
G e n e r i c i t y v e r s u s I n h e r ' i t a n c e

B e r t r a n d M e y e r
J

University of California, Santa Barbara
and Interactive Software Engineering, Inc.

Current address: I n t e r a c t i v e S o f t w a r e E n g i n e e r i n g , Inc.

270 S t o r k s R o a d , S u i t e # 7 , G o l e t a CA. g3117

A B S T R A C T

Generlclty. as in Ads or ML, and inheritance, as ill object-oriented languages, are two alternative techniques for
ensuring better extendibility, reusability and compatibility of software components. This article is a comparative
analysis of t.he~ two methods, it studies their similarities and differences and a.~se,~es to what, extent each may be
sinlulated in a language offering only the other, it shows what, features are needed to suceesshdly combine the two
approaches in a statically typed language and presents the main features of the programming language Eiffel, who~
design, resulting in part from this study, includes multiple inheritance and a limited form of generieity under full static
ty ping.

1 - O V E R V I E W

In spite of its name. today's software is usually not
soft enough: adapting it to new u~s turns out in most ease,
to be a harder endeavor than should be. It is thus e~ent.ial
to find ways of enhancing such .software quality factors as
extendibility (the ea~ with which a software system may be
changed to account for modifications of its requirements).
reusability (the ability of a system to be reu~d, in whole or
in parts, for the construction of new systems) and compati-
bility (the e a ~ o f c o m b i n i n g a s y s t e m with others) .

Good answers to these issues are not purely technical,
but must inehide economical and managerial components as
welh and their technical aspects extend beyond programming
language features, to such obviously relevant, concerns as
specification and design techniques, it would be wrong, how-
ever. to underestimate the technical aspects and. among
these, the role played by proper programming language
featt,res: any acceptable solution must in the end be expressi-
ble in terms of programs, and programming languages funda-
mentally shape the ~ftware designe~' way of thinking.

This article is a comparative analysis of two ela,~,~s of
programming language featur~ for enhancing extendibility,
ret,sability and compatibility. It a.~e..~es their respective
strengths and weakne.~es, examines which of their com-
ponent~ are equivalent and which are truly different, shows
how the two approachc~ complement each other, and
explain.~ how they have been combined in a Imrtieular pro-
gramming language design.

The two approaches studied are genericiql and
inheritance: both address the above issues by allowing the

Panmi~ to ml~ witheut fee all ee Ira1 ef this mleial b gnmted peovided
that the ml~ are mt made ae dimilmted f~ direct mmmee~ advan~
the &CM cop,~i~t n ~ e gad tile filJv at'tim ~__ ~_t~b3m_ gad its dine sppmr.
and aolice is l ivm thai mp,jiag ig by i~nmiJoa oi" the ~ n foe
Compuliag Machiaery. To mpy e t l ~ w i ~ ee to mpubt i~ ~equin= a fee and/

definition of flexible software elements amenable to exten-
sion. reu~ and combination. The first is a technique for
defining elements that have more than one interpretation.
depending on parameters repre~nting types: the ~eond
makes it possible to define elements as extensions or restric-
tlons of previously defined ones.

Both methods apply ~me form of polymorphism, a
notion that may be defined as the ability to define program
entities that may take more than one form. A simple form
of polymorphism, u~d in troth e:t~s, is overloading, the abil-
ity to attach more than one meaning to the same name.
and)iguities being resolved by examining tl~e context of eseh
occurrence of the name. either at compile time (for statically
tylw~l languages) or at run time.

Although the two approaehe~ may be applied outside
the strict realm of programming, for example to specification
or design languages, we shall confine our study to program-
ming languages. In this field, generieity is most. notably
pre~nt in Ads; inheritance is a feature of object-oriented
languages and was introdoeed by Simula 67.

Ads and object-oriented languages have until now
arou.q,d interest in rather different eommmfities and it is not
surprising that no comparative analysis seems to have been
published. (The only related work that we know of is the as
yet. unpublished, more theor.v-oriented article by Cardelli and
Wagner 10], of which we became aware as this paper was
going to press). Ilowcver we reel that beyond "cultural"
diffcrenee.~ the real goals pursued are tbe same. so that it is
fruitful to perform an in-del)th comparison of the technical
.qllntions obtained on both sides.

Section 2 1nt'roduccs genericity; section 3 di.~.u.~s
inheritance: .,~etions 4 and .5 compare the two approaches by
studying whether the effect of each may be achieved with the
other: ~et ion 6 de~ribes how a particular programming
language° l'iffel, uses a balanced combination of the two
techniques. Section 7 summarizes the results achieved.

© 1986 ACM 0-89791-204-7/86/09(X).0391 75¢

~ _ ~ t , r 19ee oopst~ ~e

2 - G E N E R I C I T Y

(;encri('ity n~ offered by Ada is pre~nt in few olher
i~rogrnn|n)ing Inngunges (exaini)le~ inchlde ('1,1. I [I0] and I,P({
[21). I)ul i'~ offered b)" ~vernl formal ~lx~eification languages.
~,,eh .~ Z IZl. CZc~r [r,] On.12 In] ~,,d LM 1~21. A var i . , , or
! I i- .ipproneh wn~ developed in connec!ion wit h t he langlmge
~ll, II I. 7] nnd ll,~ been inlegrnled into a number of fi.nc-
l io,ml I:,ng.nge~.

~V(. ~hnll ('olleclilrAlc on the A(la form. re.~lricling olir-
-eh'(',, to type generieity, that i~ Io .~ay the al)i l i fy to
Imr'~mctcrizc n ~r twnre elemen! (in ..~t(la. a Imckngc or .~ub.
pro~rnm) by one or more I)pc~. Generic Imranletcr.~ have
oil ier. I(,s~ hilcrexlhlg li~cs i l l . '~(la. .~uch s.~ i)aramclerized
(lilllcll-ii')ll~ for :)rrn)'s.

%%e ~t,nll (li~lingllimh I~PI ~een unconstrained gonerlcily.
~vherel)) no ~l)ccific re(inirelnenl i~ imitated on generic
I);Ir:llll('ler-. ~lld constrained generieily, whereby a certain
- | r l l (. I l i r a i~ re(l~lire(I.

2.1 - Unconstrained genericity

In il~ .~inH)lesl form. unconstrained genericity may be
.cc,i ns n lechnique to b) ' p ~ Ihe unnece.~nry requirements
impo~,ed I)y .~tntic type checking.

('onsldcr the example Of a simple procedure for
cxchangi,g the values of two variables. In a language which
i,~ nol ~,latic~lly typed, such as I,i~p. we would wrile some-
lhing like the following..~yntaelie differences nolwi lhstand.
ing:

/~/
procedure swap (z, y) is

t: local
begin

t : f z / z : = y ; y : = t;
end swap

The type of the elements to be swapped and of the
local variable t does not have to be specified. However this
may be too much freedom since a call of the form swap (a,
b). where a is. ~ay. an integer, and b a character siring, will
no! be prohibited even lhough it is probably an error.

• ~taticslly typed languages such as Papal addres~ this
problem by requiring programmers to declare explicitly the
lype~ of all variables and formal parameters: they enforce a
~ia~ically checkable type compatibility requirement between
actual and formal parameters in calls, and between source
and ~argel in assignments. In such a language, the procedure
to exchange the values of two variables of type T becomes:

/~/
procedure T_swap (z , ~: in out 7") is

t: T
begin

t : = z ; z : ~ f l ; Y : = t;
end swap

Demanding that T be specified as a single type averts
t)pe incompatibility errors, bu! has the unpleasant cone, e-

ql,ence of requiring a new procedure declaration for each
type for which a swap operation is needed: in the absence of
overloading, a different name mn.~t be a~igned to each .~uch
procedure, for ex~ml)le int_swap, str_s~p and ~ on. ~uch
mulliple declarations lengthen and obscure progrnm~. The
example t h o r n i.~ particularly lind since all the declar:~lion~
wil l be identical excel)! for the two occurrenee~ of T.

Static typing nlny be considered too restrictive here:
the only real requirenient i~ that the two actual I)',r'mleter-;
Im.'<',ed to nay call of swap .,4muld be of the ,~n,ne tylw. =u,I
that their type ,'4muld n l ~ be applied to the dcclnrnt io, of
the local vari=lble t.

A language wit h genericit y I)ro~:ide.,, n t rndeoff bet wee,
too much freedom, n.~ with .unlyped Inngunge~. and Ioo ni,wh
reslrainl , R,~ wi lh l)a~nl, in .~lleh El language, one n)~,%
declare T a.~ a generic type i)flr, uieler tO the swap pro-
ca(hire, hi (lUn.~i-Ada. the i)roce(hlre may lie (lerlAred n~ fol-
IoW,~:

/s/
generic

type T is private;
procedure s ~ p (z, ~: in out T) is

t: T
begin

t.~ffi z; z . ~ y ; y .~- t;

end swap

The only differeuce with real Ada is that we have
merged together, for ea~ of preparation, lhe two part.~ of
an A(In .~ul)l)rogram declaration, header and body: their
• eparnlion in Ada comes from a concern for informAtlon hid-
ing. orlhogonal to this di~uaqion.

The generic.., elau~ introduces type p~rameters. Fly
specifying T as a "private" type. the writer or this procedlire
allows him~If to apply to objects of type T (z. y and t)
operations available on all types, such as a.~ignment or com-
parison, and these only.

A declaration such as the above doe.q not actually
introduce a procedure but rather a procedure pattern: actual
procedures will be obtained by instantiating the pattern with
actual type parameters, as in:

/41
procedure int_swap is new swap (INTEGER);
procedure str_swap is new swap (STRING);

etc. Now assuming that i and j are variables of type
INTEGER, s and t of type STRING, then of the following
calls

int_swap (i, B;
s i r_swap Is, t);
int.swap (i, s);
str_swap Is, j);
str_swap (i, j~;

only the first two will be legal; the other are statically
incorrect.

More interesting than parameterized subprograms are
parameterized packages. Ada packages "(and their

392 (X)PSLA 'M Procmdin~p S~mlber 1 ~

equivalent.~ in other modular languages, such as modules in
Modula 2) are syntactical encapsulat.ions of groups of related
program entities such as subprograms, types and variables.
One of the most important applications of packages, and the
only one considered in this article, is data abstraction: each
package contains the implementation of a type and of the
operations applicable to elements of that type.

Ads packages may be declared with generic parame-
ler.~. For example, the following generic package describes
stacks of elements of an arbitrary type T:

/ ; , /
generic

type T is p r iva te ;
package STA CKS is

t ype STACK (size: POSITIVE) is
record

space: a r r a y (l..size) of T;
indez: NATURAL

end record;
funct ion empty (s: in STACK) r e t u r n BOOLEAN;
procedure push (t: in T; s: in ou t STACK);
procedure pop (8: in ou t STACK);
funct ion top (s: in STACK) r e t u r n T;

end STACKS

We have given only the public part. ("specification") of
the package: the package implementation ("lx')dy"), which
de.'~.ribes the subprogram bodies, must be declared
.~paratcly. For lechnienl rea..~ons having to do with the prob-
lem.,, of .Ada compilation, the inlplementation of the types
.,,.Plmrt~l by n i)nckage, such as STACK here, is given in the
puldic part. For information hiding puritans, t.hi~ in~plemen-
ration may be given in the p r i va te clau.,,e of the p,bl le part.
a kiml of p.rgator.v between specification and body: however
we do not need to u~ this feature for the present diseu~,4on.

A.,, with generic subprograms, the above does not
define a package bil l a package pattern; actual packages
may Ix- obtained by instantiation, as in

/0/
package INT_STA CKS is new STACKS (INTEGI,,'R);
package STR_STA CKS i t new STACKS (STRING);

In a program unit that has access to both of these
in~tances of ,qTACKS, dot notation may be t.~d to distin-
gui.~h between name.~ke elements: for example the type
"stack of integers" will be denoted by
INT_STACK,q.STACK. and the type "stack of strings" by
STR_STACKS.STACK: the corresponding "push" procedures
are INT_STA CKS.puah and STR_STA CK S.puah.

We may note again the eompromi~ that generic
deelaratio,s achieve between typed and untyped languages.
STACKS provides a pattern for the declaration of modules
implenlenling stacks of elements of all possible t.vpes T,
while retaining the possibility to enforce type cheeks: for
example it will not be possible to push an integer onto a
st ack of st.ring~.

Both examples above (swap and stack) evidence a form
of generieity which we eall unconstrained since there is no
specific n~luirement on the types that may be used as actual

generic parameters. In the first case, one may swap the
values of variables of any type: in the .~'ond, one may
create stacks of values of any type, provided all values in a
given stack are of the same type.

in other ea~s, however, a generic definition will only
be meaningful if the actual generic parameters satisfy sonie
conditions. We define this form of genericity as constrained.

2.2 - Cons t ra ined generic i ty

As wi th unconstrained generieity, we con~ider two con-
strained examples: first a subprogram and then a package.

A~sume we want to define a generic subprogram for
finding the minimum of two values. Using the pattern of
swap abo~'e, we may write the following function:

/7/
Beneric

type T ia private;
function minimum (z, 9: 7") return T ia begin

if = < = / / t h e n return z;
eh.e return y end if;

end swap

Ilowever ~uch a funHion declaratio, b, .o! alway,,
meaniugflll: it ,41ould only be in~tnnthilcd for lYl)e', 7' oil
which n eompnri,,on oper'~tor < = i,, defined, hi an tlntyped
language we might dch, r chcckiilg of thi,~ property unti l r .n-
lime. bill thi~ i.~ no! ncceptahle in a hlllgli:lge lh;l! cnhnllees
.~e('tlrJl.V through ~I,'Hic typing. %Ve head a wn.v to -~perify
that type T alum! be eqiiipl)(,d with the righl operation.

In Ado thi,, wil l he wr i l len by lreal ing the Ol)ernlor
<-.- ns a generh, parameter of il~ own..~yntncticnl ly it wil l
I~P a f i l ,ct ion: note thai. as a syntactic faeil i ly. Ada nlnkes~ it
po~.,ible to declare functions to be invoked in i , f ix form (n~,
~---) by declaring them with a name enclosed in double
guole,~, for example "~- - " in the case at hand. Again" the fol-
lowing declaration become.,, legal Ads i f the public part aml
hnpJenlentation are taken apart..

/e/
generic

type T ia private;
with func t ion "<=" (a, b- T)

r e t u r n BOOLEAN is < > ;
func t ion minimum (z, y: T) r e t u r n T is
begin

if z <ffi y then r e t u r n =;
e l k r e t u r n p end if;

end swap

The keyword with is used to introduce generie formal
parameters representing subprograms, such as the hlnction

This declaration may now be instantiated as follows
for a type, say TI, for which a function, say TI_le, of type
func t ion (a, b: TI) r e t u r n BOOLEAN is defined:

/0/
func t ion Tl_minimum is new minimum (TI, Tl_le);

~ m z ~ ¢ 1988 OOPSLA'86 ~ 393

If. o. the other hs.d. the Tl_le f .netion is i l l fact
(':tiled "<=". Ih.~I is to ~a.v if its name and type nmtch tho.~,
of Ihc (.orresponding formal sltbl)rogram, then one may omit
if fl'Olll Ihc list of actual I)nrsmeters to the generic instanlia-
ºloll of the sill)progrsln. For examl)le, the type INTEGER
Iin'..q I)re(lelilted " < = " funclion with Ihe right type. ~ thai.
WC (':11) ~iml)ly declare

/1o/
funct ion tat_minimum is new minimum (INTFGEI?);

Thi', ahi l i ly to ,,~c defa.II "wl .n l sulq~rogrnms with
m:~tching name~ and type~ i~ ol)lained I)y .~peeifying is <:~> ill
lhe declnr'l l ion of the rornml generic ~l,I)progrnnl. as was
(lone al)ove wi lh " < - " . . ~ o l e lhnt tile overlo.l(llng of opcra-
Ior~..q-. l)crlnllle(I (and il l fa('l encourage(I) I)y the desigu of
A(la. play,, sn e~...enlisl role here: " < = " ulay I)e defined for
IIHI n v ¢liil('renl I ypes.

Thi~ discussion of constrained gc,wricily in the subpro-
grnm ca~e rcJl(lil.v ~l)l)lie~ to generic packages. Assume that
we ~vnnl to write a generic matrix manipulation Imekage,
al)ldff.al)lc to malriees of ohjc(.ts of ally type T. with matrix
~um nll(I pro(loci as I)asie ol)eratlnos. S.(.h a (lefinil ion is
only menningfnl if type T has a Still] and a pro(hl(.t of its
own. avid each of the~e olwratiot,s has a zero elenwnl.: these
fc~lt.re- of T will be needed in tile implemcntstion of matrix
~.m nnd I)rodt,el. The pl,I)lie part of the matrix package
snny I)c wri l tcn as follo~s:

/ l l /
generic

type T is p r iva te ;
z e r o : T;
unity: T;
with func t ion "+" (a, b: 7") return T is < > ;
with function "*" (o, b- 1") return Tie < > ;

package MA TRICES is
type MATRIX(lines, columns: POSITIVE) is

a r r a y (l..lines, l..eolumns) of T;
funct ion "+" (ml, m~: MATRIX) r e t u r n MATRIX;
funct ion "*" (ml, m~: MA TRIX~ r e t u r n MATRIX;

end MA TRIClf.q;

Instances of this package may be obtained as follows:

/~2/
package INT_MA TRICES is

MATRICES{INTEGER, 0, I);

package BOOL_MA TRICES is
MA TRICES (BOOLEAN, false, true, "or", "and");

As in the previous example, actual subprogram param-
eters (corresponding here to "+" and "*") may be omitted for
a type such as INTEGER which po.,~se~ses matching opera-
lions: however they must be specified for BOOLEAN. (It is
eom.'enient to declare optional l)arameters as the last ones in
the formal parameter list: otherwise a keyword notation
m.~t be u.~ed when the corresponding actual parameters are
omitted).

It is interesting here to show how the implementation
Imrt of ~ueh a package will look. It is enough to give one of

tile function bodies ill thi.~ package: we take matrix prodoet
as an example.

/i.~/
package body MA TRICES is

........... other declarations
funct ion "~" (ml, m~: 7") is

result: MATRIX (ml 'lines, m~'columns);
begin

if ml 'columns/ffi m~'lines t hen
raise INCOMPA TIBLFf_,qlZFS;

end if;
for i in ml 'RANGh] I) loop

for j in mg'RANGh~£) loop
result (i, j~ :-- zero;
for k in ml 'RANGI'~) loop

result (i, 3) :ffi
resuit(i, j) + ml (i, k) * me(k , j~

end loop;
end loop;

end loop;
r e t u r n result

end "~";
end MA TRICES;

Three comments are in order for the reader not, fami-
l iar with nil the details of Adn:

a for a I)nrameterized type such as MATRIX (lines,
columns: POSITIVE). a variable declaration must pro-
vide actual values for the parameters, e.g. ram:
MATRIX (100, 75); these values may then be retrieved
using the apostrophe notat ion as in tam'lines which in
this case has value 100;

• if a is an array, a'RANGE{i) denotes the range of
values in its/-th dimension; for example mI 'RANGE{ I)
above is the same as I . .ml 'lines:

• if requested to multiply two dimension-wise incompa-
tible matrices, the program raises an exception: it does
not execute the code that follows the raise instruction.
The package should include code to handle the excep-
tion.

The two examples given (minimum and matrices) are
representative of the Ads techniques for constrained generl-
city. They also show a serious limitation of languages such as
Ads in this area: the fact that only syntactic constraints
may be expressed. All that a programmer may require is the
presence of certain subprograms ("<ffi", "+ ' , "a ' in the exam-
pies) with given types: but the declarations are meaningless
unless some semantic constraints are a l ~ satisfied. For
example, minimum only makes ~nse if "<ffi" is a partial
order relation on T (reflexive, antisymmetrie, transitive): and
the MATRICES package should not be instantiated for a
type T unle,~s the operations "+" and "*" not only have the
right type (T X T - ' * T) but also give T the structure of a
ring (assoclativity, distributlvity, zero a zero element for "+"
and unity for " f . ete).

To include such formal constraints, one has to leave
the rcahn of programming languages such as Ada for such
specification la~;uages as (!lear and OBJ2 (the latter execut-
able) or the experimental programming language LPG.

2.3 - Impl ic i t gener ic i ty

It is important to mention a form of generieity quite
different from the almve Ada-style explicit paranwterization:
tile implicit polymorphism exemplified by the work on the
Nil, fnnetional language [11.7).

This technique is based on the remark that explicit
geqericity, as seen above, places an unnece~ary burden on
the programmer, who must give generic types even when the
context provides enough information to dedt,ee a correct
lyping. It. may be argued, for example, that the very first
version (/ I /) given for procedure swap. with no type declara-
lion. is acceptable as it stands: with adequate typing rules, a
compiler has enough information to deduce that z. y and t
must have the same type. Why not then let programmers
omi! type declarations when they are not strictly needed
coueept,ally, and have the compiler check that all uses of an
identifier are consistent?

This approach, ~metlmes called "unobtr,sive type
eheckiqg'" [I.~]. attempts to reconcile the freedom of untyped
languages with the security of typed ones. It has been
elegantly implemented in Nil. and other functional languages.
One may argue, of cour.~P, that some obtrusiw.ne.~q may be
,~cfuh the redundancy entailed by explicit type declarations
may enhance program readability. Whatever the answer to
this debate may be, the qt.estion of explicit or implicit gener-
icily is not directly connected to the present, discu~slon; for
the purposes of comparison with inheritance, both forms of
generlcity are ~mehow eqt.ivalent.

Without committing ourselves as to which form is
be~t. we have t h o r n to rely on the explicit, form exemplified
by Ada. which, for our study, has the obvious advantage
that generic parameters stand out more visibly.

3 - I N H E R I T A N C E

Tile inheritance technique was introduced in 1967 by
Simula 67 [3, 8. Ii]. It has been widely imitated in other
object-orieuted languages.

As with genericity, we will mostly introduce this tech-
nique through examples. Since we need a notation, we shall
rely on a particular one, that of the object-oriented language
Eiffel [13]. ! Much of the discussion would readily transpose to
other object-oriented languages; however Eiffel's emphasis on
static typing, and its design as an object-oriented language
for actual software engineering applications (as opposed to,
say. artificial intelligence or exploratory programming) make
it particularly suitable for this dlseusaion. Only the elements
of Eiffel which are essential to this article are introduced;
more details may be found in the reference quoted.

The fundamental idea of inheritance is that new
software elements may be defined as extensions of previously
defined ones: existing elements do not have to be modified
when used as a basis for new definitions.

t Eiffel and the as.~ociated compilers and tools are products
of Interactive Soft ware Engineering. Inc., Goleta (California).

This concept blends particularly well with the object-
oriented approach, in which basic software element~ are
implementations of abstract data types: the extension~ of
software elements mentioned above will then correspond Io
refinements of hierarchies of .~bstraet data types.

The basic tenet of object-oriented programming
languages may be described as the idea that the fundamental
elements, modules, are not only a.-,~oclated with implementa-
tions of abstract data types (azl effect which may be achieved
in any langnage offering mod,lar features and information
hiding, such as Ads or N,1odula 2), but are such implemei~ta-
tions. In other words, the defining equality of object-orieltted
languages is

Module -- Type

This dogmatic identificat ion of two apparen! ly di,t inct
programming notions, olle synl act ic, t he ot her ~emantic. may
al)pear too strict and indeed has some disadvantages. B,! it
al.,~ gives object-orlented programming language, and the
a~,~oeiated design method s strong eo.weptual iutegrity, and
provides imwcrful techniques for satisfying Ilia sofl ware qual-
ity requirements mentioned above.

As an example of such a modtile-type, called a ela~ in
l"iffel as in Simula and many other object-oriented languages.
consider the following outline of an implementatio.t of "'spe-
cial files" in the Unix sense, that is to say. files a~qociated
with devices:

/14/
c las s DEVICE e x p o r t

open, close, opened
f e a t u r e

open (file_descriptor: INTEGER) is
do

e n d ; -- open

close Is
d o

e n d ; -- close

opened: BOOLEAN
end -- class DEVICE

This class is the implementation of an abstract data
type characterized by three "features", open, close and
opened. There are two kind of features: attributes and rou-
tines. Routines, like open and close here. are operations
applicable to objects of the class; routines are further divided
into procedures which, as the two shown here, perform some
actions, and functions (seen in later examples), which return
avahle . Attribute features, like opened here, are data ele-
ments associated with each object of the type.

As a type. a class such as DEVICE may be used to
declare objects: their features may then be accessed through
dot notation, as in:

,Sqpt~mbw 1966 OOPSLA '88 Pro(~glings 395

/1.~ l
dl: DEVICE;/1: INTEGER
dl.Create;
dl.open Ill);
if dl.opened then

Create i~ a universal procedure applicable to all
clas~es: it allocates the nece~ary space for an object such as
dl. if further initialization actions are required, they may be
de~ribed in a procedure declared in the class with the name
Create. possibly with parameters.

Note that each routine always has, besides its normal
list of arguments, a special argument, the object to which
the procedure is applied Idl in the above call to open). This
is one of the characteristics of object-oriented language:
every operation is relative to a distinguished object. Within
the cla~. unqualified feature names implicitly refer to this
object: the predefined name Current may be used when an
explicit reference is needed.

The~ comments account for the "type" aspect of a
class. From the "module" standpoint, it should be noted that
the cla,~s is the only program structuring facility of Eiffel:
thus the above example use of DEVICE must be in some
class, say C. A class such as C which declares entities (that
is to say features, routine parameters or function results) of
t.vpe DEVICE is said to be a client of DEVICE. The expor t
clau~ lists the features of a class which are accessible to
clients, in read-only mode for attributes and execution mode
for routines (here all features shown are exported). Since
info[mation hiding is not a concern for this diseu.~slon, we
~hall omit export . . , clauses in the '~luel.

The notion of inheritance is a natural extension to this
basic framework. Assume we want next, to define the notion
of tape device. For our purpo~s, a tape unit has all the pro-
putties of devices, as represented by the three f e a t u ~ of
clas~ DEVICE, plus the ability to (say) rewind its tape.
Rather than redefining a new class from scratch, we may
declare class TAPE as an extension of DEVICE, as follows:

/:8/
class TAPE i nhe r i t DEVICE fea tu re

rewind is
d o e n d

e n d -- class TAPE

With this declaration, objects of type TAPE automat-
ically posse.~s (by "inheritance") all the features of DEVICE
objects, plus their own (here rewind). We say that TAPE is
an heir to DEVICE, which is a parent of TAPE. The "des-
cendants" of a class are the class itself and the descendants
of its heirs; the reverse notion is that of "ancestor".

A class may of cour~ have more than one heir: for
example. DEVICE could have DISK as another heir. with its
own specific features (such as direct access read, etc.}, in
Eiffel. ela.~es may a l ~ have more than one parent: this is
known as mulliple inheritance, a very powerful technique for
re:t-ability, allowing the combination of more than one pre-
viously developed environment. Eiffel also introduces the
t echnhlue of "repeated inheritance", making it possible to
inherit more than once from the same clas~.

From the module viewpoint, the ancestor relation is a
program structuring mechanism; from the type viewpoim, it
yields a rule on acceptable assignments. The rule is simple:
an sssignment of the form

z .'~ l/

where z and y are of class types, is only permitted if the
type of = is a descendant of the type of I . Thus the above
assignment is legal if, for example, z has been declared as a
device and I/ as a tape. This may be explained by noting
that the inheritance relation is really the "is-a" relation [4]:
every tape is a device, but every device is not a tape.

it sometimes happens that a feature of a class should
be implemented differently in some descendants of the class.
For example there could be s special "open" mechanism for
tape devices. Eiffel allows such redefinitions, as follows:

1171
e l a n TAPE Inher i t

DEVICE redef ine open
fea ture

open (file_descriptor: INTEGER) is
do special open for tape devices end;

r e ~ n d is
d o e n d

e n d -- class TAPE

This possibility must be seen in connection with the
above assignment rule: if z is a device, then the call

:.open (/1)

may now be executed differently depending on the assign-
ments that have been performed on z before the call is exe-
cuted: for example, after z : t y, where U is a tape, the tape
version should be executed. Such feature redefinitions arc
common in Eiffel programming, which also allows a parame-
terless function to be redefined as an attribute (which is use-
ful for changing representations in program refinement).

This facility characterizes the powerful brand of
polymorphism offered by object-oriented languages with
inheritance: the same feature reference may have several
interpretations depending on the actual form of the object at
run-time. To achieve this effect, many object-oriented
languages have renounced static type ehecklng; Eiffel, bow-
ever, is statically typed (and the binding of feature names to
actual features is done statically whenever possible).

The remarkable benefits of the inheritance technique
with respect to reusability, extendibility and compatibility
come from the fact that software elements such as DEVICE
are both usable as they are (they may be compiled as part of
an executable program) and still amenable to extensions (if
used as ancestors of new classes). Thus a compromise
between usability and Flexibility, fundamental for the quali-
ties mentioned, is achieved.

One more property of Eiffel, borrowed from Simuls,
will be useful for the discussion below: deferred features
(corresponding to Simula's "virtual procedures"). Deferred
features correspond to operations that must be provided on
all objects of a class, but whose implementation may only be
given in particular descendants of the class.

~96 o o p s ~ e ~ s, Cmbaltee

A.~sume for example that , as under Unix, devices are a
special kind of files: DEVICE should thus be an heir to class
FILE. whose other heirs may be T E X T _ F I L E (i t , l l with
heirs N O R M A L and D I R E C T O R Y) and B I N A R Y _ F I L E .
Figure 1 shows the inheritance graph, a tree in this case.

Figure 1: Inheri tance g r a p h fo r files

Any file may be opened or clo~sed: but how these
operations are performed depends on whether the file is a
device, a directory etc. Thus at the FILE level we declare
the corresponding procedures as deferred; this means that
only a header is given, and that the task of providing an
intplementatlon is handed over to descendant classes:

/ is/
class FILE feature

open (file_descriptor: INTEGER) ia deferred end;
close is deferred end;

end -- cla~ FILE

Descendants of FILE should provide actual definitions
of open and close. The rules of the language prohibit appli-
cation of these features to ohjeet.s for which they might not
be defined.

An interesting application of this technique is for Ads
or Modula-like ~parat ion between interface and implementa-
tion of a module: although an Eiffel class is normally defined
as a single piece, the effect of Ada's two level declaration
(specification and body) may be achieved by declaring a first
cla~ with deferred features only. and a second one. heir to
the first, with the implementation of these features. An
important advantage of this technique over its Ada
equivalent is that it allows different, implementations of the
same featttre to coexist in a single software system.

4 - SIMULATING I N H E R I T A N C E WITH GENERIo
C I T Y

To compare generieity with inheritance, we shall stt.dy
ho~. if in any way, the effect, of each feature may be simu-
Isled in a language offering the other.

Fir.~l consider a language, such as Ads, which offers
generieity but not inheritance. Is there any way we can

achieve the effects of inheritance in ~uch a lang,agc?

The easy part, is the overloading. In a language ~wh
as Ads or Algol 68 where the same subprogram name may be
reused as many times as needed provided it is applied to
operands of different types, there is no dilficulty in defining
types such as TAPE, DISK, etc., each with its own version
of open. close etc.:

li91
p r o c e d u r e open

(p: in o u t TAPE; descriptor: in INTEGER);

procedure close (p: in o u t DISK);
etc.

Provided the subprograms are disting,ished by the
type of at least one operand, as is the case here, no ambi-
guity will arise.

[iowever this solution falls short of providing true
polymorphic entities as in languages with inheritance, where,
as di~u.~sed above, an operation will be carried out
differently depending on the particular form of an entity at
run-time (even though it is possible, in a language like Eiffel,
to check at compile time that the operation will be definrd
in all possible cases). The typical example is the call d.close.
which will be carried out differently after the a.~slgnments
d .'ffi di and d .~ ta (where di is a DISK and ta is a TAPE) .

The above form of Ada-like overloading does not, pro-
vide anything like this remarkable possibility.

The only feature of Ads which could be u.~d to emu-
late this property of object-orlented languages is in fact
shared with P a p a l and has nothing to do with overloading
or genericity: it. is the record with variant type. We could for
example define mmething like

I'ZOl
t y p e DFVICE (anit: DEVI('E_ TYPE) is

r e c o r d
....... fields common to all device types
c s s e unit is

w h e n tape => fields for tape devices ;
w h e n disk => fields for disk devices ,:
....... other cases ;

end c M e
end r e c o r d

where DEVICE_TYPE is an em,meration type with elements
tape, disk etc. Then there would be a single version of each
the procedures on devices (open, close etc.), each containing
a ea~ di.~rimination of the form

/~l/
c u e d'unit is

w h e n tape = > action for tape devices ;
w h e n disk => action for disk devices ;
....... other eases ;

end c M e

~uch a ~ lu t ion . however, is unacceptable from a
software engineering point of view: i t runs contrary to the
criteria of extendibil i ty, reusability and compatibi l i ty. Not
only does it scatter case di~r iminat ions (here on

Sq:mml~ 1986 OOPSlA 36 Proemdin~ 397

DEVIC:E_TYI'E) all over line program: worR yet. it closes
the -~el of po,,,,il)lc choice,,: s.~ opposed t.o the Fiffel cla~s
DI';VI6'E which can at an)" time be u.~d as parent or a new
cla-,~, the Ads type DEVICE ha.~ a fixed list, of variants.
(.nrre~l~)nding Io tlw elements of the fixed enunwralion type
DI':VICE_TYI~E: to add an elenwnt to this list, one must
m,dify Ihc declaration of DEVICE. invalidating any pro-
gram uluit flint relied on the initial version.

NO the answer to the question posed at the beginning
of thi~, ,,(,orion - can inheritance be simulated with generi-
city? -- i~ no.

5 S I M U L A T I N G G E N E R I C I T Y W I T H
I N H E R I T A N C E

We now address the rever~ problem: can we achieve
Ihe effect of Ads-style generieity in. an object-oriented
language with inheritance?

As before, we use Eiffel as our vehicle for expressing
object-oriented techniques. As explained in section 6 below,
Eiffel does provide a generic parameter mechanism (included
in the language as a result of the study reported here); but of
course, since the object of this ~c t ion is to analyze how one
may ~imulate gencricity with inheritance, we must tem-
porarily refrain from using the Eiffel generic mechanism. The
reader should thus be warned that the solutions predated in
this section are sub.~tantially more complex than those
obtainable with full Eiffel. described in section 6.

The simulation turns out to be easier, or at least less
artificial, for constrained genericity - a surprising result
sitnce unconstrained genericity is concepeually simpler. Thus
we begin with the constrained ease.

5.1 - C o n s t r a i n e d g e n e r i c i t y : o v e r v i e w

The idea is to associate with a constrained formal gen-
eric type parameter a cla~. This is a natural thing to do
since a constrained generic type may be viewed, together
with its constraining operations, as an abstract da ta type.
('on*ider for example the generic c lau~s in our two con-
strained examples, minimum and matrices:

/2~/
generic

type T i spr ivate ;
with function " < = " (a, b: T)

return BOOLEANis < > ;

/2.3/
gene r i c

t y p e T is p r i v a t e ;
z c r o : T;
unity: T;
with function "+" (a, b: 7") ia < > ;
with function "*" (a, b: 7') is < > ;

We may view the first a~ a definition of an abstract
data type. say CO~PARABLE. characterized by a com-
parison operation "<---': similarly, the ~cond specifies a

type. say RING'. with features zero, unitw, "+" and "*".

In an object-oriented language, the~ types may he
directly repre~nt.ed as ela.~es. Such eln.~cs may not he
entirely specified since there is no general implementat ion for
"<.ffi", "+" etc.; rather, they are to be u ~ d as ancestors of
actual cla.,L.~s corresponding to actual generic parameters.
Iiere the deferred feature mechanism of Eiffel is exactly what
is needed. Thus we define the following elax~es to repre~nt
the generic parameters:

I'Z,tl
elmm COMPARABLE fea tu re

le (other: COMPARABLE): BOOLEAN
is deferred end

end -- cla~ COMPARABLE
- le corresponds to "<=" ;
-- there are no infix fi,nctions in Eiffel.

chum RING f e a t u r e
plus (other: RING) is deferred end;
times (other: RING) is deferred end;
zero: RING;
unitp: RING

end -- class RING

The comment made in ~Pction 2.'2 about the lack of
~ m a n t i c specification in Ads constrained generieity would
seem to apply twre too: we have not specified any of the
required properties on is, ph~ etc. Eiffel does, however, per-
mit the specification of such properties in the form of
p r e c o n d l t i o n a and p o s t c o n d i t i o n a on routines. Simple
examples of this facility will be given in section 5.4.

The reader will also have noted that plus and times
are defined here as procedures rather than funetions; the con-
vention we will follow in the Eiffel examples is that
r.ples (r I) is an instruction that performs a side-effect on r.
adding to its value the value of r l , rather than an expression
returning the sum of these values (and similarly for times).
In contrast, the Ads operators "+" and "*" were functions.
The difference is not essential and we use procedures in Eiffel
mainly for brevity, The examples may be changed into func-
tions, as in

plea (other: RING): RING ~ deferred end;

subject to the discussion that follows.

6.9 - C o n a t r a i n e d gener ic i ty : s u b p r o g r a m s

A subprogram such as minimum may now be written
by specifying its arguments to be of type COMPARABLE.
B a ~ l on the Ada pattern, the function would be declared as

12.V
minimum (one: COMPARABLE; other: COMPARABLE):

COMPARABLE hi
- Minimum of one and other

do end

in an object-oriented language, however, every routine
(Eiffel term for subprogram) appears in a class and is relative
to the "current" object of that class; thus i t seems preferable

to include minimum in class COMPARABLE, argument one
becoming the implicit, current object. The class becomes:

1201
¢laso COMPARABLE f e a t u r e

ie (other: COMPARABLE'): BOOLEAN is d e f e r r e d e n d ;

minimum (other: COMPARABLE): COMPARABLE is
-- Minimum of current element and other

do
if le (other) t h e n Result .'~ Current
else Result := other e n d

end -- minimum
end -- ela~s COMPARABLE

(The predefined variable Result contains the result to be
returned by any function in which it appears; it is implicitly
declared of the function's result type, here COMPARABLE).
To compute the minimum of two elements, we must declare
them of some descendant type of COMPARABLE. For
example, we may declare:

/..,7/
class INT_COMPARABLE i n h e r i t

COMPARABLE
f e a t u r e

le (other: INT_COMPARABLE): BOOLEAN is
- Is current element less than or equal to other

do Result :ffi value <ffi other.~lue e n d

value: INTEGER;
- Value a . ~ c i a t e d with current element

change_value (new: ~
-- Make new the value associated
-- with current element

do value .'ffi new end;

end -- e la~ INT_COMPARABLE

To find the minimum of two integers, we may now
apply function minimum, not to arguments of type integer.
but to arguments of type INT_COMPARABLE, say iel and
icE. as follows:

1"2sl
ic3 :ffi icl.minimum (ie~)

To use the gener ic /e and minimum functions, we have
Io renounce direct references to integers, using
INT_COMPARABLE entities instead; hence the need for
at t r ibute value and routine change_value to access and
madly ' the associated integer values.

We would similarly introduce heirs of COMPARABLE,
say STR_COMPARABLE. REAL_COMPARABLE, and so
on. for each type for which a version of minimum is desired.

Of course, having to declare similar features value and
change_value for all descendants of COMPARABLE is
unplea.~ant. But by paying this relatively small price in
terms of ea.~ of program writing - renouncing the direct use
of predefined types - we achieve the same effect as in a
language with generieity.

There is a hitch, however, if we are concerned about
static typing. We clearly want to disallow a call such as

/~9/
ie.I.minimum (¢)

where c is a COMPARABLE but not an
INT_COMPARABLE. Function ie has indeed been redefined
to accept only INT_COMPARABLE arguments: the rules of
Eiffel permit such redefinition of an entity of a c l a ~ in a des-
cendant of that class, if the new type is itself, as here, a des-
cendant of the original type. But minimum has not been
redefined: in fact this is the whole point of the game: to
make sure that minimum is a polymorphle feature, applica-
ble to all kinds of "comparable" objects. So, regrettably, c is
in fact a legal argument i n / 2 9 / .

To ensure type consistency we must redefine minimum
in INT_COMPARABLE so that its arguments and result are
of type INT_COMPARABLE. The body of the routine does
not change: only its header has to be modified. The class
declaration may thus be rewritten ~s follows:

/30/
class INT_COMPARABLE i n h e r i t

COMPARABLE
rename minimum as general_minimum;
redefine minimum

feature

le (other: INT_COMPARABLE): BOOLEAN is
...... As i n / 2 7 / ;

minimum
(other: INT_COMPARABLE): INT_COMPARABLE

is
-- Minimum of current element and other

do
Result :ffi general_minimum (other)

end;-- minimum

value: INTEGER~ As above

change_value (new: 7") is-- As above
do value :ffi new end;

e n d -- class INT_COMPARABLE

We have used here tile renaming mechanism of Eiffel:
the r e n a m e . . , subelause of the i nhe r i t . . , clause makes it
possible to acec.'~ the features of the ancestor ela~s (COM-
PARABLE) even though they are redefined in the descen-
dant. Eiffel prohibits overloading of names within a cla.~s, so
that renaming is necessary to allow use of both sets of
features in the ela.~s. (Another use of renaming is in multiple
inheritance, to remove name clashes when features are inher-
ited from more than one cla.~s).

What we have done is to redefine the header of
minimum, not its body, which is simply that of the original
version, accessible here under the name general_minimum.
This, apparently, takes care of the static typing conflict to
the expense of yet ~ m e more complication.

However, the careful reader will have noted that a
serious typing problem remains. The call to
generaL_minimum is correct with respect to its argument
other: since general_minimum (that is to say,

,~lmmkr l m OOPKA~ ~ ~99

COMI'ARABI, E's ver.~ion of minimum, as given in /26/)
cxpect~ COMPARABLE objects, an entity like other
declared of the de~'endan! type INT_COMPARABLE is an
aCCCl)lsble substitute under the a.~ignment rule. Fl,t there is
a problem with the resul t of the function: general_minimum
ret.rn~ s COMPARABLE whereas INT_COMPARABLE's
version of minimum shot,ld retl,rn an INT_COMPARABLE.

Thus in the call mentioned i n /28 / above , namely

ic3 := icl.minimum (icf)

ic.9 sho,ld be an INT_COMPARABLE; the aasignment is ille-
gal if the right-hand side rett, rns just a COMPARABLE. in
fact. the permitted type combinations in assignments are the
iqver.,~ ones: the source should be of a descendant type from
t he target.

With what we have ,~en ~ far there is not way to
resolve thi.~ i.~tse other than by redefining minimum com-
pletely - not only its header, but its body as well - so that
it will indeed return an INT_COMPARABLE. This of course
defeats the whole pl,rpo~ of genericity: a similar redefinition
must be repeated in each descendant of COMPARABLE.
with all instances of minimum identical except for the type
declarations of arg,ments and results.

We shall only be able to provide a satisfactory solu-
tion to this problem by introducing declaration by association
in ~ction 6.

5 . 3 - C o n s t r a i n e d g e n e r i e i t y : p a e k a l ~ , ' e

The previous discussion transposes to packages. We
u~ a cla.~s to represent the matrix abstraction implemented
in Ada by the MA TRICES package:

/31/
class MATRIX fea tu re

impl: ARRA YE [RIN~;

entry (i: INTEGER; j: INTEGER): RING is
- Value of the (i, j) entry of the matrix

do Result ~ impi.entry (i, j) end;

enter (i: INTEGER; j: ~NTEGER; v: RING) is
- Assign value v to entry (i, 3) of the matrix

do impl.enter (i, L v) end ;

plus (other: MATRIX) is
- Add other to current matrix

local tl: RING do
......... loop loop

tl ~ entry (i, S);
tl.plas (other.entry (i, S));
enter (i, j , t l)

end end end; -- plus

times (other: MATRIX) is
-- Multiply current matrix by other

local do e n d
end -- class MATRIX

llere ARRAYt [~ denotes a predefined Eiffel class
~ho~e elements are two-dimensional arrays of type T. Array
types are treated in Eiffel as cla.~q types; the basle operations
on an element a of type ARRA YP. are a.entrll (i, j), which

returns the i, j entry of array a (that is to say. a [i, J] in
standard Pascal notation), and o.enter (i, j, v), which a~igns
value v to this entry (that is to say. a [i,]1 := t~).
Corresponding operations are declared above for matrices.

We have left out some details (such as how the dimen-
sions of a matrix are set) but outlined the plus proeedure.
exhibiting the object-orlented form of overloading: the inter-
nal call to plus is the operation on RING. not MATRIX.
Similarly, routines enter and entry are u..~l in both their
ARRA Y~ and MATRIX versions.

To define the equivalent of the Ada generic package
instantiation (/1 '2/)

packa4ge BOOL_MA TRICES is
MA TRICES (BOOLEAN,/abe, tree, "or", "and");

we must declare the "ring" corresponding to booleans:

/32/
e l m BOOL_RING Inher i t

RING redefine zero, unity
freeae zero, unity fea tu re

value: BOOLEAN;

ehanfe_value (b: BOOLEAN} is
- Assign value b to current element

do value .~ b end ;

plus (other: BOOL_RING) Is
- Boolean addition: or

do change_value (value or other.value) end ;

times (other: BOOL_RING) is
- Boolean multiplication: and

do change_value (value a nd other.value) end ;

zero is
- Zero element for boolean addition

do Result.Create; Result.chance_value (hdte) end ;

unity is
- Zero element for boolean multiplication

do Result, Create; Result.¢hasqTe_ ealus (true) end
end -- class BOOL_RING

Note that zero and unity are redefined as functions
returning a value of type BOOL_RING. However these are
actually constant functions: the clause freeze not seen
before, indicates that zero and uni~ are evaluated just once
and their values shared among all instances of the eisss.
This is how constants of class types may be introdueed in
Eiffel.

How do we provide the equivalent to the Ado package
instantiation for boolean matrices recalled above? The same
reasoning that was applied to class COMPARABLE and
function minimum prevents us from keeping MATRIX as it
is if type checking is a concern: we want to make sure that
an integer element, say, may not be entered into a boolean
matrix. To achieve this, we define an heir BOOL_MATRIX
of MATRIX, where routines entr~, enter, plus and * are
redefined to act only on objects or type BOOL_RING rather
than any RING. As with minimum, only the headers of the
routines have to be changed, not their implementations: this
is achieved as follows, using again renaming to ~llow access
to redefined features of the parent class.

400 OOPSI.A '86 Promodlnlp Z~pImdmr 1 ~

I~.~/
class BOOL_MA TRIX
i n h e r i t

MATRIX
r e n a m e entry u general..matriz_entry,

enter Jm general_matri=_enter,
phts as general_matriz_pl~,
times M general..matri=_times;

redefine impl, entry, enter, ply , times

feature
impl: ARRA Ye IBOOI,..RING!
entry (i: INTEGER; j : INTEGER): BOOL..RING ia

- Value of the (i, J~ entry of the matrix
do Result := general..matriz_entry (i, 3~ e n d ;

... and similarly for enter, plus and times ...

end -- class BOOL_MA TRIX

Tile reader may note the same problem for the result
of function entry as previously discussed for minimum: this
reside should be of type BOOL_RING, but
general..matriz_entry will only return a RING. With the
laugti~ge features seen so far. all we can do is to redefine the
body of entry, making it a copy of the body of
general_matrix_entry rather than a call to this routine; then
the reside will be of the right type. Note that the problem
only a r i~s for functions, so the other routines of the c l a~
are not affected.

This problem notwithstanding, this construction
achieves with inheritance the efleet of constrained generieity.
This restilt has been obtained at the price of a certain heavi-
ne.~s in exprexsion; note in particular that what has been
done for BOOL_MATRIX must be repeated for any descen-
dant of MATRIX corresponding to a generic instantlation.
e.g. INT_MATRIX, REAL_MATRIX etc. In addition,
features value and change_value must be declared anew in
each de~endan t of the associated class RING. We shall ~ e
in ~e t ion 6 how such heaviness may be removed.

6.4 - U n c o n s t r a i n e d g e n e r i c l t y

The mechanism for simulating uneonstrai.led generi-
city is the same: this case is simply seen as a special form of
constrained gcnericity, with an entpty ~t, of "eonstralnts.
(;eneric formal type paranleters have heen interl)reted as
ahstraet data types: when unconstrained, they will be seen as
abstract data types with no relevant operations. The tech-
nique works, but it. suffers from the heaviness mentioned
above, becoming le.~s tolerable here as the dt.mmy types do
not correspond to any obviously relevant da ta abstraction.

Let us apply the previous technique to both our uncon-
.,,trained exam l)le,~, swap and stack, beginning with the latter.
We need a elan,,, say STACKABLE, describing objects that
may he pushed onto and retrieved from a stack. Since this is
trite of Ally ohjeet, this ela~q has no property of it..~ own
beyond its n a n l e ;

13.11
class STA CKA HLE e n d

We may now declare a class STACK, w h o ~ opera-
tions apply to STACKABLE ol>jects:

/as/
c l a m STACK f e a t u r e

space: ARRA Y [STACKABLE~;
index: INTEGER;
size: INTEGER;

empty is
-- Is the stack empty?

do Result := (index ffi= O) e n d ;

push (x: STACKABLE) is
-- Add x on top of the stack

require index < size do
index :ffi index+I;
space.enter (x)

e n d ; -- push

top: STACKABLE is
-- Last element pushed

require n o t empty do
Result :=, space.entry (index) /

end; -- pop

pop is
-- Remove last clement, pushed

require n o t empty do index :ffi index - I e n d ;

Create (m: INTk'GER) is
- Create stack with space for m values

do space.Create (1, m); size :ffi m end
e n d -- class STACK

The requ i re . . , elau~s i l lustrate how routine precondi-
tions (which must be satisfied hy actual parameters upon
entry to a routine) are written in Eiffel. Posteonditions and
ela.~.q invariants may a l ~ be expre.~q~l (ill ensure . . , and
keep. . , clauses). This aspect of the language falls beyond the
scope of thls di~ussion; see [13] for more details.

STACK relies on the predefined class A R R A Y for
one-dinwnsional arrays, whose Inain procedures are entry.
enter and Create; tile lat ter takes two arguments and allo-
cates the array wh, h the values of these arguments as
lmunds. The Create procedure for stacks takes jl,st one
argument (t he st auk size).

To i , lstantlate this delinition for stacks of specific
types, we apply the ,~ame techniques a.~ above: define de,~'en-
danes of STACKABLE. sl,eh as

1361
c l a m INT_STACKABLE i n h e r i t STACKABLE f e a t u r e

value: INTEGER;

change_value (n: INTEGER) is
-- Make n the vah,e of the current element

do value := n end
end -- INT_STACKABLE

and similarly S'FR_STACKAIILE, etc.

Ih, re we run again it |to the typing lwohlcm evidenced
by minimum (/ 3 0 /) a n d IK)OI,_MATRIX (/33/). .~tack,
declared sitnply of type STACK c a n n o t he ",latically
guaranteed to COlt|sin only ohjeel,, of a eerlain c.la,,,, of

S~ptmti~ 1986 CX)PSLA 1?6 ~o¢~dings 401

"stackables". say INT_STACKABLE; and we have the prob-
lem of the type of the result returned by function top. In
the following sequence

1371
s: STACK; ins: INT_STACKABLE

&Create (10);
ins.Create; ins.change_value (50);
s.pash (ins);
ins :: s.top

the last a~ignment has a left-hand side of type
INT_STACKABLE and a right-hand side of type STACK-
ABLE: this is typewise wrong even though the code seems
quite legitimate semantically (one pushes the value of a vari-
able and retrieves it immediately into the same variable).

For both these reasons, it is necessary to do as in the
previous examples, that is to say declare heirs to STACK,
such as INT_STACK, STR_STACK etc. Features of
STACK will be redefined in each of these e l m , but only to
adapt the types of their arguments and, in the case of top, of
the result. Thus for example INT_STACK will contain
feature redefinitions such as

/3s/
space: ARRAY [INT_STACKABLE];
push (z: INT_STACKABLE) ia

do general_stack.push (z) end;

etc. (the reader may eomplete this example based on the
MATRIX case).

The other unconstrained example, procedure s ~ ,
may be treated along the same lines; a class SWAPPABLE
will be introduced. The treatment is left to the reader.

B - G E N E R I C I T Y A N D I N H E R I T A N C E IN E I F F E L

We may draw the following conelusions from the previous
discussion.

• Inheritance is the more powerful mechanism. There
is no way to provide a reasonable simulation with gen-
ericity.

• The equivalent or generic subprograms or packages
may be expressed in a language with inheritance, but
one does not avoid the need for certain spurious dupli-
cations of code. The extra verbosity is particularly
hsrd to justify in the case of unconstrained generlelty,
for which the simulation mechanism is just as complex
as for the conceptually more difficult constrained ea~.

• Type checking introduces difficulties in the u~ of
inheritance to expre.~ generic objects.

"To address these issues. Eiffel offers a limited form of
generlcily and the notion of declaration by association. (The
specification language LM. a.~oeiated with the M
specification method, [12]. relies on a similar tradcolT).

(LI - S imple p n e r l e i t y

Since unconstrained genericity is both the simpler case
and the one for which the pure inheritance solution is least
acceptable, it seems adequate to provide a specific mechan-
ism for this case, distinct from the inheritance mechanism.
Consequently, Eiffel classes may have unconstrained generic
parameters. A cle.~s may be defined as

c l m C [T~, Te, , Tnl

where the parameters represent arbitrary types (simple or
class). An actual use of the class will use actual type parame-
ters, as in

z: C [INTEGER, RING,, DEVIC~

We have in fact already encountered such parameter-
ized classes: the basic classes ARRAY (section 5.4) and
ARRAYe (section 5.3) are naturally generic. It should also
be noted (although the present paper is about concepts
rather than implementation) that Eiffel compilation tech-
niques make it possible to generate a single object module
for a parameterised class, as opposed to Ads techniques
which treat generic packages as macros to be expanded anew
for each instantiation.

The examples of the previous sections provide obvious
cases where generic parameters are useful. Take for instance
COMPARABLE (/26/), which becomes

/39/
e l m COMPARABLE [7] feature

le (other: COMPARABLE [7]): BOOLEAN is
deferred

end;
minimum (other: COMPARABLE [7]):

COMPARABLE [7] is
... As in 1261 ..4

value: T;

change_valse (nero: T) is do valse .~ new end
end -- class COMPARABLE

Here we see an immediate and important beneEi of
generie parameters: we ean solve almost completely the prob-
lem of type checking by specifying that the arguments to /e
and m/n/mum and the Ioeal variable m are of type
COMPARABLE iT], for the same T as the class itself. Thus
we rid ourselves of the necessity to redefine, at least for-
mally, minimum for each descendant of COMPARABLE.
which plagued our previous attempts. The generic parame-
ter T aim allows us to lift the declarations of features value
and change_value from the various descendants of COM-
PARABLE (see /27/or /30/) to a single instance in COM-
PARABLE itself.

However we have not yet solved the problem of the
type of minimum's result, which is COMPARABLE[T] even
in a descendant: more on this below.

To define [NT_COMPARABLE all we have to write
now is:

4e~ ooPstA ~e p m e , ~ s ~ m ~ l ~

/ml
clMs INT_COMPARABLE inher i t

COMPARABLE [INTEGER]
fea ture

ie (other: INT_COMPARABLE): BOOLEAN is
- Is current element less than or equal to other f

do Result := value <~ffi other.value end
end -- class INT_COMPARABLE

The other examples are treated similarly:

14,1
chum RING [~ fea ture

plus (other: RING [7~) b deferred end;
tames (other: RING [71) is defer red end;
zero: RING ITS;
unity: RING [~;
vatue: T;
ehange_valne (new: 7') is do value .~ new end

end -- class RING

14.>. 1
e l m MATRIX [71 fea tu re

impl: ARRA Y~ [RING 17]];

entr;I (i: INTEGER; j: INTEGER): RING [~ is
. . . A s b e f o r e ... (s e e / 3 1 1) ;

... and similarly for enter, plus and timee . .

end -- class MATRIX

Note how the use of a generic parameter in two
related classes. RING and MATRIX, makes it possible to
ensure type consistency (all elements of a matrix will be of
type RING iT] for the same T). As with COMPARABLE
(/39/), the declarations of features mlue and ehange_valne
have been factored out: they now appear in class MATRIX
rather than being repeated in all its descendants.

in the unconstrained generieity ease. the need for
dummy classes disappears: elass STACKABLE and its heirs
INT_STACKABLE, STR..STACKABLE etc. are not needed
any more. since STACK may be rewritten as

/43/
e l m STACK [~ fea tu re

space: A R R A Y [71;
indez: INTEGER;
size: INTEGER;

...... The rest. of the class as i n / 3 S /

...... except that T is used in lieu of STACKABLE

end -- class STACK

There is no more need for classes such as
INT_STACK, STRING_STACK etc.; simply use
STACK [INTEGER], STACK]STRING[and so on. The
typiug problem for top disappears since the result of this
fnnction is now simply of type T.

A remarkable degree of simplification has been
achieved. A.uxiliary classes are not needed any more for
unconstrained generlcity. However we do not introduce con-

strained gcnericity in the lang,age: this feature wo,dd be
redundant with the inJwritance mechanism. To provide the
equivalent of a constrained formal generic parameter, we
retain the technique introduced in .section 5.1: declare a spe-
cial class whose features correspond to the constraints (that
is to say, the with subprograms in Ads terminology), and
declare any corresponding actual parameters &s descendant,
of this class. Providing the class with generic parameters
simplifies its use and partly ~lves the type checking problem.

O.B - Declara t ion by associat ion

Let us look more closely at the remaining part of the
type checking problem. Consider again class COMPARABLE
as defined last (/39/). Keeping in mind that COMPARABLE
is intended for use as an ancestor for more specific classes.
we do not really want other (in both functions), m and the
result of minimum to be of type COMPARABLE iT]: what
is required of these entities is to be of the type of the
"current" entity, whatever this may be in a descendant of
COMPARABLE. When this type changes, we want the other
entities to follow suit.

This possibility is achieved in Eiffel through the
mechanism of declaration by association. Let a elass C con-
tain a declaration of the form

z : D

where D is a class type. We may then declare another entity
a s

y: l ike z

Such a declaration means the following: the type of y
is the same as the type of z; if z is redefined in a de~endant
class of C as being of a class type D ', which must be a des-
¢endant of D, then y will be considered to have been
redefined likewise. Note that this is a purely static mechan-
ism: it may be viewed as an abbreviation allow!ng the rede-
elaration of just one from a grot, p of related entities to
stand for the redeclaration of the whole group.

When the distinguished element of the group, z above.
is redeclared, it "drags" along all elements declared like it.
We call it the anchor of the association. The anchor may
be the current entity, as in

/I: l ike Current

This readily applies to the previous example:

/44/
e l m COMPARABLE [7~ fea tu re - Contrast w i th /39 /

le (other: like Current): BOOLEAN is deferred end ;

minimum (other: like Current): like Current is
d o ... ~ / 2 6 / . . . end;

value: T;
change_value (new: T) is do value :ffi new end

end -- class COMPARABLE

Note how this device solves at once all the remaining
type checking problems: not only are le and minimum con-
strained to act. in all descendants of COMPARABLE, on

Soptemba' 1908 OOPSLA '86 Procmdblg8 403

honmgeneous enlities (comparing only integers with integers,
strings wilh slrings etc.): it a l~ ensures that the result of
minimum is of the right type, that of its arguments.

The same technique readily applies to the other cases.
For example. RING (see/41/) becomes:

/4~/
class RING [7] f e a t u r e

plus (other: l ike Current) is d e f e r r e d e n d ;
times (other: l ike Current) is d e f e r r e d e n d ;
zero: l ike Current;
unity: l lke Current;
value: T;
change_value (new: 7') is do value .'ffi new e n d

e n d -- class RING

In contrast with the STACK Case, we do need here,
because of the deferred procedures, to explicitly declare the
de~endan ts of RING corresponding to various implements-
lions of plus and times; for example:

1 4 6 1

class BOOL_RING i n h e r i t
RING [BOOLEA/~

redefine zero, unitl/
freese

zero, unity
f e a t u r e

..... as in / 3 2 /
end -- class BOOL_RING

6 . 3 - Artificial a n c h o r s

For MATRIX, a small addition is necessary to ensure
that all entities of type RING [T] are always redefined con-
sist ent ly.

When a group of entities are redefined together by
s~*ociation, one of the entities must serve as the anchor for
the ax~ociation. In the final versions obtained above for
COMPARABLE and RING (/ 4 4 / a n d / 4 5 /) , the current ele-
ment is the anchor.

In the MATRIX c a ~ . the entities to be redefined are
of a lype different, from the current class, namely RING. in
~,ch s case, there is usually in the current class a feature of
the required type which can ~ r v e as anchor. For example,
the definition of linked lists in the basic Eiffel library]13]
u~es a cls~s LINKED_LIST iT] for lists and a class
LINK.4RI, E IT] for list cells, where a list cell contains s
~al ,e of type T and a reference to another list cell. The
implementat ion of a list contains a reference to the first cell
of the list: this reference, expre.~*ed by a feature
first_element, is u.~d as anchor for redefinitions of other
LINKABLE entities of class LINKED.,LIST in descendants
of LINKED_LIST (examples of such descendants are the
cln*,~,~ defining two-way linked lists and trees, both viewed
~ special cases of one-way linked lists).

C'ls~ MATRIX, however, has no feature of type
RING: the reason is that all " r ing" elements are entered into
the malrix indirectly, as arguments to procedure entr~.

Thus we cannot avoid the need to introduce a dummy
feature of type RING to serve as anchor, as follows.

1471
elm MATRIX [71 freese anchor feature

anchor: RING [~;

impl: ARRA Y£]like anchor];

entry (i: INTEGER; j: INTEGER): like anchor
is . . . A s before . . . (1311)-;

enter (i: INTEGER; j: INTEGER; v: l ike anchor)
is ... As before ...;

plus (other: l ike Current) is ... As before ...;

times (other: l ike Current) is ... As before ...;
e n d -- class MATRIX

(Listing anchor in the freese elau~ avoids the waste of run-
time space that would result from physically storing an
anchor within each object, of the cla~,s), tlere too specialized
classes must be declared for various generic instantiations of
MATRIX. However, the declarations are now trivial: all
that needs to be done is to redefine anchor. For example:

1481
c lau BOOL_MA TRIX inher i t

/ViA TRIX [BOOLEA~ redefine anchor
feature

anchor: BOOL_RING
end -- class BOOL..~A TRIX

Such a redeelaration closely models the corresponding
Ada package instantiation (/12/).

? - CONCLUSION

Genericity and inheritance are two important tech-
niques towards the software quality goals mentioned at the
beginning of this article. We have tried to show which of
their features are equivalent, and which are complementary.

Providing a programming language with the full extent
of both inheritance and Ads-like genericity would, as we
think this dissuasion has shown, result in a redundant and
overly complex design; but including only inheritance would
make it too difficult for programmers to handle the simple
cases for which unconstrained genericity offers an elegant
expression mechanism, like in the stack example.

Thus we have put the borderline at unconstrained gen-
erieity. Eiffel classes may have unconstrained generle param-
eters; constrained generic parameters are treated through
inheritance.

Declaration by association completes this architecture
by allowing for completely static type checking, while retain-
ing the necessary flexibility.

We hope to have achieved in this design a good bal-
ance between the facilities offered by two important but very
different techniques for the implementation of extendible,
compatible and reusable software.

4o4 ooes~ ~s Prom,d~. S , ~ m ~ l m

Acknowledgments

This paper benefited from comments by Vincent
('azala. The work reported was done in part as the author
was with the University of California, Santa Barbara.

References

!. Jean-Raymond Abrial. Stephen A. Schuman, and Ber-
trand Meyer, "A Specification Language," in On the
Construction of Programs, ed. R. McNaughten and
R.C. McKeag, Cambridge University Press, 1980.

2. Didier Bert, "Manuel de R/~f~renee du Langage LPG,
Version 1.2," Rapport R-498, IFIAG, IMAG Institute
(Grenoble University), Grenoble, December 1983.

3. Graham Birtwistle. Ole-Johan Dahl, Bjorn Myrhaug,
and Kristen Nygaard, $imula Begin, Studentliteratur
and Auerbach Publishers, 1973.

4. Ronald J. Brachman, "What I~A and isn't: An
Analysis of Taxonomic Links in Semantic Networks,"
Computer (IEEE), vol. 16, no. I0, pp. 67-73, October
1983.

5. Rod M. Burstall and Joe A. Goguen, "An Informal
Introduction to Specifications using Clear," in The
Correctness Problem in Computer Science, ed. R. S.
Boyer and J. S. Moore, pp. 185-213, Springer-Verlag,
New York, 1981.

6. Luca Cardelll and Peter Wegner, "On understanding
Types. Data Abstraction and Polymorphism," Com-
puting Surveus (to appear).

7. Luca Cardelli, "Basic Polymorphlc Typechecking,"
AT,~'T l~.ll Laboratories Computing Science Technical
Report. 1984, 1986. (Revised version, to appear).

8. Ole-Johan Dahl. Bjg~rn Myrhaug, and Kristen Nygaard,
(Simula) Common Base Language, Norsk Regnesentral
(Norwegian Computing Center), Oslo, February 1984.

9. K. Futatsugi, Joseph A. Goguen, Jean-Pierre Jouan-
naud. and Jo.~ Messeguer, "Principles of OBJ2," in
Proceedings of the 1985 ACM Symposium on Principles
of Programming La~uages, vol. 12, pp. 52-66, 1985.

10. Barbara H. Liskov, R. Atkinson, T. Bloom, E. Moss,
J.C. Schaffert, R. Scheifler, and Alan Snyder, CLU
Relerence Manual, Springer-Verlag, Berlin-New York,
1981.

II. Bertrand Meyer, "Quelques concepts importants des
langsges de programmatlon modernes et leur expres-
sion en Simula 67," Bulletin de la Direction des Etudes
et Recherches d'Electricfl~ de France, S~rie C (Infor-
matiqee), no. I, pp. 89-1.50. Clamart (France), 1979.
AI~ in GROPI~AN 9. AFCET, 1979

12. Bertrand Meyer, "'M: A System Description Method,"
Technical Report TR('S8.%I.5, University of California,
Santa Barbara. Computer Science Department, May
198.5.

13. Bertra,ld Meyer. Eiffel: a Language for Software
Engineering, Technical Report TRCS8~I9, University
of California. Santa Barbara. Computer Science

14.

15.

Department. November 198.5.

Robin Milner, "A Theory of Type Polymorphism in
Programming," Journal of Computer and System Sci-
ences, vol. 17, pp. 348-375, 1978.

Rishiyur. S. Nikhil, "Practical Polymorphlsm.'" in
Functional Programming Languages and Computer
Architecture, Nancy (France), 16-19 September 1985,
Lecture Notes in Computer Science ~01, ed. Jean-
Pierre Jouannaud, pp. 319-33:3, Springer-Verlag.
Berlin-New York, 1985.

Trademark: Unix (AT&T); Ads (US DoD); Eiffel (Interactive
Software Engineering).

S e p ~ 1996 OOPSLA '86 Proomdi~ 4O5

