
The nature of programming is
changing. Most of the software engi-
neering literature still takes for
granted a world of individual projt?cts,
where the sole aim is to produce spe-
cific software systems in response to
particular requirements, little atten-
tion being paid to each system’s rela-
tionship to previous or subsequent
efforts. This implicit model seems
unlikely to allow drastic improve-
ments in software quality and pro-
ductivity

Such order-of-magnitude ad-
vances will require a process of in-
dustrialization, not unlike what
happened in those disciplines which
have been successful at establishing
a production process based on the
reuse of quality-standardized com-
ponents. This implies a shift to a
“new culture” [14] whose emphasis
is not on projects but instead on
components.

The need for such a shift was co-
gently expressed more than 20 years
ago by Doug McIlroy in his con-
tribution, entitledMass-ProducedSoft-
ware Components [lo], to the now-
famous first conference on software
engineering:

SoftLoarepmdwtion today appears in
the scale of industrialization some-
where below the more backward con-
struction industries. I think its proper
place is considerably higher, and
would like to inuestigate the pmspects

for mass-production techniques in
software. [...I

My thesis 6 that the so3ware industry
is weak&founded [in part because ofj
the absence of a software components
subindustry [...I A components in-
dust?y could be immense& success$d.

Although reuse has enjoyed mod-
est successes since this statement was
made, by all objective criteria
McIlroy’s prophecy has not been ful-
filled yet; many technical and non-
technical issues had to be addressed
before reuse could become a reality
on the scale he foresaw. (See [l] and
[20] for a survey of current work on
reuse.) One important development
was needed to make this possible: the
coming age of object-oriented tech-

nology, which provides the best
known basis for reusable software
construction. (That the founding
document of object-oriented meth-
ods, the initial description of Simula TOOLS
67, was roughly contemporary with FOR
Mcllroy’s paper tends to confirm a
somewhat pessimistic version of Red-
wine and Riddle’s contention [18]

THE
that “it takes on the order of 15 to 20 years NEW
to mature a technology to ihe point .&at it
can be popularized to the technical com- CULTURE:

-- -

BESIGN.~F
THE EIFFEL

munity at large.‘“) Much of the current
excitement about object-oriented

Bertrand Meyer

software construction derives from
the growing realization that the shift
is now technically possible.

This article presents the concerted
efforts which have been made to ad-
vance the cause of component-based
software development in the Eiffel
environment [12, 171 through the
construction of the Basic Eiffel
Libraries.

After a brief overview of the li-

braries, this article reviews the major
language techniques that have made
them possible (with more back-
ground about Eiffe:l being provided
by the sidebar entitled “Major Eiffel
Techniques”); it then discusses de-
sign issues for libraries of reusable
components, the use of inheritance
hierarchies, the indexing problem,
and planned developments.

The EiFiel Lltwaries
The standard Eiffel delivery cur-
rently includes sceven libraries:

l The Kernel Library includes
classes for basic: system needs: han-
dling arrays and strings; input and
output; exception handling; uni-
versal features; access to com-
mand-line arguments; arithmetic
conversions.

l The Support Library provides
classes for “browsing” (accessing
the properties and structure of Eif-
fel classes), persistent storage and
retrieval of objects, debugging and
interactive testmg of classes, access
to internal object structures,
pattern-matching in strings, math-
ematical operations, memory
management.

l The Data Structure Library con-
tains implementations of many
fundamental data structures and
algorithms: lists, trees, stacks,
queues, hash tables and numerous
others.

l The Lexical Library makes it pos-
sible to produce lexical analyzers
for regular languages.

l The Parsing Library offers facili-
ties for developing parsers and
compilers.

c The Winpack Library supports
the development of window-based
applications for character-oriented
(non-graphical) terminals.

l The Graphics Library allows pro-
grammers to write applications us-
ing windows, menus, mouse input
and geometric figures.

Together, these libraries currently
include 300 classes totaling about
5000 visible operations (features).
They are rapidly growing.

The libraries #discussed here only
cover the standard Eiffel libraries

developed by Interactive Software
Engineering. Third parties are devel-
oping other libraries, especially in
fields such as user interface toolkits
and databases.

Techniques
It suffices to consider the amount of
time that has elapsed since the pub-
lication of McIlroy’s article to realize
that achieving industrial reuse takes
more than wishful thinking. A solid
set of methods and techniques is
needed.

Providing the basis for a realiza-
tion of McIlroy’s dream was the ma-
jor design goal for Eiffel. The various
components of the language and en-
vironment resulted directly from our
first attempts at building general-
purpose libraries, and an analysis of
what was needed beyond the mech-
anisms of Simula and Ada.

The sidebar “Major Eiffel Tech-
niques” reviews the most important
ideas and techniques. This section
concentrates on some of the aspects
that most directly affect the contents
and style of the libraries.

Classes and clusiers
The unit of reuse is the class. This
seems to provide the right level of
granularity; in particular, an individ-
ual routine does not constitute a re-
usable module independently of the
class to which it belongs.

It is useful in practice to gather
classes into groups, which may be
called clusters and play a key role in
a suggested life-cycle model for
object-oriented design (see [lg] and
below). For the present discussion,
“cluster” is really a synonym for
“library”: for example we may talk
about the Kernel cluster, the Data
Structure cluster etc. The notion of
cluster also applies, however, in the
case of non-library classes.

In practice, the classes of a given
cluster are usually kept in the same
directory on a hierarchical fde system
such as Unix or MacOS. A further
criterion for clusters is that cycles in
the client relation between classes
should usually be constrained to oc-
curring within clusters rather than
between different clusters.

AsserMons
Perhaps the most immediately visible
aspect of the library classes is the
presence of elements of formal spec-
ification, called assertions, associ-
ated with each routine and class.

Three language constructs using
assertions are particularly relevant to
the construction and use of libraries:
preconditions, postconditions and in-
variants. As an example of the first
two, routine put-lefttsibling, which
replaces the sibling to the left of a tree
node, has the following form:

putGjLribbling (other: TREE [Tj)
is

--Make other the left sibling
--of current node

require
not k-root;
not 1efLsibling. Void

do
. ..Routine implementation

ensure
left-sib Ling = other

end--put-left-sibling

The require clause introduces the
precondition, which is the condition
under which a call is correct (here the
node must not be a root, and must
have a left sibling). The ensure clause
introduces the postcondition, which
characterizes the situation resulting
from a successful execution of the call
(here the new left sibling of the tree
passed as argument to the routine).

The same class includes an exam-
ple of the third major construct using
assertions, an invariant clause:

invariant
arity > = 0;
ideaf = (arity = 0);
. ..Many other invariant
properties...

Here a+ is the number of children
of a node. The second property indi-
cates that query ideaf (an attribute
or function) must return true if and
only if the node’s arig is 0. The invari-
ant expresses properties which must
be ensured on instance creation and
maintained by every exported
routine.

A hardware analogy is useful for
understanding why assertions are
essential to reusable libraries. Few

70

I I I I I I Ill I I I I 11111111111- ONlNC7ORlBN7ND DESIDN

Major Eiff el Techniques

T he Eiffel libraries make full use of the facilities
provided by the language and tools. This side-
bar reviews some of the basics of Eiffel pro-

gramming. More details may be found in [2] and [7].
The various components of the method were de-

signed as a whole: assertions condition documentation
tools, genericity complements inheritance, dynamic
binding is the natural associate of static typing, and so
on. It would be difficult to remove any of these elements
without impairing the consistency of the overall con-
struction.

Classes
The object-oriented approach to reusability begins with
the premise that practical reusable components should
be organized around objects (data structures) rather
than functions (action structures). Thisleads to the fun-
damental modular construct of object-oriented pro-
gramming, introduced by Simula [2], which is the
daea, a module built around a data abstraction. A class
is a model for a set of data structures (objects). Typical
examples of classes extracted from the Basic Eiffel
Libraries include:
l TREE, describing objects which are trees (or, equiv-

alently, tree nodes), from the Data Structure Library.
l MENU, describing objects which are pull-down

menus, from the Graphics Library.
l CONSTRUClJ describing objects which are com-

ponents of structured texts, from the Parsing Library.
Such a class is a descriptive program text specifying

the properties of run-time objects. An object conform-
ing to a class specification is said to be an instance of
the class. For example, an instance of class MEArUis an
individual pulldown menu, created during the execu-
tion of a software system. A system using a certain class
may, during its execution, create an arbitrary number
of instances of the class.

A class definition introduces a number of features
representing operations applicable to instances of the
class. Examples of features of class MENU are the
following (whose non-obvious names are explained in
the text):
l count, an integer, which for any instance of the class

indicates the number of its menu entries.
l item, which for a suitable integer i indicates the i-th

menu entry.
l put, which replaces a menu entry by another.

The first two examples are “query” features, which
merely return information about an object; the third is
a “command,” which may change the object. A query
with no arguments, such as count, may be implemented
as either:
l An attribute of the class, in which case each class in-

stance includes a field containing the corresponding
value.

l A function, represented by an algorithm for com-
puting the value for any given instance.
A query with arguments, such as item, must be rep-

resented by a function.

A command, such as put, is represented by a pro-
cedure. Procedures and functions constitute the rou-
tines of a class.

This technique of describing a set of run-time objects
(such as tree nodes, menus, construct specimens)
through the set of operations (the features) follows from
the theory of abstract data types, which suggests that
object5 should be known through applicable operation5
(and the properties of these operations, described
through assertions) rather than implementation
aspects.

A class is indeed not just a module but also a type in
the traditional programming language sense-
obtained here as an implementation of an abstract data
type. The identification of modules and types is central
to the object-oriented form of software architecture. In
Eiffel, this identification is complete: there is no other
form of module than the class, and all types (including
basic types such as INTEGER and the like) are defined
by classes.

This identification goes further than the idea of “pro-
gramming with abstract data types” which may be ap-
plied, for example, in Ada or Modula-2. A module in
one of these languages may be based on an abstract
data type, but the module and the type remain distinct
notions. In Eiffel, the module-the class-is also the
type. Apart from the conceptual simplicity that this fu-
sion of concepts confers to the method, its main advan-
tage is to open the road to inheritance, as discussed
below.

As a result of this summary, it may be noted that
“object-oriented” is a misnomer. Not that objects are
unimportant; in fact, the entire execution of any system
is devoted to creating object5 and applying features to
them. But the same is true, to a large extent, of a Pascal,
Ada or C program, even if the object5 in those cases are
called records or structures. What is really different
with Simula or Eiffel is the notion of class. Much con-
fusion would be avoided if the field were known by the
more accurate term class-oriented design and pro-
gramming.

Information Hiding
Various classes may use each other’s facilities. A class
which relies on another is said to be its client; the other
class is the supplier.

In the implementation of a class, some features will
play a purely internal role and should not be visible to
clients. The syntax of a class includes an export clause
which lists those features which are available to the
class’s clients. Any other feature is secret.

ASSWtiOllS
As explained in the text, a class and its routines may be
characterized by assertions, stating their precise
semantic properties.

The use of assertions is rooted in work on formal
specification and verification, beginning with the
original papers of Floyd and Hoare [3, S], although the
idea of supporting assertions in programming
languages dates back to Algol W [6] and may be found

CCYY”WICIITICW~CFT”EMMISeptember 199O/Vo1.33, No.9 71

I I I I 1

in more recent designs such as the Ada-based language
Anna 191.

The assertion sublanguage of Eiffel is not a full-
fledged formal specification language but is limited to
boolean expressions, with a few extensions. Purely ap-
plicative expressions are usually sufficient to cover the
most important semantic properties of routines and
classes; more advanced properties are captured by
functions.

Inheritance
Inheritance in Eiffel serves both as a module inclusion
facility and subtyping mechanism.

The relation on classes induced by inheritance may
be characterized as “is-plus-but-except”:
l “Is” since the instances of an heir class may also be

used as instances of a parent class. For example, an
instance of class FIXED-TREE (describing trees
where each node has a fixed number of children) may
be used wherever an instance of the parent class TREE
(describing trees in general) is expected.

l “Plus” since a.n heir may (and usually does) add new
features to those of its parent.

l “But” since an heir may change the implementation
of any feature or its signature (within the constraints
of the type system). This is the redefinition
mechanism. The specification of a redefined feature
must remain co:mpatible with that of the original by
including an equal or weaker precondition, and an
equal or stronger postcondition. (This means that the
redefined version is a subcontractor to the initial ver-
sion; both client and subcontractor are subject to the
terms of the original contract. The precondition rule
means that no additional constraint may be imposed
on the client; the postcondition rule, that the client
is entitled to a :result which is as good or better as
promised by the original contractor.)

l “Except” since an heir may decide not to export a
feature exported by a parent if it does not make sense
for its own clients. (The reverse, exporting a previ-
ously hidden feature, is also possible.)
This combination yields a highly flexible classifica-

tion mechanism. (It also makes static type checking less
trivial than it might appear at first.)

Inheritance in Eiffel is multiple: a class may have any
number of parents. This is necessary whenever a sim-
ple tree-structured hierarchy would not provide a
satisfactory classification. Many library classes use this
possibility. For example, class POPUPJVENU in the
Graphics Library inherits both from MENUand from
POPUP (describing “pop-up” objects).

Multiple inheritance is also commonly used to com-
bine a parent describing an abstract behavior (a
deferred class, see below) and one providing the im-
plementation. For example, LINKED~QUEUE inherits
from QUEUE and LINKED_LISlY

A corollary of multiple inheritance is repeated in-
heritance. whereby a class inherits from another,
directly or indirectly, more than once. A precise policy
based on the language’s renaming mechanism allows
the descendant: to select, for each repeatedly inherited

I I I I I

feature, whether it should be just one feature (sharing)
or one per inheritance path (duplicafion). This is par-
ticularly useful for obtaining several variants of a com-
mon notion, as with an iterator on trees which achieves
several traversal policies (see the sidebar entitled
“Classifying Data Structures.“)

Only two relations may exist between classes: in-
heritance and the client relationship. In particular,
there is no sharing of information through global
variables or equivalent mechanisms. This is fundamen-
tal to achieve the decentralized nature of component-
based software development.

Deferred Classes
A deferred class provides only a partial implementa-
tion of an abstract data type, or no implementation at
all. (Deferred classes are close to the Simula notion of
class with virtual procedures, and to the Smalltalk no-
tion of abstract class.)

A deferred class will have one or more deferred
routines, which have no implementation (the keyword
deferred is used in lieu of a do clause). Behavior may
still be specified, however, through assertions. Actual
implementations in descendants are bound by these
assertions (through the rules given above for routine
redefinition). An example is class QUEUE, from the
Data Structure Library, whose “flat” form (with inheri-
tance expanded) is shown in the figure below.

QUEUEis almost entirely deferred (implementation-
independent). Classes which are only partially defer-
red are also extremely useful, They describe a set of
components with common properties. This ability to
freeze some elements of behavior, while leaving others
open, is essential to software reuse where (in contrast,
perhaps, with what happens in hardware) reusable
components with an entirely fixed behavior are of lit-
tle practical scope. The ability to reuse must be com-
bined with the ability to extend and adapt.

As an example, the Graphics Library includes a class
FIGURE, which is fully deferred. Its heir
CLQSED+l?IGURE remains general enough to be also
deferred; but it is more specific and includes non-
deferred features such as setJilLstyle (choose a fill-
ing pattern for a closed figure).

Polymorphhn and Dynamic Binding
Inheritance, serving as the basis for the type system,
allows an entity (variable) to become attached at run-
time, to objects of more than one type. The basic type
rule allows assignments or routine calls of the form

x: = y
r(Y) for a formal argument x

if and only if the type of y is a descendant of the type
of x. This means that x can become attached to an
object of any descendant type. An entity such as x is
said to be polymorphic.

If the type used to declare an entity is called its static
type, and the type of the object associated with it at
some run-time instant is called its dynamic type, the
type rule expresses that the dynamic type must be a
descendant of the static type.

72 September 199ONo1.33, No.9/COYYUWIWTIOW~OFT”EICY

I I I I II I II I I I I II I llllllnl- ONJNCTONIENTED DESIGN

A Deferred Class. deferred class QUEUE [7’J export
count, empg, fug item, put, remooe,
wipe-out, nb-elements,
oldest, add

feature

count: INTEGER is
--Number of items in queue
deferred
end;--count

empp: BOOLEAN is
--Is queue empty?

deferred
end;--full

full: BOOLEAN is
--Is queue full?

deferred
end; --full

item: Tis
--Only accessible item

require
not-empty: not empp

deferred
end;--item

put (u: like item) is
--Put * in queue.

require
notfill: not full

deferred
ensure

not empy;
(old empiy) implies (item = v);
count = old count tl

end; --put

remove is
--Remove the accessible item.

require
not-empty: not empo

deferred
ensure

not-full: not full:
count =old count-l

endpremove

wipe-out is
--Remove all items.

deferred
ensure

empty
en&,--wipe-out

invariant
count > =0

end--class QUEUE

A key property associated with polymorphism is
dynamic binding, which ensures that if a feature with
more than one variant is called on a polymorphic en-
tity (for example in a call of the form x.f where f is
redefined in D to have an implementation different from
the default C implementation), then the appropriate
variant is selected on the basis of x’s dynamic type (that
is to say, the type of the object actually associated with
x), not its static type.

Static binding (the reverse choice) would be a grave
conceptual mistake: it would mean that the wrong ver-
sion of an operation could be applied to an object, for
example the C version of f to an object of type D. This
could result in inconsistent objects, since the Cversion
off is only constrained to preserve C’s invariant, not
D’s, which may be stronger. Once you start producing
inconsistent objects, you cannot guarantee any proper-
ty about your programs. (The only case in which static
binding is justified is when it yields the same result as
dynamic binding, that is to say, when f is not redefin-
ed in D. But then applying static binding becomes a
matter of optimization, which should be applied by the
compiler, and indeed is in the current Eiffel implemen-
tation.)

Dynamic binding is important from a client’s
perspective; it means that an application class that
manipulates polymorphic entities does not need to test
repeatedly for their dynamic types. For example, a class
that uses a tree t may include a call of the form

t.postorder
to perform a postorder traversal of the tree; even though
the details of the algorithm differ for various implemen-
tations of trees, the client need not discriminate ex-
plicitly between them. Similarly, a call of the form

w.display
will automatically select the appropriate display opera-
tion for a window w, even though various kinds of win-
dows will be displayed in different ways.

Flattened Forms
The use of inheritance raises a potential problem for de-
velopers who may want to deliver a class to a user
without necessarily delivering the entire inheritance
diagram that led to the class. This is also a documen-
tation problem: short does not know about inheritance
and will not provide useful information about the in-
herited features of a class.

These issues are solved by the notion of class flatten-
ing. The flattened form of a class is the text of the class
with the same features as the original, but with no in-
heritance clause. Features inherited directly or in-
directly are put in the flattened form at the same level
as the features declared locally. Of course, the flatten-
ing process takes renaming and redefinition into
account.

From a client’s perspective, there is no difference
between using a class and using its flattened form, with
the exception of polymorphism and dynamic binding.
(If C is a descendant of B and b is of type B, then the
assignment b : = c is valid for c of type C, but not if the
type of c is a class obtained by flattening C.)

COUY”WIC.TIOWSOFT”EAC1CYlSeptember 19901Vol.33, No.9 73

II I

Command flut may be used in conjunction with short
to produce a full interface documentation of a class,
with local and inherited features treated on an equal
footing. The result is called the “flat-short” version of
a class. Using ‘Unix-style “piping,” this can be obtain-
ed through the command

flut class_name 1 short
This technique is the one used to produce final

library documentation (as discussed in the text).

Dynamic bincltng is often confused with dynamic
typing.

Dynamic typing would mean having to wait until run-
time to determ.ine whether operations are applicable
to their arguments. In contrast, the Eiffel approach to
typing is static: whenever possible, the applicability of
fto x in x.fis determined statically, by examination of
the class text in which such a call appears. Static typ-
ing and dynamic binding are equally important for the
reliability of software systems based on reusable com-
ponents: the former means, for every call of the form
x.6 a static guarantee that there will be at least one ver-
sion of fappliaable to x; the former a static guarantee
that, if more than one version is in fact available, fire
right one (based on the type of the object attached to
x) will be used.

The presence of a statically-typed language and the
use of a type-checking compiler are considerable
assets in produciog correct systems. (The current Eif-
fel compiler m&es some cases of type mismatches [15).
They are, however, of little practical consequence and
work is proceeding to correct them.)

OeXIeridfy
Typing would be meaningless without the possibility of
defining generic classes. A generic class is one which
has one or more parameters representing types. This
is particularly useful for classes representing container
data structures, used to gather objects; most of the
classes of the Data Structure Library, covering sets,
lists, trees and the like, fall into that category.

A class with one generic parameter is declared
under the form

class C[Tj . . .
and used by clients in declarations of the form

x: C[AJ

where A is some type. For example, with a generic class
LIST [T], you may declare entities of types LXX!’
[SIGNAL], LIST [POPUPJdENU], LIST [LIST
[POPUPiWENU]] etc.

Combining hheritance and geuericiiy
Of particular interest is the combination of inheritance
and genericity. One of its applications is the possibili-
ty to define “polymorphic data structures:” with a
declaration of the form

a: LINKED-TABLE [C]

the type rules allow calls of the form a.put (x) for x not
just of type C but of any descendant type of C. This

8 I I I I I I

means that the corresponding lists may contain objects
of different types, subject to the consistency rules of the
inheritance-based typing mechanism. The figure below
illustrates this combination of inheritance and generici-
ty by showing how a class describing a specific data
structure, say linked tables of points, may be generaliz-
ed both horizontally (to linked tables of objects or other
types) and vertically (to more abstract data structures
such as sequential tables, or more specific ones such
as two-way linked tables).

Abstraction

INHERITANCE
TABLE~OF~P0~NT.S

0
SEQUENTIAL-TABLE-
OF-POINTS

GENERICITY

LINKED-TABLE-
OF-PLANES

b
UNKED-TABLE-
OF-ACCOUNTS

f

TWO-WAY-LINKED-
TABLE-OF-POINTS

An Example Depictlag tile
Coeblaatton of Inheritance
and Gereriritv.

Specialization

Another way to combine genericity and inheritance
is offered by the mechanism of constrained generici-
ty. This allows a generic parameter to be restricted to
descendants of a given class. For example, a VECTOR
class needing a generic parameter on which arithmetic
operations are available may be declared as

VECTOR [T -> NUMERIC]

meaning that acceptable actual generic parameters
must be descendants of the Kernel Library class
NUMERIC. This class, used as ancestor by the classes
describing standard arithmetic types (A?T, F.ATetc.)
has a short form beginning with

deferred class interface NUMERIC exported
features

infix ” + ” infix “2’

infix ,,* “,‘infix ‘/“, ;prefix ,\ + ‘:

prefix ‘I-”
feature specification

infix “+‘I (other: NUMERIC): NUMERIC
--Sum of current element and “other”

deferred

infix “-‘I (other: NUMERIC): NUMERIC
--Difference between current element and
“other’

deferred
. . . (etc.) . . .

I I I I 11111 I I I I 11111111111- ONlNCT.ONlNNTND DEBION

Any actual parameter corresponding to Tmust here be
a descendant of hV..C, meaning that it is equipped
with the appropriate operations. (Because there is no
restriction on multiple inheritance, any class that a pro-
grammer desires to use as actual generic parameter
may be made a descendant of NUMERIC if it was not
already one.)

This example also illustrates the use of “infix” and
“prefix” features, which will be called by clients, not
through the usual dot notation (as in v.plus (w)), but in
operator form (as in v + w).

Other Aspects
Other important facilities also play a role in building
and using quality libraries:
l Persistence: When a session terminates, not all ob-

jects should go away. The environment supports the
automatic storage of objects with all their dependents
(including cyclic structures), and their retrieval in
later sessions.

l Garbage collection: Writing serious object-oriented
applications, which typically need to manipulate
complex dynamic data structures, requires a good
garbage collector to reclaim space automatically for
unused objects. The language was designed to make
efficient garbage collection possible and the current
implementation supports an incremental, tunable
garbage collector.

l Exception handling: It is essential to offer program-
mers a way to recover from abnormal cases, or at least
to terminate execution gracefully when no other
recovery scheme is possible. One of the contributions
of Eiffel is a disciplined exception mechanism, built
on the contracting theory, which provides for both
recovery (resumption) and graceful termination. The
exceptions handled may be hardware signals or
malfunctions, violated assertions, software bugs, etc.

people would buy an amplifier
without at least three elements of
information:

l What range of input voltage is ac-
ceptable-the precondition.

l What the corresponding output
voltages will be-the postcon-
dition.

l What general conditions, such as
the temperature range, will be both
expected and maintained-the in-
variant.

Without such information, there
would be no way to use the amplifier
other than by resorting to internal
implementation information (such as
wiring diagrams).

The same applies in software. Al-

* Tools: Practical usage of the approach requires a
number of tools such as automatic recompilation after
a change, source-level debugging etc. The tools of
the environment run on top of a modem operating
system (such as Unix).

l Simplicity: A programming language should be easy
to learn and use, enabling client programmers to con-
centrate on putting library components to good use.
Eiffel’s design focuses on a small number of power-
ful constructs. In particular, it does not try to be “com-
patible” with older languages which would destroy its
conceptual integrity and simplicity.

l Openness: Refusal of compatibility at the language
level by no means precludes compatibility with
previously written software elements and openness to
other tools. Both of the latter goals are essential for
reuse. As a consequence, Eiffel supports both call-
out of utilities written in other languages, and call-in
(of Eiffel routines from those other languages). This
makes it possible to use the languages’ structuring
capabilities (classes, information hiding, multiple in-
heritance, genericity) as an encapsulating mecha-
nism for software whose actual “meat” is written in
other languages. For example, a relational database
system can be packaged in one or more classes. (We
have found that this approach to interfacing with
older languages, which keeps each world separate
and forces communication to occur through well-
defined bridges, permits more effective reuse and ex-
change than an approach which would, in a single
language, mix the object-oriented paradigm with in-
compatible ideas.)

l Cross-development: The implementation supports
generation of final code in other programming
languages (currently C). This complements the open-
ness techniques described above: one can develop
library components on a certain platform in Eiffel and
use them on a different platform in their C form.

though some reusability may be
achieved (as the Smalltalk example
shows) in a context where “reusers”
must peruse the source code of the
modules themselves, large-scale re-
use in the industrial sense seems to
require mechanisms for understand-
ing the purpose of reusable elements
based on their external, abstract
properties.

Assertions are not a control struc-
ture; in other words, they are not a
substitute for conditional instructions
(such as “if the node is a root
then...“). In the execution of a correct
system, no assertion should ever be
violated; a violated assertion is al-
ways the manifestation of an error in
the software-a bug.

As a consequence, assertions pro-
vide an excellent debugging tool; on
option, assertion checking may be
enabled at runtime, making it possi-
ble to catch many defects. It is also
possible to check preconditions only
(PRECONDITIONS compilation
option).

The Contract Theory
The presence of assertions illustrates
the underlying theory of software
construction, “programming by con-
tract” 1131, which plays an important
role in the design and use of libraries.

Reusing a software component,
rather than writing a new compo-
nent, is similar to contracting for a
job, rather than doing the job your-

CCUY”WlCITlCWSCFT”EACM/Seprember 199OiVo1.33, No.9 75

I I

self. In software contracts, as in hu- reusable components; the sheer bur-
man ones, both parties are entitled to den of dealing with all possible cases
some benefits and subject to some (those which make sense and those
obligations. Assertions are the con- which do not) would make compo-
tract document, which expressly nents far too complicated, decreasing
specifies each party’s obligations and the likelihood that they are correct,
benefits as follows: efficient-or just usable.

l The precondit.ion is an obligation
for the client and a benefit for the
supplier.

l The postcond:ition is a benefit for
the client and an obligation for the
supplier.

This is illustrated for the above
example in Table I.

The bottom-right box of Table I is
particularly important. It shows the
precondition as a protection for the
supplier-limiting the set of cases
that the supplier must be prepared to
handle. Without such limitations, it
would be difficult to write effective

This goes against much of the
conventional wisdom in software en-
gineering, which favors “defensive
programming”-the principle ac-
cording to which programs elements
should be as general as possible. For
example, a well-known text about
“abstraction and specification in pro-
gram development” [8] warns sternly
against partial routines (that is to say,
routines with preconditions other
than true) by stating (page 53) that:

Partial [routines] are not a5 safe as
total ones, since they leave it to the
[client] to sati@ the constraint in the

[precondition].

I I I

I I Client Provide node which is not a Make otherthe new left sibling.
root and has a left sibling.

I Supp’ier I Get tree updated so that other is
l:he current node’s left sibling.

NO need to care about roots, or
nodes which have no left sibhng.

Cluster 2

Cluster 1
b

time

FIGURE 1. The Cluster Model of the Software life Cycle.

I I I I

As the only argument in favor of
partial routines, the authors cite
efficiency.

Our experience with designing re-
usable software leads to a different
view. Although restricting the scope
of routines certainly helps improve
their efficiency, the main argument is
the very one used against them in the
above quotation: reliability. By tak-
ing a system approach to the con-
struction of reliable software, one
realizes that reliability is not obtained
by trying to make every software ele-
ment responsive to every kind of pos-
sible input, a futile pursuit which
usually results in elements that are
too complex-and hence in less reli-
ability, since in software complexity
breeds bugs. More conducive to the
production of reliable systems is an
approach which ensures that every
element is characterized by a precise
indication of its duties as well as its
rights.

The programmer of a client mod-
ule does not expect the supplier to
perform in every imaginable case; he
knows this is unrealistic. Much more
important to him is the precise defi-
nition of what constraints must be
satisfied by the client, and the knowl-
edge that this performance will be
guaranteed if the client abides by
those constraints.

This assurance that the precondi-
tion is suficient to guarantee correct
functioning-in other words, that the
contract has no hidden clauses-is
what makes it possible to write cor-
rect client modules. This appears to
be a more fruitful approach to soft-
ware reliability than an endless race
for more general supplier modules.

Software may have bugs, of
course, leading to contract violations.
This justifies the presence of a
general-purpose mechanism to mon-
itor satisfaction of assertions-
observance of contracts. This soft-
ware equivalent of the “Better
Business Bureau” is the run-time
assertion-checking mechanism. If
assertion monitoring is on, the result
of an assertion violation is to trigger
an exception (see the sidebar entitled
“Major Eiffel Techniques”).

I

76

I I I I I I I

Sottom-up Development

The preceding discussion also illus-
trates the precise role of assertions in
the general bottom-up strategy of
software development which library-
based object-oriented design natu-
rally implies.

A violated precondition is a bug in
the client (which has not observed
the consistency condition on calling
a routine); a violated postcondition is
a bug in the supplier (which has
been unable to produce the expected
result).

This has an important conse-
quence on the run-time checking of
assertions. Checking all assertions
(preconditions, postconditions, in-
variants) may imply significant
overhead. If, however, classes are
developed in clusters, as suggested
above, and the clusters are built in a
bottom-up order, According to the
“Cluster Model” of the software life
cycle (see [14] and Figure l), you will
release a cluster for general use as
part of a library only once it has been
thoroughly validated and you have
good confidence in its reliability. This
means that you may be prepared to
switch off the run-time monitoring of
its postconditions (and also invari-
ants). But the client modules (the
higher-level clusters) may not have
reached the same degree of reliabil-
ity yet and may still contain bugs,
which would manifest themselves as
violated preconditions. In such a case
it is useful to monitor preconditions
only, as obtained with the PRE-
CONDITIONS compilation option.

As a trivial but typical example, an
incorrect client class could call an ar-
ray operation with an out-of-bounds
index, violating the following routine
precondition in class ARRAY:

require
lower < =(i< =uppn

Precondition monitoring will catch
the error by triggering an exception.
Of course, the exception is raised in
the client: class ARRAY will not even
see the call.

Intericrce Documentation

One of the major problems confront-
ing the designers of reusable com-

I I I I I I I I 1111111m- OWECT-OUENTED DEBXDl

The Status
of Efffel

T he Eiffel language was
designed by the author
and his group at Inter-

active Software Engineering.
The basic language specifica-
tion can be found in “Eiffel: The
Language” (reference [llr]).

The language specification is
in the public domain and any-
one is welcome to write Eiffel
compilers, interpreters, tools or
specialized libraries, which will
of course remain the property
of their developers.

To ensure wide support and
accessibility, the original
designers and a number of
users have started the Interna-
tional Eiffel Consortlum.
Operational on August 31,
1990, the consortium will take
full control over the evolution of
the language, free from pro-
prietary concerns. Fundamen-
tal elements of the Basic
Libraries’ specification, as
described in this article, will
also be transferred to the con-
sortium. In addition, Interac-
tive Software Engineering will
relinguish the Eiffel trademark
to the consortium.

ponents is how to document them.
Beyond documentation of a general
explanatory nature on clusters and
classes, there is a need for very pre-
cise documentation which spells out
the way each class and feature may
be used by clients-the contracts.

A method which would handle this
second part ofthe documentation as
a product separate from the classes
themselves would face severe obsta-
cles. First, producing such detailed
documentation is a tedious process,
requiring as much attention as actual
programming but intellectually far
less rewarding. Then, perhaps even
more importantly, it is next to im-
possible to guarantee that the docu-
mentation will be updated when the
components evolve. Yet (as will be
discussed below) library evolution is
an inevitable phenomenon.

The solution used in Eiffel is to ex-
tract the documentation, as much as
possible, from the class texts. This is
made possible by the structure of the
language and in particular by the
presence of assertions. The short
form of a class (also called its abstract
form) shows the interface properties
which are relevant to client program-
mers-but no implementation de-
tails. This excludes any information
on non-exported features and, for ex-
ported features, includes only the
signature declarations (types of argu-
ments and result), the assertions and
header comments.

For example, the routine put-
l&sibling given above appears in
the short form of its class as

put-&-sibling (other: TREE [T])
--Make other the left sibling
--of current node

require
not is-root;
not leftsibling. Void

ensure
l&sibling =other

A short form of a complete class,
extracted from the Library Refer-
ence, is given in Figure 2. (This is in
fact a “flat-short” form, as explained
below.)

In the Eiffel environment, the
short form is produced automatically
from a class text by a command
called short. For an Ada or
Modula-2 programmer, this would
amount to having the “interface” or
“definition” part of a module pro-
duced automatically on demand by
a software tool rather than being
written and maintained by program-
mers. All standard documentation
on the Eiffel libraries in the library
reference book [16] is produced in
this way. Of course, chapters still
begin with general explanations,
corresponding to the first kind of doc-
umentation mentioned at the begin-
ning of this section.

Inheritance

It is not possible to manage a library,
with its potentially large number of
components, without a classification
scheme for these components. The
arguments made in the discussion of

77

I H I I I I I I I I I

documentation. apply even more
forcefully here: no classification can
be successful unless it is built into the
components themselves. This is
shown a contranro by the difficulty of
building satisfactory libraries in lan-
guages such as Ada, which do not in-
clude any classification mechanism.

In Eiffel, inheritance provides the
basic classification mechanism, and
one of the two reuse mechanisms, the
other being the Iclient relation (see the
sidebar entitled “Major Eiffel Tech-
niques”). Two main properties distin-
guish these mechanisms:

l Being a client means reusing the
specification. You access the fea-
tures of a class through its official
interface.

l Being an heir (or more generally a
descendant) means having access
to the implementation. You can ac-
cess all of the class properties and
redefine them as needed to adapt
them to a more specific context.

Design Issues
Producing and using the libraries has
taught us a number of lessons. This
section and the accompanying side-
bar discuss some of the principles
that seem to have been successful as
well as some of what we have learned
from our mistakes.

ClassIikatlon
The organization of the libraries is
not arbitrary In particular, the archi-
tecture of the Data Structure Library

--One-dimensiona.l arrays

class interface .Ah!RAY [T] exported features

item, put, lowtu, uppet; count resize, force, clear-all,

all-cleared, w{be-out, empv

feature specification

item (i: INTEGER): T

--Entry of index i Applicable only if i is
--between currently defined bounds.

require

index--large-enough: lower <= i;

index~small-enough: i <= upper

put (v. like item, i: INTEGER)

--Assign item u to i-th entry. Applicable only
--if i is between currently defined bounds.

require

index-large-enough; lower <= i;

index-small-enough: i <= upper

Create (mininak, maxindex: INTEGER)

--If minindex ,<= maxindex, allocate array with
--bounds brwar and upper; otherwise create empty
--array.

ensure

(not (upper < lower and count = 0)) implies

(upper > = lower and count = maxindex - minindex + I)

lower: INTEGER

--Minimum. current legal index.

upper: ZNTEGE R

--Maximum current legal index.

count: INTEGER

--Current available entries.

FIGURE 2. A Class Interface.

is the direct result of an ongoing
theoretical effort to provide a general
taxonomy of the fundamental data
structures of computer pro-
gramming.

The taxonomy uses several or-
thogonal criteria:

l Access method: Do clients access
elements through keys (as with ar-
rays or hash tables), on the basis of
the order of insertions (as with
stacks or queues), with respect to a
client-controlled cursor position (as
with lists and other “active data
structures”, as discussed below), or
through some other access
method?

l Traversing: Is the data structure
traversable? If so, what defines the

resize (minindex, maxindex: INTEGER)

--Rearrange array so that it can accommodate indices
--down to minindex and up to maxindex. DO not
--lose any previously entered item.

force (v: 7; I: INTEGER)

--Assign item u to i-th entry. Always
--applicable: resize the array if i falls out of
--currently defined bounds.

ensure
inserted: item (i) = v;

highhercount: count > =old count

clear411

--Reset all items to default values.

all-cleared: BOOLEAN

--Are all items set to default values?

wipe-out

--Empty the array: discard all items.
ensure

wiped-out: empty

empty: BOOLEAN

--Is array empty?

invariant

conristent__size: count =upper--lower f I;

nonnegativesize: count > = 0;

end interface--class ARRAY

78 September 199o/vo1.33, No.9/COYW”IIIeITIOWIOFTHEAeM

I I I I I I I

traversal order or orders?
l Storage: Does the representation

use a fixed storage structure, one
that is initially fixed but resizable,
an unbounded one?

Each of these criteria gives rise to
an inheritance hierarchy. Classes
describing specific structures-for
example, “linked tables,” with a key-
based access method, a linearly
traversable structure, and an un-
bounded representation-are ob-
tained by combining classes from all
three hierarchies, using multiple in-
heritance.

The three inheritance hierarchies
corresponding to the above criteria
are shown in the sidebar entitled
“Classifying Data Structure.” (They
are fully used in the version of the
Data Structure library to be released
at the end of 1990.)

Other criteria could also have been
used: for example, some structures
are read-only, others are read-write;
some are persistent (files), others only
exist for the duration of a session; and
so on. But this would have pushed the
granularity of the classification too
far. Any classification results from a
set of choices: deciding which criteria
are essential, and which are secon-
dary. The decisions we have made
are not the only possible ones; the
guiding principle has been to try to
get the simplest and most convincing
structures.

The taxonomy process has been
one of trial and error, and more work
remains to be done. This effort at a
multi-threaded classification of data
structures and the associated algo-
rithms-in other words, of some of
the fundamental tools of our disci-
pline-has been one of the most chal-
lenging and exciting aspects of the
library design.

Naming
An interesting issue is the choice of
names for class features.

Name choices illuminate the prob-
lems that library designers and users
face when libraries reach industrial
size. At that stage, the concern for
consistency and regularity takes over
the concern over the individual prop-
erties of each class and feature.

When you only have a few dozen
classes, you tend to select names
based on the precise functionality of
each feature. Standard names for
operations are also an immediate
influence.

The “container” classes of the
Data Structure Library (in other
words, classes describing various
ways of storing and accessing objects
such as arrays, trees, stacks and the
like) provide good examples. Some of
the classes in the original version of
the library had among their features
those shown in Table II.

A typical call, a.enter (i, XJ would
enter value x at index i in array a; the
call h.inrert (x, k) would enter value x
associated with key k in the hash-
table h; and so on.

These name choices reflected the
traditional terminology employed for
the corresponding data structures in
computer science textbooks. In other
words, the naming criterion was an
internal one, adapted to each
structure.

When the usage of the libraries
and its size started to grow, however,
we realized that it was preferable to
use more external criteria. All the
above container data structures have
a basic mechanism for inserting an
element, another for accessing an ele-
ment, yet another for removing an
element and so on. Because the over-
all goal of each of these operations is
the same regardless of the variant
chosen, it is preferable in the long
term to forget about traditional, spe-
cific terminology and to use consis-
tent names. As a result, a small set of
standard names was chosen; for ex-
ample, the names of the above exam-
ple are replaced by those of Table III.

Table IV shows some of the stand-
ardized names used throughout the
libraries.

After the initial shock of seeing a
STACK module without a push opera-
tion, the change appeared to be wel-
comed by users for the consistency
and regularity it brought.

At first sight the use of a single
name, such as item, for operations
which have a quite different practical
behavior might seem confusing for
client programmers. What is impor-

tant is the difference of signature and
specification. For example

l item for stacks takes no argument
and returns an element (the stack
top) chosen by the supplier.

l item for hash tables takes a string
argument chosen by the client and
returns the element associated with
the corresponding key in a hash
table.
These differences are expressed

clearly by the signature and specifica-
tion (assertions) as they appear in the
flat-short form of the class. A client
programmer will have to understand
them to use the classes effectively.
Having to learn different names
would bring no benefit to the client
programmer, but would only add to
the effort of understanding and re-
membering the interface. With the
new conventions, a client program-
mer can approach a new class and
recognize the feature names; this
helps him grasp quickly what each
feature is about and removes the
need to learn unfamiliar terminol-
ogy. This is confirmed by the experi-
ence of Smalltalk libraries, where the
recommended style also favors con-
sistency over specificity.

One exception to the generally
favorable response to the above name
changes was the use ofput for opera-
tions which appear to add an ele-
ment in some cases and merely
replace an element in others. This
caused some confusion. Further
analysis has led to the following finer-
grain characterization:

l A routine which replaces an ex-
isting element, associated with a
certain key k, with a new value v,
will be called replace. This applies
for example to arrays and hash
tables. The rough postcondition in
this case is ,

item (k) =v
l A routine which adds a new value

v will be called add. The rough
precondition in this case is that the
structure now includes one more
occurrence of v than before. Ex-
amples are lists or “dispenser”
structures (stacks, queues).

l There is still a need for a basic put
operation which simply ensures

COYYUNICITIONSOFT”LAC,CY/September 199O/Vd.33, No.9 19

I H I I I I I I I I

Classityling Data Structures
Data Structures are classified according to three
criteria: access method, traversal and storage.

Acceso Method
An essential property of “container” data structures is
the way elements are accessed. The following classifi-
cation captures some of the most important variants.
(The figure below illustrates the top of the hierarchy.)

The only two operations on “containers” are has, the
membership test; and fill, which fills a certain structure
with the elements of another. Procedure ffiLlis variusly
redefined at different levels of the hierarchy and pro-
vides a universal conversion mechanism

Containers may be “collections” or “tables.”
In a table, every element is stored with and

retrievable through a certain key. This covers hash
tables and “indexable” structures such as arrays. The
declaration of HASHTABLE begins with

deferred class HASH-TRBLE[T, KEY ->
HASHABLEj

using constrained genericity (see the sidebar entitled
“Major Eiffel Techniques”) to express that the type of the
key must be a descendant of class HASHABLE, which
has a function .hash delivering a hash value. An exam-
ple of such a d.escendant is class STRING.

In a collection, elements are retrieved through some
criterion other than a key. In a “set:’ the only significant

property regarding an element is whether or not it ap-
pears in the collection. For a “bag,” in contrast, the
number of times an element appears is significant. Most
of our bags are active data structures which have a no-
tion of current position or cursor; most operations are
then relative to the cursor position.

Examples of active data structures include
“dispensers,” where the client has no control over the
cursor: insertions and retrievals occur at positions
determined by the structure’s properties. Typical ex-
amples are stacks (last-in, first-out) and queues (first-
in, first-out).

Other data structures such as lists are “cursor data
structures,” where the client has explicit control over
the cursor (see the figure entitled “Active Data Struc-
ture with Cursor.“). For example, operations on a chain
(a general notion including non-circular lists as a
special case) include

position Current cursor position (integer)
forth Move cursor ahead one position
item Element at cursor position
before Is cursor at the left of the first element, if

any?
after Is cursor at the right of the first element,

if any?
COUrJf Number of elements in list

As the specification for before and after indicates,
the cursor is allowed to go one position off the right or

Classifiring Structures by their Aaess Metlod.

80

c5 LIST

left edge. Such properties are captured as invariant
clauses such as

0 <= position <= count +l;
not (before and &er);

More generally, invariants and other assertions are the
principal guide for making sure that the conventions
(regarding default initial states, borderline cases, com-
patibility between the various features) are sound, con-
sistent and easy to teach.

The notion of cursor as it exists for chains is
generalized in CURSOR-TREE to two-dimensional
cursors. Here the features also include the Boolean
queries above and below (to test whether the cursor has
been taken higher than the root or below a leaf), the
procedures up (to parent) and down (i) (toi-th child),
etc. Again, assertions play a key role in getting the con-
ventions right.

Traversal
Many data structures are traversable. The Data Struc-
ture Library includes a set of “iterator” classes which
define traversal mechanisms, allowing programmers to
avoid writing loops; instead, they define the actions to
be applied to every element. The top of the “traversable”

fktlve Data Structure with Cursor.

hierarchy is shown in the figure below.
As an interesting use of “repeated inheritance” (in-

heriting twice or more from the same parent), tree
iterators (inorder, preorder, postorder) are obtained by
inheriting repeatedly from the same basic iterator, with
a different redefinition of the basic stepping procedure
in each case.

Storage
The top of the “storage” hierarchy is shown in the figure
below. A “box” is finite or infinite (infinite structures
cannot be fully constructed, of course, but may be ap-
proximated using “lazy” techniques, and are also useful
to describe predefined concepts such as the set of in-
tegers); a finite box may be ‘bounded” or “unbounded.”
A bounded structure may be fixed or resizable. The
tendency in the library is to avoid fixed structures as
much as possible; built-in size limits are a plague of
traditional programming methods. In the libraries,
even arrays are resizable. (More precisely, the put
operation requires an index within the current bounds,
as specified by a precondition; but the force operation
will accept any index, and will resize the array if
needed.)

after

(cursor) positkW

classifying StrUcms by their Traversal Policy.

The Top of the “Storage” Hlerarcky.

CCYW”IIIC.TIOII~OFT”ElCY/Septembcr 199O/Vo1.33, No.9

I I I I I I

that its argument, v, is present in
the structure. In other words, the
visible postcondlition in this case is
bus (v). This specification is less
strong than for the other two oper-

-

ations; indeed, put will normally be
a synonym for either replace (for ar-
rays, etc.) or add (for stacks, etc.).
Having such a generally available
feature, with a well-understood

TasLE II: Sam@ Ortglnat Feature Names.

class

STACK

ARRAY

QUEUE

H-TABLE

:

Features

push POP

enter

add remove-oldest

insert delete

TABLE Ill: A More Unliorm Terminology.

-

Class Features

-

STACK Pot remove

-

ARRAY Put

-

QUEUE Put remove

-

H-TABLE Put remove

top

entry

oldest

value

item

item

item

item

-

TABLE IV: Some StanUard Feature Names.

-

item

count

has

Put

force

remove

wipe-out

empty

full

I3asic access operation.

Number of significant items in the structure.

13asic membership test: does a given item appear in the structure?

Basic operation to insert or replace an item.

Like put, but will alWayS succeed when it can. For example, if may
resize the structure if full.

Basic operation for removing an item.

Basic operation for removing all items.

Test for absence of any significant items. Should return the same
value as count = 0.

Test for lack of space for more items.

--

l I I I

semantics, is essential to enable
client programmers to grasp the
essentials of a new class quickly and
feel immediately at ease with it.

Note how the reasoning which led
to this solution required (as almost
always in such cases) a precise
analysis based on assertions, here
postconditions.

Further criteria must be applied to
the choice of names in a successful
library.

Names should be both simple
(which usually implies that they
should be short) and chosen accord-
ing to consistent conventions.

One consequence is that library
authors should resist the temptation
to over-qualify names (a typical
beginner’s mistake). For example a
procedure for handling an event in
class EVENT in a graphics system
should not be called handle-event or
event-handle but just handle. ’

This would not necessarily be true
in a less-typed language because of
ambiguities that might result if many
classes use the same simple names
such as handle, put, item, etc. Typing
averts these problems. When you see

e.handle (...)

the declared type of e immediately
tells you which version of handle is
meant (while leaving the desirable
ambiguity provided by dynamic
binding).

To facilitate quick recognition and
understanding of the role of each fea-
ture, the Eiffel libraries usually follow
uniform rules as to the syntactic cat-
egory of feature names:

l Names for procedures are verbs in
the imperative, as in put.

l Names for attributes or functions
of type other than Boolean are
nouns, as in item.

l Names of Boolean queries are ad-
jectives, as with full, or verbs sug-
gesting a question, as with &leaf:

Because English is the default lan-

I The fashion of using-in-word capitalization, as in
EventHandle, does not conform to normal English

usage and is frowned upon in the recommended
Eiffel style.

82 Seprembcr 199ONrr1.33, No.9/COklWUNICIIIONSOFT”EICN

I I I I I I I

guage for the libraries, these rules
cannot be absolute; we need addi-
tional conventions regarding the use
of words such as @n/Q, which may be
used both as an adjective and as a
verb.

Feature Obsolescence

Name changes such as the ones expe-
rienced when the library moved to
the new naming system, as describ-
ed above, are only a special case of
changes to the interface to a class. In-
ternal implementation changes do
not affect clients (the Eiffel automatic
recompilation mechanism in fact
guarantees that clients will not be re-
compiled in such a case); but of
course interface changes will affect
them.

This raises a key question, which
surprisingly does not seem to have
been addressed in the reuse litera-
ture: feature obsolescence.

Perfect reusable components are
not obtained at the first shot. Yet if
one is aiming at a full-fledged indus-
try of reusable software components,
perfection is what we should even-
tually strive for.

This raises the question of what
you do when you have produced a
first version of a reusable class, or
even a second and a third, and you
realize that you could have done bet-
ter. Two spirits are at odds:

l The Great Tempter of Perfec-
tionism exhorts: “Correct it here
and now before it is too late!”

l The Guardian Angel of the In-
stalled Base warns: “Think of the
current users!”

To try to placate both, the library
designer or maintainer needs a
mechanism to phase out obsolete fea-
tures progressively without impair-
ing the correct functioning of existing
client classes whose programmers
may not wish to “migrate” im-
mediately.

Eiffel includes a language mecha-
nism devised to support this process.
A routine may be declared as “obso-
lete.” For example, the new ARRAY
class still has a feature enter of the
form

enter (i: v v: T)
obsolete ” Use put (value, index)“’
is

do

Put (4 9
end--enter

Such a feature is normal in every
respect but two. It can be used by cli-
ents (if it is exported) and by descen-
dants, but such uses will trigger
compile-time warnings, listing the
message given after the obsolete key-
words. Furthermore, an obsolete fea-
ture does not appear in the short
form of the class.

Because they cease to be docu-
mented in the official reference, ob-
solete routines pose no immediate
threat to the simplicity of the class as
perceived by new users. This is dif-
ferent from what would occur ifboth
old and new features were merely
kept as synonyms.

More sophisticated effects could
have been devised for obsolete fea-
tures; for example, one may imagine
a mechanism which would on option
take care of updating client calls (al-
though this is not so trivial when the
new routine has different arguments
or, as in the above example, changes
the order of arguments). As it is,
however, the mechanism has played
a key role in allowing Eiffel library
developers to take advantage of bouts
of esprit de I’escalier without disturbing
existing clients too much. (Esprit de
l’escalier, or “wit of the staircase,”
is a great thought which unfortun-
ately is an afterthought, like a clever
reply that would have stunned all the
other dinner guests-if only it had
occurred to you before you started
walking down the stairs after the
party was over.)

Of course, if you uncover a serious
design mistake in the original version
of the class you should not leave it
around but just rewrite the class. In
this class, the first spirit (the Tempter)
wins handily. Feature obsolescence is
useful in the following cases:

1) You can think of a better name for
a routine.

2) You want to advise programmers
not to use the routine any more.

3) You can think of a better signature
or specification (assertions).

Situation 1 may occur as you are
doing an after-the-fact cleanup of
your library and realize that naming
conventions could be made more
consistent (as discussed above).

Situation 2 may arise when the
routine’s action is not needed any
more (as with a routine which per-
formed some initialization which you

later realize can be carried out auto-
matically on object creation).

Situation 3 may occur (among
other cases) when you realize that a
routine has too many arguments and
should be split into two or more rou-
tines. For example, you may have a
procedure adding a subwindow to a
window, under the form

w.add_subwindow (other-window,
horitontalLposition, vertical-position)

but then you realize that it would
have been better to omit the last two
arguments and have the subwindow
be initially positioned at the top left
corner of the parent window, and let
clients move it if necessary by using
a specific move procedure, which is
needed anyway.

Cases 1 and 3 often involve
changes small enough that it is
tempting to heed the Angel’s advice
and resist any change at all. But in
the long term this is dangerous. Here
the Angel is really a front man for the
hideous Devil of Eternal Compatibil-
ity with the Horrors of the Past,
whose nefarious influence is all too
visible in the computer industry.

Arguments ancl OptIons

The last example illustrates a general
guideline about choosing the proper
arguments for library routines.

In general, a routine should only
include among its arguments what
may be called “indispensable argu-
ments,” as opposed to “options.” An
option is recognized by the class’s
ability to set reasonable default val-
ues, as for horizontal-position and
vertical-position above. In contrast,
there is no reasonable default for
other-window, which should thus be
an indispensable argument.

A widely applicable guideline is to

CCIIM”IIICIT,CII~CFT”EACY/S~~~~~~~~ 199O/Vd.33, No.9 83

I I

avoid including clptions among the
arguments to a routine. Rather, the
creation procedures of the class
should set defaults for each option,
and there should be separate routines
to change the option’s values. (Some
of these issues were discussed, in the
context of much more primitive tech-
nology, in [ll].)

Obtaining the Proper
inheritance Structures
By reading theoretical discussions of
object-oriented techniques, it would
seem that one always gets the inheri-
tance structure-the classilication-
right from the start. The reality, how-
ever, is usually more painful.

Classification tends to be the result
of hard work as much as of immedi-
ate insight. This work may be called
generalization and is worth more
attention.*

CIass Abstrac:tlon

Object-oriented library design is a
quest for abstraction. Using inheri-
tance means that one writes classes
that are more general than what is
immediately needed for the problem
at hand. Deferrd classes are par-
ticularly useful here. Once you have
captured a general pattern through a
deferred class, you or others may pro-
duce specific variants by writing non-
deferred classes which implement the
parts of the pattern that had been left
open in the deferred class. Object-
oriented techniques ideally support
this remarkably elegant process of
working from tbe abstract to the
concrete, from the general to the
specific3

In practice, however, the scheme is
not always as smooth and intellec-
tually satisfying .as the theory would
have it. Even library developers tend
to produce classes which initially are
often too specific: particular imple-
mentations of a (certain abstraction,
rather than the abstraction itself. It is

2This section draws heavily on an earlier publica-
tion [12]

3Because of the common graphical representa-
tions for inheritance diagrams, this process is some-
times mistakenly viewed as “top-down.” It is in fact

a typically bottom-up process of particularizing
general-purpose tools.

I I I

hard to blame them: programmers
are inherently problem solvers. Few
will complain if they get the job done
first.

If reusable products are part of the
goal, however, the process cannot
stop there. When you realize that a
certain class is less general than it
could have been, you should use this
discovery as an opportunity to reor-
ganize the inheritance hierarchy.
There have been numerous examples
of this type of reorganization in the
evolution of the Eiffel Libraries:

l The Data Structure Library orig-
inally contained a TREE class,
which has proved powerful and
useful, serving as a basis for the
hierarchical windowing system of
the Graphics and Winpack li-
braries, for the data structures of
the Parsing library, and for the
abstract syntax tree of our Cipage
structural editor. But it was too
specific, describing just one imple-
mentation of trees rather than the
general concept. Recognition of
this situation led to a deferred class,
of which the original became an
heir.

l In the version of the library avail-
able at the time of this writing, fdes
and strings are still treated as spe-
cial classes, instead of inheriting
from more general “chain” or
“stream” classes (used for example
as ancestors to classes describing
lists). Here the taxonomy effort
mentioned above obviously did not
go far enough. After taking a closer
look, we came to the realization
that strings should be treated just
as sequences of characters, based
on a SEQUENCE Data Structure
Library class. As for text files, they
came out just as a specific variant
of strings, with only one clearly
distinctive property: their persis-
tence. The class hierarchy has been
both enriched and simplified as a
result.

The need for an a posteriori ab-
straction process was discussed in the
Smalltalk context by Johnson and
Foote4 [7].

The process is aided in the Eiffel
environment by a variant of the short

I I I I

class abstracter. The command

short -e class_name

will produce a deferred version of
class-name, with all implementation
details removed. This is usually a
good basis for obtaining a more
abstract class while keeping the inter-
face for clients.

ExtraCtIOn oi
CommonaIltles

A related activity arises from the a
posteriori realization that duplication
of efforts has led to similar classes be-
ing written by different people, or
even by the same person at different
times.

Inheritance is the ideal mecha-
nism for capturing commonalities
between similar components. If the
developers initially missed the com-
monalities, then it is always possible
to reconstruct the inheritance struc-
ture a posteriori.

As with the previous case, the
result is to produce more abstract
classes, often deferred, of which the
original classes become descendants.

As an example, both the Winpack
non-graphical windowing library
and the Graphics library use hierar-
chically structured windows, with
many concepts in common. The two
WINDOW classes are not, however,
part of the same inheritance hierar-
chy. This is clearly a mistake, which
is in the process of being corrected.
The result should yield a library
which supports the execution of the
same applications both on a graph-
ical terminal and, in somewhat
degraded mode, on a character-
oriented terminal, at the cost of a
minimal change to the client software
(such as a different call at initializa-
tion time).

’ Many of the design rules of that article are con-
firmed by our experience. One point of divergence
is its recommendation that inheritance hierarchies
be narrow and deep. Although it is always reward-

ing to obtain deep classifications, in some cases in-
heritance just serves to classify a potentially large
set of alternate cases, all at the same level. For ex-
ample, class EVENT in the graphical library has

many heirs describing various event types. The
same situation occurs in classifications of natural
objects such as plants or animals: sometimes the
categories are complex; at other times they are just

*“mt?rOUS.

84 September 1990/%1.33, No.9/CONYUNIWTIONSOCTNElCN

I I I I I I I II I I I I II I llllllnl- OBIECT-OBIENTED DESIGW

SwIte~lng to Reverse

What is common to the previous two
activities -abstraction, extraction of
common&ties-is that they depart
from the view of inheritance which is
usually suggested in the object-
oriented literature: the idea that the
bright designer will somehow obtain
the proper inheritance structure the
first time around.

It is always preferable, of course, to
get the inheritance right initially. But
it serves no useful purpose to pretend
that this will always be the case. Bet-
ter recognize that the process may in-
volve trial and error, as a result of our
yearning for the concrete, and of our
frequent failure to detect commonali-
ties early enough. It is best to be pre-
pared for the inevitable changes of

direction-switching to reverse, as it
were-in building the inheritance
structure. What counts is that in the
end we should get the useful and
elegant inheritance hierarchies that
condition effective object-oriented
reuse of components.

An important aspect of both ab-
straction and extraction is that they
normally do not affect the clients of

Up
(ENVIRONMENT)
EXCEPTlONS
EXPOSE-EVENT
EJXASS
E-INFO
FIGURE’
FIGURE-IMP
FILE
FILE-STAT
FIXED-LIST
FIXED-WEUE
(FIXED-STACK)
(FIXED-TREE)
(FlX-CIRCULAR)
FLOAT
FLOAT-CONV-
FOCUS-EVENT
FONT-CONST
FONT-SUPPORT
GEN-EVENT
GEN-FIGURE’
GEN-POINT
GRAPH-CONST
GRAPH-SHELL
GRAFM~WINDOW
GTEXT
GTEXT-IMP
HASHABLE’
HASHJNT
HERE
HI-LlTEJEM’
HTABLE
H-TABLE
INDECABLE’
INDIRECT
INPUT
(INSPECTOR)
INT
INTERNAL
(INT-BHTREE)
(INT-COMPAR)
(INT-STRING)
KEP-EVENT
LINKABLE
LINKED-LIST
(LINKED-OUEUE)
(LINKED-SET)
LINKED-STACK
(LINKED-TREE)
LIST’

Up I Down

Parents (shown) .

Heirs (none) ,

Clients (none)

Suppliers

All

Allributes

Routines .
Constants

Visibility .
Deferred

Renamed

Redefined

FIGURE 3. ABrowser Screen.

CCUY”IIICITICWCCF~“EACY/September 199O/Vol.33. No.9 85

I I I I I I I I I I

the classes being re:structured, since
the interface of a cla.ss will not change
if it is rewritten with a different an-
cestry. In Eiffel, clients will not even
be recompiled, since the automatic
(makefde-free) recompilation mech-
anism will recognize that an interface
has remained untouched and that the
clients are hence still valid as com-
piled before.

This observation highlights a
fundamental, although often mis-
understood, aspect of inheritance: in-
heritance is a supplier’s mechanism,
not a client’s mechanism; it does not
affect the interface. For the clients of
a class, what the class inherits from
is irrelevant. Such tools as the flat-
tener support this view by providing
inheritance-free versions of a class
when needed for the benefit of
clients.

As a result of the abstraction and
extraction activities, a general phe-
nomenon may be observed in organi-
zations (such as our own) that have
made a serious effort at producing,
using and mainmining libraries. This
phenomenon, also noted in [7], is a
progressive elevation of the level of
abstraction of the classes produced by
a group or organization committed
to object-oriented programming. As
one starts reusing previous classes,
cataloging them, archiving them into
libraries, the need for more general
versions becomes apparent. It does
not make sense to lament that these
versions were not produced right
from the start; what counts is the
constant improvement in quality and
generality that the process yields if
properly implemented.

SCoring and mccesrlna
Components
A common problem in the compo-
nent-based approach to software de-
velopment is determining how to
enable client programmers to find
out about available components and
retrieve them easily. Obviously, the
seriousness of this problem grows
with the number of components.

The concern over this issue, espe-
cially among managers, is exagger-
ated. Compared to the need for
reusable components, the libraries

that now exist are only a small begin-
ning. A manager or programmer
who hesitates about reuse for fear of
being overwhelmed by the potential
number of resulting components is
similar to someone who refuses a pay
raise for fear of not knowing what to
do with the money. The natural reac-
tion of a coworker (in such an un-
likely situation) is: “why don’t you
give me the money as well as the
troubles-I’ll handle both.” Simi-
larly, the first problem in introducing
the new culture is not to keep on top
of the components, but to build
enough high-quality components
initially.

Srowslng
This being understood, the retrieval
problem must of course be ad-
dressed. The first step was provided
by “browsers,” a concept introduced
by the Smalltalk environment [4].
The graphical Eiffel browser
(GOOD) makes it possible to obtain
information about all the classes in a
“universe” (set of directories). The
information is displayed in graphical
form (see Figure 3). By clicking on a
class bubble, one can request the
display of other bubbles and their
relation to the original class: parents,
ancestors, clients, suppliers etc. One
can also obtain information ab.out
the class, for example the list and
signatures of its features or the class
text in its various forms (full, short,
flat-short).

Beyond the browser stage, what is
required are veritable databases of
software components. Standard
database technology seems directly
applicable here to support archival
operations and queries.

The use of database tools is consis-
tent with a principle stated in the
above discussion of documentation:
all information about a class should
be deducible from the class text-as
opposed to information kept sepa-
rately, for which it would be difficult
to guarantee that consistency is
maintained as the class evolves.

#nclexlnm
This suggests a need for including in
class texts higher-level information

than is given just by the executable
class text. Examples of such infor-
mation include keywords, hardware
requirements, and more generally
elements of “domain analysis” [il. lb
cater to this need, Eiffel classes may
include an initial indexing clause,
which is part of the language. This is
a clause of the form

indexing
index: value, value, value,

where each subclause lists the values
associated with a given index. For ex-
ample, the ARRAY_LIST class from
the Data Structure Library has the
following clause:

indexing
names.’ list, sequence;
representation: array, linked;

A access: fixed, cursor;
size: resizable,
contents: generic

Once included in a class, such in-
formation may be used by various
query tools. Such tools are currently
being written for the Eiffel en-
vironment.

InUexfng GuIGellnes
The choice of indices and values is
free (values may be identifiers, inte-
gers etc.). This makes it possible to
define a precise style for a given li-
brary or installation. Such a stan-
dardized style has been defined for
and applied to the current libraries
[17]. It includes the following
guidelines:

l Keep the Indexing clauses short (2
to 5 entries is typical).

l Avoid repeating information which
is in the rest of the class text.

l Use a set of standardized indices
for properties that apply to many
structures, such as choice of repre-
sentation. (Examples of such in-
dices are given below.)

l For values, define a set of standard-
ized possibilities for the common
cases.

l Include positive information only.
For example, a representation index is
used to describe the choice of rep-
resentation (linked, array, . ..). A

88 September 199OWo1.33, No.9/COYYUWICITION~OFT”E~~Y

I I I I I I I

deferred class does not have a rep-
resentation. For such a class the
clause should not contain the entry
representation: none but simply no en-
try with the index representation. A
reasonable query language will
make it possible to use a query pair
of the form <representation,
NONE > .

The indices chosen for the library,
along with typical values, are the
following.

An entry of index names is used to
record the names under which the
corresponding data structures are
known. Although a class has only one
official name, the abstraction it im-
plements may be known under other
names. For example, a “list” is also
known as a “sequence.” Also, the of-
ficial name may need to be of an ab-
breviated form; in such a case, the
names entry may give the expanded
form of the abbreviation.

An entry of index access records the
mode of access of the data structures.
Standard values include:

l fixed (only one element is accessible
at any given time, as in a stack or
queue).

l fzfo (first-in-first-out policy).
l 123 (last-in-first-out).
l index (access by an integer index).
l key (access by a non-integer key).
l cursor (access through a client-

controlled cursor, as with the list
classes).

l membership (availability of a mem-
bership test).

l min, max (availability of operations
to access the minimum or the
maximum).

Obviously, more than one of these
values may be used.

An entry of index size indicates a
size limitation. Among common
values:

l fixed means the size of the structure
is fuced at Create time and cannot be
changed later (there are few such
cases in the library).

l resitable means that an initial size is
chosen but the structure may be
resized (possibly at some cost) if it
outgrows that size; for extendible
structures without size restrictions

I I I I I I I I I lllllllll- OBIECT-OBIEIVTED DElION

COYW”lllCdTlCWDOFT”EACY/September 199OPh1.33, No.9

Graphical
Conventions

T he class diagrams in this
article use some simple
elements of a formalism

under development by Tean-
Marc Nerson and the author for
graphical representations of
object-oriented system analysis
and design. Classes are repre-
sented by elliptic bubbles; an
asterisk indicates a deferred
class; single arrows indicate in-
heritance; double arrows in-
dicate the client relation. The
full formalism also includes
conventions (not used here) for
representing the class’s fea-
tures, its preconditions, post-
conditions and invariant.

this entry should not be present.

An entry of index representation in-
dicates a choice of representation.
Value array indicates representation
by contiguous, direct-access memory
areas. Value linked indicates a linked
structure.

An entry of index contents is appro-
priate for “container” data struc-
tures. It indicates the nature of the
contents. Possible values include ge-
neric (for generic classes), int, real, bool,
char (for classes representing con-
tainers of objects of basic types).

For example, the ARRAYLIST
class describes lists implemented
by one or more arrays, chained to
each other. Its indexing clause, as
given above, reflects the preceding
guidelines.

Eu0lutl0n OF the
Llbrarles
Much work remains to be done, of
course, on the Eiffel libraries. The
main areas of improvement are the
following:

l Improve the regularity and con-
sistency of the existing classes, ap-
plying methods of “abstraction”
and “extraction of commonality”
as described above.

l Build more archival and query
tools, based on indexing clauses

and related concepts.
l Add uniform mechanisms to the

classes, for example iterators on
every data structure.

l Add many classes used as examples
in the object-oriented literature (in
particular [12]) in the form of full-
fledged reusable components.

l Extend the Data Structure Library
to cover the essential part of the
classical textbooks on this subject.

l Extend the graphical and user-
interface classes.

l Develop more specialized libraries:
database access, numerical soft-
ware, etc.

The list of attractive new areas to
cover is considerable and beyond the
reach of any single group. We do
hope that a real “software compo-
nents subindustry” (using McIlroy’s
terms) will join us in producing the
high-quality components which are
needed to make the new culture a
reality.

Acknowledgments.
My greatest debt is to the people

who contributed classes orjust ideas
to the libraries. They are too numer-
ous to mention here but I am par-
ticularly grateful to Jean-Marc
Nerson, Reynald Bouy, FrCdCric
Deramat (who originated some of the
above material on classification in the
Data Structure library). Jean-Daniel
Dumas, Vincent Kraemer, Philippe
Lahire, Jean-FranGois Macary, John
Potter, Kim Rochat, Roxanne
Rochat and Philippe Stephan.

I also thank the other contributors
to this special issue, especially Ralph
Johnson, Rebecca Wirfs-Brock,
Brian Henderson-Sellers, Gul Agha
and the editors Uohn D. McGregor
and Tim Korson) for their many con-
structive comments. q
References

1. Biggerstaff, T.J. and Perlis, A.J. Eds. So@

ware Reusability. ACM Press, Addison-

Wesley, Reading, Mass., 1989.

2. Dahl, O.J., Myrhaug, B. and Nygaard,

K. (Simula) Common BmeLanpqe. Norsk

Regnesentral Norwegian Computing

Center, Oslo, February 1984.

3. Floyd, R.W. Assigning meanings to pro-

grams. In Pmeedinp of the Am&can

Mathematical Society Symposium in Applied

87

Mathematics, vol. 19 (1967), pp. 19-31.

4. Goldberg, A. and Robson, D. Small-

talk-80: The Langmgt and it-s Implementation.

Addison Wesley, Reading Mass., 1983.

5. Hoare, C.A.R. .4n axiomatic basis for

computer programming. Common. ACM,

1.2, 10 (October 1969), 576-580, 583.

6. Hoare, C.A.R. and Wirth, N. AContribu-

tion to the development ofALGOL. Com-

mm. ACM, 9, 6, Uune 1966), 413-431.

7. Johnson, E. and Foote, B. Designing

reusable classes.,j.Object-Oriented Prog. 1,

2 (June-July 198(9), 22-35.

8. Liskov, B. and G:uttag, J. Abstraction and

Specification in Progmm Development. MIT

Press, Cambridge, Mass., 1986.

9. Luckham, D. and van Henke, F.W. An

overview of Anna, a specification language

for Ada. IEEE S@m 2, 2 (March 1985),

9-22.

10. McIlroy, M.D. Mass-produced Software

Components. In SoJiware Engineering Con-

cepts and X!chniquts (I968 NATO Conference

on Software Enginwing), J.M. Buxton, P.

Naur and B. Randell, Eds., Van Nostrand

Reinhold, 1976, pp. 88-98.

11. Meyer, B. Principles of package design.

Commun. ACM, 2.5, 7 uuly 1982), 419-428.

12. Meyer, B. Object-OritntedSoftware Cm&u-

tion. Prentice-Hall 1988.

13. Meyer, B. Programming as contracting.

Tech. Rep. TR-El-12/CO, Interactive Soft-

ware Engineering, Santa Barbara, Calif,

1988.

14. Meyer, B. The new culture of software

development: Reflections on the practice

of object-oriented design. In 7OOLS ‘89

X%mology of Objat-Oriented Languages and

&!em, (Paris, November 1989), pp. 13-23.

15. Meyer, B. Static typing for Eiffel. Tech.

Rep. TR-EI-18/ST, Interactive Software

Engineering Inc., 1989.

16. Meyer, B. Eiffel: The libraries. Tech. Rep.

TR-EI-7/LI, Interactive Software Engi-

neering Inc., Santa Barbara, Calif., Octo-

ber 1986 (version 2.2, August 1989). To be

published by Prentice-Hall in 1990.

17. Meyer, B. Eiffel: Thelanguage. Tech. Rep.

TR-EI-17/RM, Interactive Software En-

gineering Inc., Santa Barbara, Calif, 1989.

To be published by Prentice-Hall in 1990.

18. Redwine, ST. and Riddle, W.E. Software

technology maturation. In Proceedings of the
Eighth International Conference on Software

Engimwing (London, August 1985), pp.

189-200.

19. Sada, F. and Gindre, C. A development

in Eiffel: Design and implementation of

a network simulator. J Object-oriented Pmg,

2, 2 (May 1989).

20. Tracz, W. Software Reuse: Emerging

Technology (Tutorial). Catalog number

EH0278-2, IEEE, 1988.

CR Categories and Subject Descriptors:

D.2.2 [Software Engineering]: Tools and

Techniques-Software Libraries; D.2.4 [Soft-

ware Engineering]: Program Verification-

Reliability; D.2.7 [Software Engineering]:

Distribution and Maintenance-Correctionr,

Docummtotion, Enhancement, Extmdibili&; D.2.9

[Software Engineering]: Management-L@

Cycle; D.2.10 [Software Engineering]: De-

sign-Methodologies; D.2.m [Software En-

gineering]: Miscellaneous-Reusability;

D.3.3 programming Languages]: Language

Constructs-Abstract Data Types; 1.3.4

[Computer Graphics]: Graphics Utilities-

Graphics Acckage, Software Support; K.6.3 [Man-

agement]: Software Management-Software

Maintenance

I I I

General Terms: Design, Documentation,

Languages, Management, Reliability,

Verification

Additional Key Words and Phrases: As-

sertion, class, cluster, cluster life-cycle model,

component, defensive programming, invari-

ant, library design, object-oriented design,

object-oriented programming, postcondition,

precondition, software obsolescence.

About the Author

BERTRAND MEYER is president of Inter-

active Software engineering (Santa Barbara)

and Socitti des Outils du Logiciel (Paris). His

research has covered several aspects of soft-

ware engineering, particularly design meth-

ods, reusability, programming Iangauges,

formal specification, interactive systems and

object-oriented techniques. He is chairman of

the TOOLS conference (Technology of

Object-Oriented Languages and Systems).

His two latest books are Object-OrimtedSojwan

Construction and Introduction to the Theory of Pro-

gramming Languages, both published by

Prentice-Hall. The next two, EzQX: The Lan-

guage and Ez$fel: The Libraries are scheduled to

be published at the end of 1990. Author’s

Present Address: Interactive Software Engi-

neering Inc., 270 Storke Road Suite 7, Goleta,

CA 93117; email: bertrand@eiffel.com.

0 1990 ACM 0001.0782/90/0900-0068 $1.50

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title ofthe
publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

21 sit Century Conference Highlights
The theme for the 1991 ACM Computer Science Conference is “Prepar-

1991 ACM Nineteenth Annual ing for the 21st Century”. It is appropriate to anticipate the needs-and

Computer Science Conference c3
opportunities of the 2191 Century now because of the long technology
transfer nioeline which connects basic commuter science research to the
day-to-dii activities of commerce and government operation. This
year’s programwill emphasize the coupling among the stages in the tech-
nology transfer pipeline by featuring three tracks which are:

l Future lbchnologies

l Research Results

l Prototype Systems and Case Studies

March 5-7,1991 Attendance Information Exhibits Information
ACM CSC’91 Barbara Corbett

San Antonio Convention Center
San Antonio, TX

11 West 42nd Street
New York, NY 10036
(212) 869-7440
Meetings@ACMVM.Bitnet

Robert T. Kenworthy, Inc.
866 United Nations Plaza
New York, NY 10017
(212) 752-0911

88

