied in epidemiol-
ogy, a process which has delivered a given notification will
be termed infected, otherwise susceptible.

The stochastic analysis presented below is based on the
assumption that processes gossip in synchronous rounds,
and there is an upper bound on the network latency which
is smaller than a gossip period � . � is furthermore constant
and identical for each process, just like the fanout � . We
assume furthermore that failures are stochastically indepen-
dent. The probability of a message loss does not exceed a
predefined GIHKJ , and the number of process crashes in a
run does not exceed LNMOF . The probability of a process

crash during a run is thus bounded by PQ�RL�STF . For the
following computations and also for the simulations in the
next section, we will assume PU�VJE� JEW and GX�KJY� J[Z . We
do not take into account the recovery of crashed processes,
nor do we consider byzantine (or arbitrary) failures.

At each round, each process has an independent uni-
formly distributed random view of size  of known sub-
scribers. In other terms, every combination of  within\ F^]_Wa` processes (according to the algorithm presented in
Figure 1(a), a process �bB will never add itself to its own local
view c[dfeaghB ) is equally probable for every individual view.
For simplicity reasons, we will also refer to such views as
uniform views (though this is a language abuse). The ex-
pected number of processes which know a given process is
thus i_ . These views are not constant, but continue evolv-
ing.

4.2. Event Propagation

Let e be an event produced (LPB-CAST) by a given pro-
cess. We denote the number of processes infected with e at
round j as #akmlInoWp��� Fbq . Note that when e is injected into the
system at round jr�QJ , we have #�ks�tW .

We define a lower bound on the probability that a given
susceptible process is infected by a given gossip message
as: �6� u  FX]"WYv u �  wv \ Wh]xGy` \ Wh]zPY`� u �FX]"W v \ W{]zGy` \ Wh]xPY` (1)

In other terms, � is expressed as a conjunction of four con-
ditions, namely that (1) the considered process is known by
the process which gossips the message, (2) the considered
process is effectively chosen as target, (3) the gossip mes-
sage is not lost in transit, and (4), the target process does not
crash. As a direct consequence of the uniform distribution
of the individual views, � does not depend on  .

Accordingly, |x�}Wr]z� represents the probability that
a given process is not infected by a given gossip message.
Given a number d of currently infected processes, we are
now able to define the probability that exactly ~ processes
will be infected at the next round (~X]_d susceptible pro-
cesses are infected during the current round). The resulting
Markov Chain is characterized by the following probability� B�D of transiting from state d to state ~ :� B�D ��� \ #ak���
h��~b� #�ks�Qd�`�Q������� BD � B�� \ Wh]x| B ` D � B | B�� ��� D�� ~���dJ ~�M�d (2)



The distribution of # k can then be computed recursively:

� \ #7����~�`>� � W�~5��WJ�~�H�W� \ #�k���
h�"~�`���� B �YD � \ #aks��d�`¡� B�D (3)

4.3. Gossip Rounds

By considering that the two parameters P and G are be-
yond the limits of our influence, the determining factors ac-
cording to the analysis are the fanout � and of course the
system size F .

Fanout. Figure 2 shows the relation between � and the
number of rounds it takes to broadcast an event to a sys-
tem composed of FK�¢Wa£pZ processes. The figure shows
that increasing the fanout decreases the number of rounds
necessary to infect all processes, but conveys also the fact
that the gain is not proportional. In fact, with a too high
fanout, there will be more redundant messages received by
each process, which limits performance (and the network
would also drop more). Furthermore, � is in our case
tightly bound, since �¤�O must always be ensured. The
goal of this paper however is not to focus on finding the
optimal value for � . In the following simulations and mea-
surements, the default value for the fanout will be fixed to�¤�¦¥ . The optimal choice of fanout value is discussed
within a different context in [13]
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System size F . The number of gossip rounds it takes to in-
fect all processes intuitively depends on the number of pro-
cesses in the system. Figure 3 presents the expected number
of rounds necessary for different system sizes. The figure
conveys the fact that the number of rounds increases log-
arithmically with an increasing system size, as detailed in
[3].
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View size  . According to Equation 2, the view size  does
not impact the time it takes for a notification to reach ev-
ery member. This leads to the conclusion that, besides the
condition �©�ª , the amount of knowledge concerning the
membership that each process maintains does not have an
impact on the protocol performance. The expected num-
ber of rounds it takes to infect the entire system depends
on � , but not on  . This consequence derives directly from
our assumption that the individual views are uniform. The
algorithm shown in Figure 1(b) intuitively supports this hy-
pothesis by two properties, namely (1) each process peri-
odically gossips, and (2) each process adds its own identity
to each gossip message. Based on experimental results, we
will discuss the validity and impact of this assumption more
in detail in Sections 5 and 6.

4.4. Partitioning

One could derive that the view size  can be chosen ar-
bitrarily small (provided that the requirements with respect
to � are met), which is rather dangerous, since with small
values for  the probability of system partitioning increases.
This occurs whenever there are two or more distinct sub-
sets of processes in the system, in each of which no process
knows about any process outside its partition.

Probability of partitioning. The creation of a multiple
partition can be seen as a recursive partitioning. In other
terms, by expressing an upper bound on the probability of
creation of a partition of size d ( d«�¬ �­�W ) inside the sys-
tem, we include also the creation of more than two subsets.
The probability ® \ d-�¯F°�� �` of creation of a partition of size d
inside a system of size F with a view size of  is given by:

® \ d-�¯F°�� �`°� u F dTv²± � B � 
³ �� ��� 
³ �3´
B ± � ��� B � 
³ �� ��� 
³ �$´ ���

B
(4)



It can easily be shown that ® \ d-��F°�� �` monotonically de-
creases when increasing F or  . Figure 4 depicts this forF , by fixing  to 3. The fact that the membership becomes
more stable with an increased F can be intuitively repro-
duced since, with a large system, membership information
becomes more sparsely distributed, and the probability of
having concentrated exclusive knowledge becomes vanish-
ingly small.
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In time. According to our model, the distribution of mem-
bership information in a certain round does not depend on
the distribution in the previous round. Thus we can define
the probability that there is no partitioning up to a given
round j as:µ \ F°�� ���jT`¶�O·¸>Wh] ¹³ ��
 �bB �¶º �y» �¯¼ ®

\ d-�¯F°�� 9`�½¾ k
i¿Wh]zjmÀ ¹³ �Á
 �bB �¶º �y» �¯¼ ®

\ d-�¯F°�� 9` (5)

This probability decreases very slowly with j . It takesiÂW�J 
�� rounds to end up with a partitioned system with
a probability of JE� Ã with FÄ�AZ�J and  ��A¥ .

A priori, it is not possible to recover from such a parti-
tion. To avoid this situation in practice, we elect a very lim-
ited set of privileged processes, which are constantly known
by each process. They are periodically used to “normal-
ize” the views (and also for bootstrapping). Alternatively,
we could use a set of dedicated processes to collaborate in
keeping track of the total number of processes.

5. Practical Results

In this section, we compare the analytical results ob-
tained in the previous section with (1) simulation results and
(2) results collected from measurements obtained with our

actual implementations. In short, the results show a very
weak dependency between  and the degree of reliability
achieved by lpbcast, but we can neglect this dependency in
a practical context.

In our test runs, we did not consider retransmissions,
that is, once a process has received the identifier of a no-
tification, the notification itself is assumed to have been re-
ceived. This has been done to comply with related work (in
some cases it is sufficient for the application to know that it
has missed some message(s), and in other cases, subsequent
messages can replace the missed messages [16]).

5.1. Simulation

In a first attempt we have simulated the entire system
in a single machine. More precisely, we have simulated
synchronous gossip rounds in which each process gossips
once. The results obtained from these simulations support
the validity of our analysis.

Number of gossip rounds. As highlighted in the previous
section, the total number of processes F has an impact on
the number of gossip rounds it takes to infect all processes.
Figure 5(a) conveys the results obtained from our analysis
by comparing them with values obtained from simulation,
showing a very good correlation.

Impact of  . According to the analysis presented in the
previous section, the size  of the individual views on the
other hand has no impact on the number of gossip rounds it
takes to infect every process in the system. Figure 5(b) re-
ports the simulation results obtained for different values for in a system of 125 processes. It conveys a certain depen-
dency between  and the number of gossip rounds required
for the successful dissemination of an event in � , slightly
contradicting our analysis. This stems from the fact that we
have presupposed uniform views for the analysis, and have
considered these as completely independent of any “state”
of the system. A more precise analysis would have to take
into account the exact composition of the view of each pro-
cess at each round. This would however lead to a very com-
plex Markov Chain, with an impracticable size. Given the
very good correlation between simulation and analysis, as-
suming independent and uniform views seems reasonable.

5.2. Measurements

We present here concrete measurements that attempt to
capture the degree of reliability achieved with our algo-
rithm, and confirm the results obtained from simulation.
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Figure 5. Simulation results

Test environment. Our measurements involved two
LANs with, respectively 60 and 65 SUN Ultra 10 (Solaris
2.6, 256 Mb RAM, 9 Gb harddisk) workstations. The in-
dividual stations and the different networks were commu-
nicating via Fast Ethernet (100Mbit/s). The measurements
we present here were obtained with all 125 processes; each
publishing 40 events per gossip round. To conform to our
simulations, � was fixed to ¥ .
Impact of a view size. Figure 6 shows the impact of  on
the degree of reliability achieved by our algorithm. The
measure of reliability is expressed here by the probability
for any given process to deliver any given notification ( W[] � ,
cf. Section 2). The reliability of the system seems to deteri-
orate slightly with a decreasing value for  . Intuitively this
seems understandable, since our simulation results have al-
ready shown that latency does increase slightly by decreas-
ing  . And with an increased latency, the probability that
a given message is purged from all buffers before all pro-

cesses have been infected becomes higher.
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Figure 6. Measurements: degree of reliability

6. Discussion

This section discusses our lpbcast algorithm with respect
to “perfectly” uniform views and compares it closer with the
well-known pbcast algorithm [4], in particular by combin-
ing pbcast with our membership approach.

6.1. Towards “Perfect” Views

Simulations performed with artificially generated inde-
pendent uniform views have shown that there is virtually no
dependency between latency of delivery (and thus the de-
gree of reliability) and the size of the individual views. The
views obtained in practice with lpbcast thus appear to not
be completely uniform and independent.

Dependency. One interpretation of the slight dependency
between latency and  is that, despite the random truncat-
ing of views, there remains a correlation between individual
views both in time ( cpd�eag B of process � B at round j depends
on c[dfeaghB at round j�]�W ) and in space ( cpd�eag{B of process �CB
depends on c[dfeagÅD of process �ED ). Intuitively, such depen-
dencies negatively affect the latency of delivery of an event:
since every process appends part of its view to each outgo-
ing gossip message, a process �bB , which receives a gossip
message from �ED , has a certain probability of gossiping to
processes that have received the same gossip message from�ED (��B updates its view according to the subs it received from�ED , possibly including processes which have been gossiped
to in the same round by � D ).

To avoid this effect, we have tried in a first attempt to
reduce the frequency for the gossiping of membership in-
formation (every Æ -th round only, Æ�H©W ). It has however
turned out that this sanction leads to the opposite effect, i.e.,
latency increases (and thus reliability decreases) further. In



contrast, when the frequency for membership gossiping is
increased (gossiping membership information more often
that events), the views appear to come closer to ideal views,
and the performance of our algorithm improves. This is
however difficult to apply as an optimization, since � is usu-
ally chosen already very small to ensure a high throughput.

Weighted views. As already mentioned, every process
should ideally be known by exactly  other processes. This
is however difficult to ensure without relying on any form of
agreement or counting. We propose an optimization to get
the distribution of views closer to this ideal case. It consists
in adding a weight to every entry in the view, which gives a
measure about how well a given process is known. Unlike
the weights used in Directional Gossip [14] however, which
represent the connectivity of processes, weights in our case
represent the level of awareness for a given process.

When a process �CB learns about another process �YD which
is in �CB ’s view through the subs attached to an incoming gos-
sip message, the weight of �YD is increased. When truncating
the view, a simple heuristic is applied, consisting in remov-
ing entries with a high weight, since these are more proba-
ble of being known by many other processes. Furthermore,
when constructing subs, a process preferably adds entries
from its view with a small weight. A similar scheme could
also be applied to events and eventIds.

6.2. Comparison with pbcast

Aside from the membership scheme, the main differ-
ences between our lpbcast algorithm and pbcast are (1) that
the latter algorithm limits the number of hops as well as (2)
repetitions for a given message, and (3) that our approach
melts the two phases of pbcast (dissemination of events and
exchange of digests) into a single phase. We comment here
on the integration of pbcast with our membership approach,
and compare it with our lpbcast algorithm.

Membership layer. We have presented our membership
approach as integral part of our lpbcast algorithm to ease
presentation. As we have mentioned earlier, our member-
ship approach is nevertheless not inherently coupled with
our lpbcast algorithm, but can be separated from the event
dissemination process. It could thus be encapsulated as
a membership layer, on top of which many gossip-based
algorithms, like pbcast, could be deployed. It would act
by adding membership information to gossip messages,
and would provide quasi-independent uniformly distributed
views. Since gossip-based protocols require a random sub-
set of the system, theoretically the size of the view does
not impact the probability of infection and hence through-
put and delivery latency of the broadcast algorithm would
remain virtually unaffected.
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Figure 7. Simulations and measurements with pbcast

Evaluation. We simulated the behaviour of a pbcast ver-
sion instrumented with our membership approach. Figure
7(a) illustrates the process of an event propagation in such a
partial view membership for pbcast and lpbcast, comparing
with the original pbcast based on a complete view. The ad-
vantage of our lpbcast over pbcast can be explained by the
fact that hops and repetitions are not limited with the former
algorithm.

Figure 7(b) presents the reliability degree measured with
different values for  (in every round, each of FÇ�²Wa£pZ pro-
cesses published ÈpJ events). The results are similar to the
ones obtained with lpbcast (Figure 6). A direct compari-
son of the two algorithms is however not a useful measure,
since there are different parameters involved. In fact, be-
cause repetitions and hops are limited in the case of pbcast,
a higher fanout is required to obtain similar results than with
lpbcast ( �R�©Z here vs �R�O¥ in Figure 6). In fact, lpb-
cast reaches a higher reliability degree when simulated in
the same setting, since its latency is smaller.



In practice and at a high load of the system however, per-
formance can be expected to drop faster with lpbcast, since
the first phase of pbcast ensures a high throughput, while
gossip messages in lpbcast will transport large numbers of
notifications, which might become a bottleneck.
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