Genericity versus Inheritance

Bertrand Meyer

University of California, Santa Barbara
and Interactive Software Engincering, Inc.

Current address: Interactive Software Engineering, Inc.
270 Storke Road, Suite #7, Goleta CA. 93117

ABSTRACT

Genericity. as in Ada or ML. and inheritance. as in object-oriented languages, are two alternative techniques for
ensuring better extendibility. reusability and compatibility of software components. This article is a comparative
analysis of these two methods. It studies their similarities and differences and assesses to what extent each may he
simulated in a language offering only the other. It shows what features are needed to successfully combine the two
approaches in a statically typed language and presents the main features of the programming language Eiffel, whose
design. resulting in part from this study, includes multiple inheritance and a limited forin of genericity under full static

typing.

1 - OVERVIEW

In spite of its name, today's software is usually not
soft enough: adapting it to new uses turns out in most cases
to be a harder endeavor than should be. It is thus essential
to find ways of enhancing such software quality factors as
extendibility (the ease with which a software system may bhe
changed to account for modifications of its requirements).
reusability (the ability of a system to be reused, in whole or
in parts, for the construction of new systems) and compati-
bility (the ease of combining a system with others).

Good answers to these issues are not purely technical,
but must include economical and managerial components as
well: and their technical aspects extend beyond programming
language features, to such obviously relevant concerns as
specification and design techniques. It would be wrong, how-
ever, to underestimate the technical aspects and, among
these, the role played by proper programming language
features: any acceptable solution must in the end be expressi-
ble in terms of programs, and programming languages funda-
mentally shape the software designers’ way of thinking.

This article is a comparative analysis of two classes of
programming language features for enhancing extendibility,
reusability and compatibility. It assesses their respective
strengths and weaknesses, examines which of their com-
ponents are equivalent and which are truly dificrent, shows
how the two approaches complement each other, and
explnains how they have heen combined in a particular pro-
gramming language design.

The two approaches studied are genericity and
inheritance: both address the above issues by allowing the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advaniage,
the ACM copyright notice and the title of the publication and its datc appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

© 1986 ACM 0-89791-204-7/86/0900-0391 75¢
September 1968

definition of flexible software elements amenable to exten-
sion, reuse and combination. The first is a technique for
defining elements that have more than one interpretation,
depending on parameters representing types: the second
makes it possible to define elements as extensions or restric-
tions of previously defined ones.

Both methods apply some form of polymorphism. a
notion that may be defined as the ability to define program
entities that may take more than one form. A simple form
of polymorphism, used in hoth eases, is overloading, the abil-
ity to attach more than one meaning to the same name,
ambiguities being resolved by examining the context of each
occurrence of the name, either at compile time (for statically
typed languages) or at run time.

Although the two approaches may be applied outside
the strict realm of programming, for example to specification
or design languages, we shall confine our study to program-
ming languages. In this field, genericity is most notably
present in Ada; inheritance is a feature of object-oriented
languages and was introduced by Simula 67.

Ada and object-oriented languages have until now
aroused interest in rather different. communities and it is not
surprising that no comparative analysis srems to have heen
published. (The only related work that we know of is the as
vet. unpublished, more theory-oriented article by Cardelli and
Wegner [6), of which we hecame aware as this paper was
going to press). However we feel that bevond ‘“eultural™
differences the real goals pursued are the same, so that it is
fruitful to perform an in-depth comparison of the technical
solutions obtained on hoth sides.

Section 2 fntroduces genericity; section 3 discusses
inheritance; sections 4 and 5 compare the two approaches by
studying whether the eflfect of each may be achieved with the
other: scction 8 describes how a particular programming
language, Eiflel. uses a balanced combination of the two
techniques. Section 7 summarizes the results achieved.

OOPSLA '86 Proceedings 391

2 - GENERICITY

Genericity as offered by Ada is present in few other
programming languages (examples include CLU [10] and LPG
[2]}. but is offered by several formal specification languages,
such as 7 [1]. Clear [5} OBJ2 [9] and LM [12]. A variant of
this approach was developed in connection with the language
ML (11 7] and has been integrated into a number of fune-
tional [anguages.

We shall concentrate on the Ada form. restricting our-
selves to type genericity. that is to say the ability to
parameterize a software element (in Ada. a package or sub-
program) by one or more types. Generie parameters have
other. les< interesting uses in Ada. such as parameterized
dimensions for arrays,

We shall distinguish between unconatrained genericity,
whereby no specific requirement is imposed on generic
parameters, and constrained genericity. wherehy a certain
stracture is required,

2.1 - Unconstrained genericity

In its simplest. form. unconstrained genericity may be
secn as a technique to hypass the unnecessary requirements
imposed by statie type checking.

Consider the example of a simple procedure for
exchanging the values of two variables. In a language which
is not statically typed. such as Lisp. we would write some-
thing like the following. syntactic differences notwithstand-
ing:

n/
procedure swap (z, y) is
t: local
begin
t=zz=y,y:=1t
end swap

The type of the elements to be swapped and of the
local variable t does not have to be specified. However this
may be too much freedom since a call of the form swap (a,
b). where a is. say. an integer, and b a character string, will
not be prohibited even though it is probably an error.

Statically typed languages such as Pascal address this
problem by requiring programmers to declare explicitly the
types of all variables and formal parameters: they enforce a
statically checkable type compatibility requirement between
actual and formal parameters in calls. and between source
and target in assignments. In such a language, the procedure
to exchange the values of two variables of type T becomes:

12/
procedure T_swap (z, y: in out T} is
T
begin
t=gz=y;y:=10
end swap

Demanding that T be specified as a single type averts
type incompatibility errors. but has the unpleasant conse-

92 OOPSLA '86 Proceedings

quence of requiring a new procedure declaration for each
type for which a swap operation is needed: in the ahsence of
overloading. a different name must bhe assigned to each such
procecure, for example $nt_swap, str_swap and =0 on. Such
multiple declarations lengthen and ohscure programs. The
example chosen is particularly bad since all the declarations
will be identical except for the two occurrences of 7.

Static typing may be considered too restrictive here:
the only real requirement ix that the two actual parameters
passed to any call of swap should be of the same type. and
that their type should also be applied to the declaration of
the loeal varinble ¢,

A language with genericity provides a tradeofl between
too much freedom. as with untyped language=, and too much
restraint, as with Paseal. In such a Innguage. one may
declare T ax a generie type parnmeter to the swap pro-
cedure. In quasi-Ada. the procedure may be declared as fol-
lows:

/3/

generic
type T is private;

procedure swap (z, y: in out T) is
. T

begin
t=zz=y;y=1

end swap

The only difference with real Ada is that we have
merged together, for ease of presentation, the two parts of
an Ada subprogram declaration. header and body: their
separation in Ada comes from a concern for information hid-
ing. orthogonal to this discussion.

The generic... clause introduces type parameters. By
specifying T as a “‘private” type. the writer of this procedure
allows himsell to apply to objects of type T (z. y and t)
operations available on all types, such as assignment or com-
parison, and these only.

A declaration such as the above does not actually
introduce a procedure but rather a procedure pattern; actual
procedures will be obtained by instantiating the pattern with
actual type parameters, as in:

14/
procedure int_swap is new swap (INTEGER);
procedure str_swap is new swap (STRING);

etc. Now assuming that ¢ and j are variables of type

INTEGER, s and t of type STRING, then of the following

calls

int_swap (4, j);
str_swap (s, t);
inf_swap (1, 8);
str_swap (s, 3);
str_swap (1, 3);

only the first two will be legal; the other are statically
incorrect.

More interesting than parameterized subprograms are
parameterized packages. Ada packages ‘(and their

September 1986

equivalents in other modular languages, such as modules in
Modula 2) are syntaetical encapsulations of groups of related
program entities such as subprograms, types and variables.
One of the most important applications of packages, and the
only one considered in this article, is data abstraction: each
package contains the implementation of a type and of the
operations applicable to elements of that type.

Ada packages may be declared with generic parame-
ters, For example. the following generic package describes
stacks of clements of an arbitrary type T:

Bl
generic
type T is private;
package STACKS is
type STACK (size: POSITIVE) is
record
space: array (1..size) of T;
index: NATURAIL
end record;
function empty (s: in STACK) return BOOLEAN;
procedure push (¢: in T; s: in out STACK);
procedure pop (s: in out STACK);
function top (s: in STACK) return T;
end STACKS

We have given only the public part {“'specifieation’) of
the package: the package implementation (“*hody™), which
deseribex the subprogram bodies, must bhe declared
separately. For technical reasons having to do with the prob-
lems of Ada compilation. the implementation of the types
supported by a package. such as STACK here, is given in the
public part. For information hiding purposes. this implemen-
tation may be given in the private clause of the public part,
a Kind of purgatory between specification and hody: however
we do not need to use this feature for the present discussion.

As with generic subprograms. the above does not
define a package but a package pattern; actual packages
may be obtained by instantiation. as in

18/
package INT_STACKS is new STACKS (INTEGER);
package STR_STACKS is new STACKS (STRING);

In a program unit that has access to hoth of these
instances of STACKS, dot notation may bhe used to distin-
guish between namesake elements: for example the type
“stack of integers” will be denoted by
INT_STACKS.STACK, and the type “stack of strings™ by
STR_STACKS.STACK: the corresponding “push” procedures
are INT_STACKS.push and STR.STACKS.push.

We may note again the compromise that generic
declarations achicve between typed and untyped languages.
STACKS provides a pattern for the declaration of modules
implementing stacks of elements of all possible types T,
while retaining the possibility to enforce type checks: for
example it will not be possible to push an integer onto a
stack of strings.

Both examples above (swap and stack) evidence a form
of genericity which we call unconstrained since there is no
specific requirement on the types that may be used as actual

generic parameters. In the first case, one may swap the
values of variabhles of any type: in the second, one may
create stacks of values of any type, provided all values in a
given stack are of the same type.

In other cases, however, a generic definition will only
be meaningful if the actual generic parameters satisfy some
conditions. We define this form of genericity as constrained.

2.2 - Constrained genericity

As with unconstrained genericity. we consider two con-
strained examples: first a subprogram and then a package.

Assume we want to define a generic subprogram for
finding the minimum of two values. Using the pattern of
swap above, we may write the following function:

i
generic
type T is private;
function minimum (z, y: T) return T is begin
if z <= y then return z;
else return y end if;
end swap

However such a Tunction declaration is not always
meaningful: it should only be instantinted for types T on
which a compnrison operator <= is defined. In an untyped
Ianguage we might defer ehecking of this property until run-
time. bit this ix not aceeptable in a language that enhances
security through static typing. We need a way to speeify
that type T must be equipped with the right operation.

In Ada thix will be written by treating the operator
<= as a generie parameter of its own. Syntactieally it will
be a function: note that, as a syntactic facility. Ada makes it
possible to deciare functions to be invoked in infix form {as
<=) by declaring them with a name enclosed in double
quotes, for example "<="in the case at hand. Again the fol-
lowing declaration becomes legal Ada if the public part and
implementation are taken apart.

L/
generic
type T is private;
with function "<=" (a, b: T)
return BOOLFEAN is <>;
function minimum (z, y: T) return Tis
begin
if 2 <= y then return z;
else return y end if;
end swap

The keyword with is used to introduce generic formal
parameters representing subprograms, such as the function
ﬂ<=“.

This declaration may now be instantiated as follows
for a type, say TI, for which a function, say TI_le, of type
function (a, b: T1) return BOOLEAN is defined:

19/

function TI_minimum is new minimum (T1, T le);

OOPSLA 88 Proceedings 393

If. on the other hand, the TI_le function is in fact
ealled "<=". that is to say if its name and type match those
of the corresponding formal subprogram, then one may omit
it from the list of actual parameters to the generic instantia-
tion of the subprogram. For example, the type INTEGER
has a predefined "<=" function with the right type, =0 that
we ean simply declare

/10/

function inl_minimum is new minimum (INTEGER);

This ability to use default actual subprograms with
matehing names and types is obtained by speeifying is <> in
the declaration of the formal generie subprogram, as was
done above with "<=". Note that the overloading ol opera-
tors. a~ permitted (and in fact encouraged) by the design of
Ada. plays an essential role here: "<=" may bhe defined for
many diflerent types,

This discussion of constrained genericity in the subpro-
gram case readily applies to generie packages. Assume that
we want to write a generie matrix manipulation package,
applicable 1o matrices of ohjects of any type T, with matrix
<um and produet as basie operations. Such a definition is
only meaningful if type T has a sum and a product of its
own, and each of these operations has a zero element: these
features of T will be needed in the implementation of matrix
sum and product. The public part of the matrix package
may be written as follows:

/11/
generic
type T is private;
zero: T;
unity: T;
with function "+" (a, b: T) return T is <>;
with function "+’ (g, b: T) return Tis <>;
package MATRICES is
type MATRIX (lines, columns: POSITIVE) is
array (1..lines, 1..columns) of T;
function "+" (m1, m2: MATRIX) return MATRIX;
function "+ (m/, m2: MATRIX) return MATRIX;
end MATRICLS;

Instances of this package may be obtained as follows:

12/
package INT_MATRICES is
MATRICES (INTEGER, 0, 1);

package BOOL_MATRICES is
MATRICES (BOOLEAN, false, true, "or", "and");

As in the previous example, actual subprogram param-
eters {corresponding here to “+" and " #") may be omitted for
a type such as INTEGER which possesses matching opera-
tions: however they must be specified for BOOLEAN. (It is
convenient to declare optional parameters as the last ones in
the formal parameter list: otherwise a keyword notation
must be used when the corresponding actual parameters are
omitted).

It is interesting here to show how the implementation
part of such a package will look. It is enough to give one of

304 OOPSLA '86 Proceedings

the function bodies in this package; we take matrix product
as an example.

113/
package body MATRICES is
........... other declarations
function "*" (ml/, m2: T) is
result: MATRIX (m1'lines, m®'columns);
begin
if m1'columns /= m2'lines then
raise INCOMPATIBLE_SIZES;
end if;
for ¢ in mI’"RANGE(1) loop
for ;7 in m2'RANGHK 2) loop
result (3, j) := zero;
for kin m!I’'RANGFE 2) loop
result {4, 7) ==
result (3, 7) + ml (i, k) * m2 (k, j)
end loop;
end loop;
end loop;
return result
end "*';
end MATRICES;

Three comments are in order for the reader not fami-
liar with all the details of Ada:

o for a parameterized type such as MATRIX (lines,
columns: POSITIVE), a variable declaration must pro-
vide actual values for the parameters, eg. mm:
MATRIX (100, 75); these values may then be retrieved
using the apostrophe notation as in mmlines which in
this ease has value 100;

o if a is an array, a’RANGE(%) denotes the range of
values in its +th dimension; for example m!’'RANGE\ 1)
above is the same as 1..m1 'lines:

e if requested to multiply two dimension-wise incompa-
tible matrices, the program raises an exception; it does
not execute the code that follows the raise instruction.
The package should include code to handle the excep-
tion.

The two examples given (minimum and matrices) are
representative of the Ada techniques for constrained generi-
city. They also show a serious limitation of languages such as
Ada in this area: the fact that only syntactic constraints
may be expressed. All that a programmer may require is the
presence of certain subprograms ("<=", "+", " #" in the exam-
ples) with given types; but the declarations are meaningless
unless some semantic constraints are also satisfied. For
example, minimum only makes sense if "<=" is a partial
order relation on T (reflexive, antisymmetric, transitive): and
the MATRICES package should not be instantiated for a
type T unless the operations "+" and "#" not only have the
right type (T X T = T) but also give T the structure of a
ring (associativity, distributivity, zero a zero element for “+"
and unity for " #", ete).

To include such formal constraints, one has to leave
the realin of programming languages such as Ada for such
specification languages as Clear and OBJ2 (the latter execut-
able) or the experimental programming language LPG.

September 1986

2.3 - Implicit genericity

It is important to mention a form of genericity quite
different from the above Ada-style explicit parameterization:
the implicit polymorphism exemplified by the work on the
ML functional language |14, 7).

This technique is based on the remark that explicit
genericity, as seen above. places an unnecessary bhurden on
the programmer. who must give generic types even when the
context provides enough information to deduce a correct
typing. It may be argued. for example, that the very first
version (/1/) given for procedure swap. with no type declara-
tion. is acceptable as it stands: with adequate typing rules, a
compiler has enough information to deduce that z, y and ¢
must have the same type. Why not then let programmers
omit type declarations when they are not strictly needed
conceptually. and have the compiler check that all uses of an
identifier are consistent?

This approach, sometimes called ‘“‘unobtrusive type
checking™ [15]. attempts to reconcile the freedom of untyped
languages with the security of typed ones. It has been
clegantly implemented in ML and other funetional {anguages.
One may argue, of course, that some obtrusiveness may be
useful: the redundancy entailed by explicit type declarations
may enhance progrhim readability. Whatever the answer to
this debate may be, the question of explicit or implicit gener-
icity is not directly connected to the present discussion; for
the purposes of comparison with inheritance, both forms of
genericity are somehow equivalent.

Without committing ourselves as to which form is
best, we have chosen to rely on the explicit form exemplified
by Ada. which, for our study, has the obvious advantage
that generic parameters stand out more visibly.

3 - INHERITANCE

The inheritance technique was introduced in 1967 by
Simula 67 [3, 8, 11]. It has been widely imitated in other
object-oriented languages.

As with genericity, we will mostly introduce this tech-
nique through examples. Since we need a notation, we shall
rely on a particular one, that of the object-oriented language
Eiffel {13].! Much of the discussion would readily transpose to
other object-oriented languages; however Eiffel's emphasis on
static typing, and its design as an object-oriented language
for actual software engineering applications (as opposed to,
say, artificial intelligence or exploratory programming) make
it particularly suitable for this discussion. Only the elements
of Eiffel which are essential to this article are introduced:;
more details may be found in the reference quoted.

The fundamental idea of inheritance is that new
software elements may be defined as extensions of previously
defined ones: existing elements do not have to be modified
when used as a basis for new definitions.

! Eiffel and the associated compilers and tools are products
of Interactive Software Engineering, Inc., Goleta (California).

September 1986

This concept blends particularly well with the object-
oriented approach, in which basic software elements are
implementations of abstract data types: the extensions of
software elements mentioned above will then correspond to
refinements of hierarchies of abstract data types.

The basic tenct of object-oriented programming
languages may be described as the idea that the fundamental
elements, modules, are not only associated with implementa-
tions of abstract data types (an effect which may be achieved
in any language offering modular features and information
hiding, such as Ada or Modula 2). but are such implementa-
tions. In other words, the defining equality of object-oricnted
languages is

Module = Type

This dogmatic identification of two apparently distinct
programming notions, one syntactic, the other semantic, may
appear too strict and indeed has some disadvantages. But it
also gives object-oriented programming languages and the
associated design method a strong conceptual integrity. and
provides powerful techniques for satisfying the software qual-
ity requirements mentioned above.

As an example of such a module-type, called a class in
Eiffel as in Simula and many other ohject-oriented languages.
consider the following outline of an implementation of “spe-
cial files” in the Unix sense, that is to say. files associated
with devices:

14/
class DEVICE export
open, close, opened
feature
open (file_descriptor: INTEGER) is
do

end; -- open

close is
do

end; -- close

opened: BOOLEAN
end -- class DEVICE

This class is the implementation of an abstract data
type characterized by three ‘‘features”, open, close and
opened. There are two kind of features: attributes and rou-
tines. Routines, like open and close here, are operations
applicable to objects of the class; routines are further divided
into procedures which, as the two shown here, perform some
actions, and functions (seen in later examyles), which return
a value. Attribute features, like opened here, are data ele-
ments associated with each object of the type.

As a type, a class such as DEVICE may be used to

declare objects; their features may then be accessed through
dot notation, as in:

OOPSLA '86 Proceedings 395

15/
di: DEVICE; f1: INTEGER
d!.Create;
dl.open ([1);
if d!.opened then

Create is a universal procedure applicable to all
classes: it allocates the necessary space for an object such as
d1. If further initialization actions are required, they may be
deseribed in a procedure declared in the class with the name
Create, possibly with parameters.

Note that each routine always has, besides its normal
list of arguments, a special argument, the object to which
the procedure is applied (d! in the above call to open). This
is one of the characteristics of object-oriented language:
every operation is relative to a distinguished object. Within
the class. unqualified feature names implicitly refer to this
object: the predefined name Current may be used when an
explicit reference is needed.

These comments account for the “type” aspect of a
class. From the “module™ standpoint, it should be noted that
the class is the only program structuring facility of Eiffel;
thus the above example use of DEVICE must be in some
class, say C. A class such as C which declares entities (that
is to say features, routine parameters or function results) of
type DEVICE is said to be a client of DEVICE. The export
clause lists the features of a class which are accessible to
clients. in read-only mode for attributes and execution mode
for routines (here all features shown are exported). Since
information hiding is not a concern for this discussion, we
shall omit export... clauses in the sequel.

The notion of inheritance is a natural extension to this
basic framework. Assume we want next to define the notion
of tape device. For our purposes, a tape unit has all the pro-
perties of devices, as represented by the three features of
class DEVICE, plus the ability to (say) rewind its tape.
Rather than redefining a new class from scratch, we may
declare class TAPE as an extension of DEVICE, as follows:

/18/
class TAPE inherit DEVICE feature
rewind is
do ... end
end -- class TAPE

With this declaration, objects of type TAPE automat-
ically possess (hy “inheritance™) all the features of DEVICE
objects, plus their own (here rewind). We say that TAPE is
an heir to DEVICE, which is a parent of TAPE. The “‘des-
cendants” of a class are the class itself and the descendants
of its heirs; the reverse notion is that of “ancestor™.

A class may of course have more than one heir; for
example. DEVICE could have DISK as another heir, with its
own specific features (such as direct access read, etc.). In
Eiffel. classes may also have more than one parent: this is
known as multiple inheritance, a very powerful technique for
rexsahility. allowing the combination of more than one pre-
viously developed environment. Eiffel also introduces the
technique of “repeated inheritance™. making it possible to
inherit more than once from the same class,

From the module viewpoint, the ancestor relation is a
program structuring mechanism; from the type viewpoint. it
yields a rule on acceptable assignments. The rule is simple:
an sssignment of the form

z=y

where z and y are of class types, is only permitted if the
type of z is a descendant of the type of y. Thus the above
assignment is legal if, for example, z has been declared as a
device and y as a tape. This may be explained by noting
that the inheritance relation is really the “is-a™ relation [4]:
every tape is a device, but every device is not a tape.

ft sometimes happens that a feature of a class should
be implemented differently in some descendants of the class.
For example there could be a special *open” mechanism for
tape devices. Eiffel allows such redefinitions, as follows:

Ny
class TAPE inherit
DEVICE redefine open
feature
open (file_deacriptor: INTEGER) is
do special open for tape devices end;

do end
end -- class TAPE

This possibility must be seen in connection with the
above assignment rule: if z is a device, then the call

z.open (1)

may now be executed differently depending on the assign-
ments that have been performed on z before the call is exe-
cuted: for example, after z := y, where y is a tape, the tape
version should be executed. Such feature redefinitions are
common in Eiffel programming, which also allows a parame-
terless function to be redefined as an attribute (which is use-
ful for changing representations in program refinement).

This facility characterizes the powerful brand of
polymorphism offered by object-oriented languages with
inheritance: the same feature reference may have several
interpretations depending on the actual form of the object at
run-time. To achieve this effect, many object-oriented
languages have renounced static type checking; Eiffel, how-
ever, is statically typed (and the binding of feature names to
actual features is done statically whenever possible).

The remarkable benefits of the inheritance technique
with respect to reusability, extendibility and compatibility
come from the fact that software elements such as DEVICE
are both usable as they are (they may be compiled as part of
an executable program) and still amenable to extensions (if
used as ancestors of new classes). Thus a compromise
between usability and flexibility, fundamental for the quali-
ties mentioned, is achieved.

One more property of Eiffel, borrowed from Simula,
will be useful for the discussion below: deferred features
(corresponding to Simula's “virtual procedures™). Deferred
features correspond to operations that must be provided on
all objects of a class, but whose implementation may only be
given in particular descendants of the class.

Seplember 1966

Assume for example that, as under Unix, devices are a
special kind of files: DEVICE should thus be an heir to class
FILE. whose other heirs may be TEXT_FILE (itsell with
heirs NORMAL and DIRECTORY) and BINARY_FILE.
Figure 1 shows the inheritance graph, a tree in this case.

DIREC
TORY

Figure 1: Inheritance graph for files

Any file may be opened or closed;: but how these
operations are performed depends on whether the file is a
device. a directory ete. Thus at the FILE level we declare
the corresponding procedures as deferred; this means that
only a header is given. and that the task of providing an
implementation is handed over to descendant classes:

/18/
class FILE feature
open (file_descriptor: INTEGER) is deferred end;
close is deferred end;
end -- class FILE

Descendants of FILE should provide actual definitions
of open and close. The rules of the language prohibit appli-
cation of these features to objects for which they might not
he defined.

An interesting application of this technique is for Ada
or Modula-like separation between interface and implementa-
tion of a module: although an Eiffel class is normally defined
as a single piece, the effect of Ada’s two level declaration
{specification and body) may be achieved by declaring a first
class with deferred features only, and a second one, heir to
the first, with the implementation of these features. An
important advantage of this technique over its Ada
equivalent is that it allows different implementations of the
same feature to coexist in a single software system.

4 - SIMULATING INHERITANCE WITH GENERI-
CITY

To compare genericity with inheritance, we shall study
how. if in any way, the eflect of each feature may be simu-
lated in a language offering the other.

First consider a language, such as Ada, which offers
genericity but not inheritance. Is there any way we can

achieve the effects of inheritance in such a language?

The ensy part is the overloading. In a language such
as Ada or Algol 68 where the same subprogram name may he
reused as many times as needed provided it is applied to
operands of different types, there is no difficulty in defining
types such as TAPE, DISK, etc., each with its own version
of open. close etc.:

/19/
procedure open
(p: in out TAPE; descriptor: in INTEGER);

procedure close (p: in out DISK);
ete.

Provided the subprograms are distinguished by the
type of at least one operand, as is the case here, no ambi-
guity will arise. '

However this solution falls short of providing true
polymorphic entities as in languages with inheritance, where,
as discussed above, an operation will be carried out
differently depending on the particular form of an entity at
run-time (even thaugh it is possible, in a language like Eiffel,
to check at compile time that the operation will be defined
in all possible cases). The typical example is the call d.close,
which will be carried out differently after the assignments
d :=diand d ;= ta (where di is a DISK and ta is a TAPE).

The above form of Ada-like overloading does not pro-
vide anything like this remarkable possibility.

The only feature of Ada which could be used to emu-
late thiz property of object-oriented languages is in fact
shared with Pascal and has nothing to do with overloading
or genericity: it is the record with variant type. We could for
example define something like

120/
type DEVICE (unit: DEVICE_TYPE) is
record .
wreeee fields common to all device types
case unit is
when tape => fields for tape devices;
when disk => ficlds for disk devices}
....... other cases;
end case
end record

where DEVICE_TYPE is an enumeration type with elements
tape, disk etc. Then there would be a single version of each
the procedures on devices (open, close etc.), each containing
a case discrimination of the form

121/

case d'unit is

when tape => ... action for tape devices;
when disk => action for disk devices;
....... other cases;

end case

Such a solution, however, is unacceptable from a
software engineering point of view: it runs contrary to the
criteria of extendibility. rcusability and compatibility. Not
only does it scatter case discriminations (here on

OOPSLA '86 Proceedings 397

DEVICE_TYPE) all over the program: worse yet. it closes
the <et of possible choices: as opposed to the Eiflel class
DEVICE which can at any time be used as parent or a new
class, the Ada type DEVICE has a fixed list of variants,
corresponding to the elements of the fixed enumeration type
DEVICE_TYPE: to add an element to this list, one must
modify the declaration of DEVICE, invalidating any pro-
gram unit that relied on the initial version.

So the answer to the question posed at the beginning
of this scetion — can inheritance be simulated with generi-
city? —is no.

5 - SIMULATING GENERICITY WITH

INHERITANCE

We now address the reverse problem: can we achieve
the effect of Ada-style genericity in. an ohject-oriented
language with inheritance?

As before. we use Eiffel as our vehicle for expressing
object-oriented techniques. As explained in section 6 below,
Eiflel does provide a generic parameter mechanism (included
in the language as a result of the study reported here); but of
course. since the object of this section is to analyze how one
may simulate genericity with inheritance, we must tem-
porarily refrain from using the Eiffe] generic mechanism. The
reader should thus be warned that the solutions presented in
this section are substantially more complex than those
obtainable with full Eiffel. described in section 8.

The simulation turns out to be easier, or at Jeast less
artificial. for constrained genericity — a surprising result
since unconstrained genericily is conceptually simpler. Thus
we begin with the constrained case.

5.1 - Constrained genericity: overview

The idea is to associate with a constrained formal gen-
eric type parameter a class. This is a natural thing to do
since a constrained generic type may be viewed, together
with its constraining operations, as an abstract data type.
Consider for example the generic clauses in our two con-
strained examples, minimum and matrices:

122/
generic
type T is private;
with function "<=" (g, b: T
return BOOLEAN is <>;

123/
generic
type T is private;
zero: T; :
unity: T;
with function "+" (a, b: T} is <>;
with function "+ (q, b: T) is <>;

We may view the first as a definition of an abstract
data type. say COMPARABLE. characterized by a com-
parison operation "<=": similarly. the second specifies a

type, say RING . with features zero, unity, "+" and " #".

In an object-oriented language, these types may he
directly represented as classes, Such classes may not be
entirely specified since there is no genera) implementation for
"<=", "+" etc.; rather, they are to he used as ancestors of
actual classes corresponding to actual generic parameters.
Here the deferred feature mechanism of Eiffel is exactly what
is needed. Thus we define the following classes to represent

the generic parameters:

124/
class COMPARABLE teature
le (other: COMPARABLE): BOOLEAN
is deferred end
end -- class COMPARABLE
-- le corresponds to "<=";
-- there are no infix functions in Eiffel.

class RING feature
plus (other: RING) is deferred end;
times (other: RING) is deferred end;
zero: RING;
unsty: RING

end -- class RING

The comment made in section 2.2 about the lack of
semantic specification in Ada constrained genericity would
seem to apply here too: we have not specified any of the
required properties on le, plus ete. Eiffel does, however, per-
mit the specification of such properties in the form of
preconditions and postconditions on routines. Simple
examples of this facility will be given in section 5.4.

The reader will also have noted that plus and times
are defined here as procedures rather than functions; the con-
vention we will follow in the Eiflel examples is that
r.plus (r1)} is an instruction that performs a side-eflect on r,
adding to its value the value of r1, rather than an expression
returning the sum of these values {and similarly for times).
In contrast, the Ada operators “+" and "*" were functions.
The difference is not essential and we use procedures in Eiffe!
mainly for brevity. The examples may be changed into func-
tions, as in

plus (other: RING): RING is deferred end;

subject to the discussion that follows.

5.2 - Constrained genericity: subprograms

A subprogram such as minimum may now be written
by specifying its arguments to be of type COMPARABLE.
Based on the Ada pattern, the function would be declared as

125/
minimum (one: COMPARABLE; other: COMPARABLE):
COMPARABLE is
-~ Minimum of one and other
do end

In an object-oriented language, however, every routine
(Eiffe! term for subprogram) appears in a class and is relative
to the “‘current™ object of that class; thus it seems preferable

Seplember 1988

to include minimum in class COMPARABLE, argument one
becoming the implicit current object. The class becomes:

126/
class COMPARABLE feature

le (other: COMPARABLE): BOOLEAN is deferred end;

minimum (other: COMPARABLE): COMPARABLE is
-- Minimum of current element and other
do
if le (other) then Result ;= Current
else Result ;= other end
end -- minimum

end -- class COMPARABLE

(The predefined variable Result contains the result to be
returned by any function in which it appears; it is implicitly
declared of the function's result type, here COMPARABLE).
To compute the minimum of two elements, we must declare
them of some descendant type of COMPARABLE. For

example, we may declare:

121/
class INT_COMPARABLE inherit
COMPARABLE
feature

le (other: INT_COMPARABLE): BOOLEAN is
- Is current element less than or equal to other f
do Result ;= value <= other.value end

value: INTEGER;
- Value associated with current element

change_value (new: T) is
-- Make new the value associated
-- with current element
do value ;= new end;

end -. class INT_COMPARABLE

To find the minimum of two integers, we may now
apply function minimum, not to arguments of type integer,
but to arguments of type INT_.COMPARABLE, say icl and
ic2, as follows:

128/

ic8 := icl.minimum (ic8)

To use the generic le and minimum functions, we have
to renounce direct references to integers, using
INT_COMPARABLE entities instead; hence the need for
attribute value and routine change_value to access and
modify the associated integer values.

We would similarly introduce heirs of COMPARABLE,
say STR_COMPARABLE. REAL_COMPARABLE, and so
on. for each type for which a version of minimum is desired.

Of course, having to declare similar features value and
change_value for all descendants of COMPARABLE is
unpleasant. But by paying this relatively small price in
terms of ease of program writing — renouncing the direct use
of predefined types — we achieve the same effect as in a
language with genericity.

Septomber 1066

There is a hitch, however, if we are concerned about
static typing. We clearly want to disallow a call such as

129/

icd .minimum (c)

where ¢ is a COMPARABLE but not an
INT_COMPARABLE. Function le has indeed been redefined
to accept only INT_COMPARABLE arguments; the rules of
Eiffel permit such redefinition of an entity of a class in a des-
cendant of that class, if the new type is itself, as here. a des-
cendant of the original type. But minimum has not been
redefined; in fact this is the whole point of the game: to
make sure that minimum is a polymorphic feature, applica-
ble to all kinds of “comparable” objects. So, regrettably, ¢ is
in fact a legal argument in /29/.

To ensure type consistency we must redefine minimum
in INT_.COMPARABLE so that its arguments and result are
of type INT_COMPARABLE. The body of the routine does
not change: only its header has to be modified. The class
declaration may thus be rewritten as follows:

/30/
class INT_COMPARABLE inherit
COMPARABLE
rename minimum as general_minimum;
redefine minimum
feature

le (other: INT_COMPARABLE): BOOLEAN is
...... Asin 27/ ..;
minimum
(other: INT_COMPARABLE): INT.COMPARABLE
is
-- Minimum of current element and other
do
Result := general_minimum (other)
end; -- minimum

value: INTEGER;—~ As above

change_value (new: T) is-- As above
do value := new end;

end -- class INT_.COMPARABLE

We have used here the renaming mechanism of Eiffel:
the rename... subclause of the inherit... clause makes it
possible to access the features of the ancestor class (COM-
PARABLE) even though they are redefined in the descen-
dant. Eiffel prohibits overloading of names within a class, so
that renaming is necessary to allow use of both sets of
features in the class. (Another use of renaming is in multiple
inheritance, to remove name clashes when fetures are inher-
ited from more than one class).

What we have done is to redefine the header of
minimum, not its body, which is simply that of the original
version, accessible here under the name generalminimum.
This, apparently. takes care of the static typing conflict to
the expense of yet some more complication.

However, the careful reader will have noted that a
serious typing problem remains. The call to
general_minimum is correct with respect to its argument
other: since general_minimum (that is to say,

OOPSLA '88 Proceedings 399

COMPARABLEs version of minimum, as given in [26/)
expects COMPARABLE objects, an entity like other
declared of the descendant type INT_COMPARABLE is an
acceptable substitute under the assignment rule. But there is
a problem with the result of the function: general_minimum
returns 8 COMPARABLE whereas INT_COMPARABLE's
version of mintmum should return an INT_COMPARABLE.

Thus in the call mentioned in /28/ above, namely
1§ := icl.minimum (3c2)

1c9 should he an INT_COMPARABLE; the assignment is ille-
gal il the right-hand side returns just a COMPARABLE. In
fact, the permitted type combinations in assignments are the
inverse ones: the source should be of a descendant type from
the target.

With what we have seen so far there is not way to
resolve this issue other than by redefining mintmum com-
pletely — not only its header, but its body as well ~ so that
it will indecd return an INT_COMPARABLE. This of course
defeats the whole purpose of genericity: a similar redefinition
must be repeated in each descendant of COMPARABLE.
with all instances of minimum identical except for the type
declarations of arguments and results.

We shall only be able to provide a satisfactory solu-
tion to this problem by introducing declaration by association
in section 6.

5.3 - Constrained genericity: packages

The previous discussion transposes to packages. We
use a class to represent the matrix abstraction implemented
in Ada by the MATRICES package:

/31
class MATRIX feature
impl: ARRAY? [RING);

entry (1: INTEGER; j: INTEGER): RING is
- Value of the (4, ;) entry of the matrix
do Result == impl.entry (3, 3) end;

enter (i: INTEGER; j: INTEGER; v: RING) is
— Assign value v to entry (1, j) of the matrix
do impl.enter (4, 5, v) end;

plus (other: MATRIX) is
— Add other to current matrix
local t1: RING do

t = entry (3, 3);
t1.plus (other.entry (3, 7));
enter (1, 3, t1)

end end end; -- plus

times (other: MATRIX) is
-~ Multiply current matrix by other
local do ... end
end -- class MATRIX

Here ARRAY?2 [T} denotes a predefined Eiffel class
whose elements are two-dimensional arrays of type T. Array
types are treated in Eiffel as class types; the basic operations
on an clement a of type ARRAY2 are a.entry (s, j), which

400 OOPSLA ‘86 Procsedings

returns the 4, j entry of array a (that is to say, a [, j] in
standard Pascal notation), and a.enter (1, 3, v), which assigns
value v to this entry (that is to say, a [i, j] := w).
Corresponding operations are declared above for matrices.

We have left out some details (such as how the dimen-
sions of a matrix are set) but outlined the plus procedure,
exhibiting the object-oriented form of overloading: the inter-
nal call to plus is the operation on RING. not MATRIX.
Similarly, routines enter and entry are used in both their
ARRAY?2 and MATRIX versions.

To define the equivalent of the Ada generic package
instantiation (/12/)

package BOOL_MATRICES is
MATRICES (BOOLEAN, false, true, "or", "and”);

we must declare the “‘ring” corresponding to booleans:

132/
class BOOL_RING inherit
RING redefine zero, unity
freese z¢ro, unity feature
value: BOOLEAN;

change_value (b: BOOLEAN) is
- Assign value b to current element
do value == b end;

plus (other: BOOL_RING) is
-- Boolean addition: or
do change_value (value or other.value) end;

times (other: BOOL_RING) is
-- Boolean multiplication: and
do change_value (value and other.value) end;

zero is
- Zero element for boolean addition
do Result.Create; Result.change_value (false) end;

unity is
- Zero element for boolean multiplication
do Result.Create; Resuit.change_value (true) end
end -- class BOOL_RING

Note that zero and unity are redefined as functions
returning a value of type BOOL_RING. However these are
actually constant functions: the clause freese..., not seen
before, indicates that zero and unity are evaluated just once
and their values shared among all instances of the class.
This is how constants of class types may be introduced in
Eiffel.

How do we provide the equivalent to the Ada package
instantiation for boolean matrices recalled above? The same
reasoning that was applied to class COMPARABLE and
function mintmum prevents us from keeping MATRIX as it
is if type checking is a concern: we want to make sure that
an integer element, say, may not be entered into a boolean
matrix. To achieve this, we define an heir BOOL_MATRIX
of MATRIX, where routines entry, enter, plus and # are
redefined to act only on objects of type BOOL_RING rather
than any RING. As with minimum, only the headers of the
routines have to be changed, not their implementations; this
is achieved as follows, using again renaming to allow access
to redefined features of the parent class,

Seplember 1908

133/
class BOOL_MATRIX
inherit
MATRIX .
rename eniry as general_matriz_entry,
enter as general_matriz_enter,
plus as general_matriz_plus,
times as general_matriz_times;
redefine impl, entry, enter, plus, times

feature
impl: ARRAY® |BOOL_RING])

entry (i: INTEGER; j: INTEGER): BOOL_RING is
-- Value of the (1, 7) entry of the matrix
do Result ;= general_matriz_entry (s, j) end;

... and similarly for enter, plus and times ...
end -- class BOOL_MATRIX

The reader may note the same problem for the result
of function entry as previously discussed for minimum: this
result should be of type BOOL_RING, but
general_matriz_entry will only return a RING. With the
language features seen so far, all we can do is to redefine the
body of entry, making it a copy of the body of
general_matriz_entry rather than a call to this routine; then
the result will be of the right type. Note that the problem
only arises for functions, so the other routines of the class
are not aflected.

This problem notwithstanding, this construction
achieves with inheritance the effect of constrained genericity.
This result has been obtained at the price of a certain heavi-
ness in expression; note in particular that what has been
done for BOOL_MATRIX must be repeated for any descen-
dant of MATRIX corresponding to a generic instantiation,
eg. INT_MATRIX, REAL_MATRIX ete. In addition,
features value and change_value must be declared anew in
each descendant of the associated class RING. We shall see
in section 6 how such heaviness may be removed.

5.4 - Unconstrained genericity

The mechanism for simulating unconstrained generi-
city is the same: this case is simply seen as a special form of
constrained genericity, with an emipty set of “constraints,
Generic formal type parameters have heen interpreted as
abstract data types: when unconstrained, they will be seen as
abstract data types with no relevant operations. The tech-
nique works, but it suffers from the heaviness mentioned
ahove., becoming less tolerable here as the dummy types do
not correspond to any obviously relevant data abstraction.

Let us apply the previous technique to both our uncon-
strained examples, swap and stack, beginning with the Iatter.
We need a class, say STACKABLE, deseribing objects that
may be pushed onto and retrieved from a stack. Since this is
true of any objeet, this claxs has no property of its own
heyond its name:

/31/
class STACKABLE end

September 1886

We may now declare a class STACK, whose opera-
tions apply to STACKABLE objects:

/35/
class STACK feature
space: ARRAY |[STACKABLE);
indezx: INTEGER;
size: INTEGER;

empty is
-- Is the stack empty?
do Result := (index = 0) end;

push (z: STACKABLE) is
- Add z on top of the stack
require indez < size do
indez = indez+1;
space.enter (z)
end; -- push

top: STACKABLE is
-- Last element pushed
require not empty do
Result := space.entry (index) ,
end; -- pop

pop i
- Remove last clement pushed
require not empty do indez := indez — ! end;

Create (m: INTEGER) is
-- Create stack with space for m values
do space.Create (1, m); size := m end
end -- class STACK

The require... clauses illustrate how routine precondi-
tions (which must be satisfied by actual parameters upon
entry to a routine) are written in Eiffel. Posteonditions and
class invariants may also be expressed (in ensure... and
keep... clauses). This aspect of the language falls beyond the
scope of this discussion; see [13] for more details,

STACK relies on the predefined class ARRAY for
one-dimensional arrays, whose main procedures are entry.
enter and Create: the latter takes two arguments and allo-
cates the array with the values of these arguments as
bounds. The Create procedure for stacks takes just one
argument (the stack size).

To instantiate this definition for stacks of specific
types. we apply the same techniques as above: define descen-
dants of STACKABLE. such as

/36/
class INT_STACKABLE inherit STACKABLE feature
value: INTEGER;
change_value (n: INTEGER) is
-- Make n tlie value of the current element
do value := n end
end -- INT_STACKABLE

and similarly STR_STACKABLE . ete.

Here we run again into the typing problem evidenced
by minimum (/30/3 and BOOL_MATRIX (/33]). Stacks
declared simply of type STACK cannot be statically
guarnnteed to containr only objects of a certain class of

OOPSLA '88 Proceedings 401

“stackables”, say INT_STACKABLE; and we have the proh-
lem of the type of the result returned by function top. In
the following sequence

/31/ |
s: STACK; ins: INT_STACKABLE
8.Create (10);
ins.Create; ins.change_value (50);
s.push (ins);
ins := s.top

the last assignment has a left-hand side of type
INT_STACKABLE and a right-hand side of type STACK-
ABLE: this is typewise wrong even though the code seems
quite legitimate semantically (one pushes the value of a vari-
able and retrieves it immediately into the same variable).

For both these reasons, it is necessary to do as in the
previous examples, that is to say declare heirs to STACK,
such as INT_STACK, STR_STACK etc. Features of
STACK will be redefined in each of these classes, but only to
adapt the types of their arguments and, in the case of top, of
the result. Thus for example INT_STACK will contain
feature redefinitions such as

/38/
space: ARRAY [INT_STACKABLE);
push (z: INT_STACKABLE) is
do general_stack_push (z) end;

ete. (the reader may complete this example based on the
MATRIX case).

The other unconstrained example, procedure swap,
may be treated along the same lines; a class SWAPPABLE
will be introduced. The treatment is left to the reader.

6 - GENERICITY AND INHERITANCE IN EIFFEL

We may draw the following conclusions from the previous
discussion.

e Inheritance is the more powerful mechanism. There
is no way to provide a reasonable simulation with gen-
ericity.

¢ The equivalent of generic subprograms or packages
may be expressed in a language with inheritance, but
one does not avoid the need for certain spurious dupli-
cations of code. The extra verbosity is particularly
hard to justify in the case of unconstrained genericity,
for which the simulation mechanism is just as complex
as for the conceptually more difficult constrained case,

e Type checking introduces difficulties in the use of
inheritance to express generic objects.

To address these issues, Eiffel offers a limited form of
genericity and the notion of declaration by association. (The
specification language LM, associated with the M
specification method, [12]. relies on a similar tradeoff).

402 OOPSLA '86 Proceedings

6.1 - Simple genericity

Since unconstrained genericity is both the simpler case
and the one for which the pure inheritance solution is least
acceptable, it seems adequate to provide a specific mechan-
ism for this case, distinct from the inheritance mechanism.
Consequently, Eiffel classes may have unconstrained generic
parameters. A class may be defined as

class C[T1, TS, ..., Tn]

where the parameters represent arbitrary types (simple or
class). An actual use of the class will use actual type parame-
ters, as in

z: C|INTEGER, RING,, DEVICE)

We have in fact already encountered such paramcter-
ized classes: the basic classes ARRAY (section 5.4} and
ARRAY? (section 5.3) are naturally generic. It should also
be noted (although the present paper is about concepts
rather than implementation) that Eiffel compilation tech-
niques make it possible to generate a single object module
for a parameterized class, as opposed to Ada techniques
which treat generic packages as macros to be expanded anew
for each instantiation.

The examples of the previous sections provide obvious
cases where generic parameters are useful. Take for instance
COMPARABLE (/26/), which becomes

/39/
class COMPARABLE [T) feature

le (other: COMPARABLE [T)): BOOLEAN is
deferred

end;

minimum (other: COMPARABLE [T}):
COMPARABLE (1) is

« Asin [268/ ...;

value: T;

change_value (new: T) is do value := new end
end -- class COMPARABLE

Here we see an immediate and important benefil of
generic parameters: we can solve almost completely the prob-
lem of type checking by specifying that the arguments to le
and minimum and the local variable m are of type
COMPARABLE |T), for the same T as the class itself. Thus
we rid ourselves of the necessity to redefine, at least for-
mally, minimum for each descendant of COMPARABLE,
which plagued our previous attempts. The generic parame-
ter T also allows us to lift the declarations of features value
and change_value from the various descendants of COM-
PARABLE (see [27/ or [30/) to a single instance in COM-
PARABLE itself.

However we have not yet solved the problem of the
type of minimum's result, which is COMPARABLE|T] even
in a descendant; more on this helow.

To define INT_.COMPARABLE sll we have to write

now is:

Saplember 1996

/10/
class INT_COMPARABILE inherit
COMPARABLE |INTEGER|
feature
le (other: INT_COMPARABLE): BOOLEAN is
— Is current element less than or equal to other f
do Result ;= value <= other.value end
end -- class INT_.COMPARABLE

The other examples are treated similarly:

141/

class RING [T)] feature
plus (other: RING |T)) is deferred end;
times (other: RING [T)) is deferred end;
zero: RING |T);
unity: RING |T);
value: T;
change_value (new: T) is do value = new end

end -- class RING

142/
class MATRIX |T] feature
impl: ARRA Y [RING [T));

entry (i: INTEGER; j: INTEGER): RING (1] is
... As before ... (see /31/);

... and similarly for enter, plus and times ...
end -- class MATRIX

Note how the use of a generic parameter in two
related classes, RING and MATRIX, makes it possible to
ensure type consistency (all elements of a matrix will be of
tvpe RING |T| for the same T). As with COMPARABLE
(/39/). the declarations of features value and change_value
have been factored out: they now appear in class MATRIX
rather than being repeated in all its descendants.

In the unconstrained genericity case. the need for
dummy classes disappears; class STACKABLE and its heirs
INT_STACKABLE, STR_STACKABLE etc. are not needed
any more, since STACK may be rewritten as

/13/
class STACK |T) feature
space: ARRAY |T);
indez: INTEGER;
size: INTEGER;

...... The rest of the class as in /35/
...... except that T is used in lieu of STACKABLE

end -- class STACK

There is no more need for classes such as
INT_STACK, STRING_STACK etc.; simply use
STACK [INTEGER), STACK [STRING| and so on. The
typing problem for top disappears since the result of this
function is now simply of type T.

A remarkable degree of simplification has been
achieved. Auxiliary classes are not needed any more for
unconstrained genericity. However we do not introduce con-

Seplember 1966

strained genericity in the language: this feature would be

_ redundant with the inheritance mechanism. To provide the

equivalent of a constrained formal generic parameter. we
retain the technique introduced in section 5.1: declare a spe-
cial class whose features correspond to the constraints (that
is to say, the with subprograms in Ada terminology). and
declare any corresponding actual parameters as descendants
of this class. Providing the class with generic parameters
simplifies its use and partly solves the type checking problem.

6.2 - Declaration by association

Let us look more closely at the remaining part of the
type checking problem. Consider again class COMPARABLE
as defined last (/39/). Keeping in mind that COMPARABLE
is intended for use as an ancestor for more specific classes,
we do not really want other (in both functions), m and the
result of minimum to be of type COMPARABLE [T|: what
is required of these entities is to be of the type of the
“current” entity, whatever this may be in a descendant of
COMPARABLE. When this type changes, we want the other
entities to follow suit.

This possibility is achieved in Eiflel through the
mechanism of declaration by association. Let a class C con-
tain a declaration of the form

z:D

where D is a class type. We may then declare another entity
as

y: like z

Such a declaration means the following: the type of y
is the same as the type of z; if £ is redefined in a descendant
class of C as being of a class type D’, which must be a des-
cendant of D, then y will be considered to have been
redefined likewise. Note that this is a purely static mechan-
ism; it may be viewed as an abbreviation allowing the rede-
claration of just one from a group of related entities to
stand for the redeclaration of the whole group.

When the distinguished element of the group, z above.
is redeclared, it “‘drags™ along all elements declared like it.
We call it the anchor of the association. The anchor may
be the current entity, as in

y: like Current

This readily applies to the previous example:
144/
class COMPARABLE [T) feature - Contrast with /39/
le (other: like Current): BOOLEAN is deferred end;

minimum (other: like Current): like Current is
do ...see /26/ ... end;
value: T;

change_value (new: T) is do value := new end
end -- class COMPARABLE

Note how this device solves at once all the remaining
type checking problems: not only are le and minimum con-
strained to act, in all descendants of COMPARABLE, on

OOPSLA 86 Procesdings 403

homogeneous entities (comparing only integers with integers,
strings with strings ete.): it also ensures that the result of
minimum is of the right type, that of its arguments.

The same technique readily applies to the other cases.
For example, RING (see /41/) becomes:

145/

class RING [T] feature
plus (other: like Current) is deferred end;
times (other: like Current) is deferred end;
zero: like Current;
unity: like Current;
value: T;
change_value (new: T) is do value ;= new end

end -- class RING

In contrast with the STACK case, we do need here,
because of the deferred procedures, to explicitly declare the
descendants of RING corresponding to various implementa-
tions of plus and times: for example:

146/

class BOOL_RING inherit

RING [BOOLEAN,
redefine zero, unity

freese
zero, unity

feature
..... as in /32/

end -- class BOOL_RING

6.3 - Artificial anchors

For MATRIX, a small addition is necessary to ensure
that all entities of type RING [T|] are always redefined con-
sistently.

When a group of entities are redefined together by
association. one of the entities must serve as the anchor for
the association. In the final versions obtained above for
COMPARABLE and RING (/44/ and /45/), the current ele-
ment is the anchor.

In the MATRIX case. the entities to be redefined are
of a type different from the current class, namely RING. In
such a case, there is usually in the current class a feature of
the required type which can serve as anchor. For example,
- the definition of linked lists in the basic Eiffel library [13]
uses a class LINKED_LIST [T| for lists and a class
LINKABLE [T} for list cells. where a list cell contains a
value of type T and a reference to another list cell. The
implementation of a list contains a reference to the first cell
of the list: this reference. expressed by a feature
first_element. is used as anchor for redefinitions of other
LINKABLE entities of class LINKED_LIST in descendants
of LINKED_LIST (examples of such descendants are the
classes defining two-way linked lists and trees, both viewed
as special eases of one-way linked lists).

Class MATRIX, however, has no feature of type

RING : the reason is that all *‘ring™ elements are entered into
the matrix indirectly, as arguments to procedure entry.

404 OOPSLA '86 Proosedings

Thus we cannot avoid the need to introduce a dummy

feature of type RING to serve as anchor, as follows.

141/
class MATRIX [T| freese anchor feature

anchor: RING [T},
impl: ARRAY? (like anchor|;

entry (i: INTEGER; 5: INTEGER): like anchor
is ... As before ... (/31))...;

enter (i: INTEGER; j: INTEGER; v: like anchor)
is ... As before ...;

plus (other: like Current) is ... As before ...;

times (other: like Current) is ... As before ...;
end -- class MATRIX

(Listing anchor in the freese clause avoids the waste of run-
time space that would result from physically storing an
anchor within each object of the class). Here too specialized
classes must be declared for various generic instantiations of
MATRIX. However, the declarations are now trivial: all
that needs to be done is to redefine anchor. For example:

/48/
class BOOL_MATRIX inherit
MATRIX [BOOLEAN)| redefine anchor
feature
anchor; BOOL_RING
end -- class BOOL_MATRIX

Such a redeclaration closely models the corresponding
Ada package instantiation (/12/).

7 - CONCLUSION

Genericity and inheritance are two important tech-
niques towards the software quality goals mentioned at the
beginning of this article, We have tried to show which of
their features are equivalent, and which are complementary.

Providing a programming language with the full extent
of both inheritance and Ada-like genericity would, as we
think this discussion has shown, result in a redundant and
overly complex design; but including only inheritance would
make it too difficult for programmers to handle the simple
cases for which unconstrained genericity offers an elegant
expression mechanism, like in the stack example.

Thus we have put the borderline at unconstrained gen-
ericity. Eiffel classes may have unconstrained generic param-
eters; constrained generic parameters are treated through
inheritance.

Declaration by association completes this architecture
by allowing for completely static type checking, while retain-
ing the necessary flexibility.

We hope to have achieved in this design a good bal-
ance between the facilities offered by two important but very
different techniques for the implementation of extendible,
compatible and reusable software.

Seplember 1966

Acknowledgments

This paper benefited from comments by Vincent

Cazaia. The work reported was done in part as the author
was with the University of California, Santa Barbara.

References

1.

~

-3

10.

12

13.

Jean-Raymond Abrial, Stephen A. Schuman, and Ber-
trand Meyer, “A Specification Language,” in On the
Construction of Programs, ed. R. McNaughten and
R.C. McKeag, Cambridge University Press, 1980.

Didier Bert, “Manuel de Référence du Langage LPG,
Version 1.2, Rapport R-408, IFIAG, IMAG Institute
(Grenoble University), Grenoble, December 1983.

Graham Birtwistle, Ole-Johan Dahl, Bjorn Myrhaug,
and Kristen Nygaard, Simula Begin, Studentliteratur
and Auerbach Publishers, 1973.

Ronald J. Brachman, “What IS-A and isn't: An
Analysis of Taxonomic Links in Semantiec Networks,"
Computer (IEEE). vol. 18, no. 10, pp. 67-73, October
1983.

Rod M. Burstall and Joe A. Goguen, “An Informal
Introduction to Specifications using Clear,” in The
Correctness Problem in Computer Science, ed. R. S.
Boyer and J. S. Moore, pp. 185-213, Springer-Verlag,
New York, 1981.

Luca Cardelli and Peter Wegner, *“On understanding
Types., Data Abstraction and Polymorphism,” Com-
puting Surveys (lo appear).

Luca Cardelli, “Basic Polymorphic Typechecking,"
AT&T Bell Laboratories Computing Science Technical
Report. 1984, 1986. (Revised version, to appear).

Ole-Johan Dahl. Bjgrn Myrhaug, and Kristen Nygaard.,
(Simula) Common Base Language, Norsk Regnesentral
(Norwegian Computing Center), Oslo, February 1984.

K. Futatsugi, Joseph A. Goguen, Jean-Pierre Jouan-
naud. and José Messeguer, “Principles of OBJ2,” in
Proceedings of the 1985 ACM Sympossum on Principles
of Programming Languages, vol. 12, pp. 52-66, 1985.

Barbara H. Liskov, R. Atkinson, T. Bloom, E. Moss,
J.C. Schaffert, R. Scheifier, and Alan Snyder, CLU
Reference Manual, Springer-Verlag, Berlin-New York,
1981.

Bertrand Meyer, “Quelques concepts importants des
langages de programmation modernes et leur expres-
sion en Simula 67, Bulletin de la Direction des Etudes
et Recherches d’Electricité de France, Série C (Infor-
matigue), no. 1, pp. 89-150. Clamart (France), 1979.
Also in GROPLAN 9. AFCET, 1979

Bertrand Meyer, “M: A System Description Method,"
Technical Report TR('S85-15, University of California,

Santa Barbara., Computer Science Department, May
1985.

Bertrand Meyer. Eiffel: a Language for Software
Engincering, Technical Report TRC'S85-19, University
of California. Santa Barbara, Computer Science

September 1686

14.

15.

Department, November 1985.

Robin Milner, “A Theory of Type Polymorphism in
Programming,” Journal of Computer and System Sci-
ences, vol. 17, pp. 348-375, 1978.

Rishiyur. S. Nikhil, “Practical Polymorphism.” in
Functional Programming Languages and Computer
Architecture, Nancy (France), 16-19 September 1985,
Lecture Notes in Computer Science 201, ed. Jean-
Pierre Jouannaud, pp. 319-333, Springer-Verlag.
Berlin-New York, 1985.

Trademarks: Unix (AT&T); Ada (US DoD); Eiffel (Interactive
Software Engineering).

OOPSLA '86 Proceedings 405

