
The nature of programming is 
changing. Most of the software engi- 
neering literature still takes for 
granted a world of individual projt?cts, 
where the sole aim is to produce spe- 
cific software systems in response to 
particular requirements, little atten- 
tion being paid to each system’s rela- 
tionship to previous or subsequent 
efforts. This implicit model seems 
unlikely to allow drastic improve- 
ments in software quality and pro- 
ductivity 

Such order-of-magnitude ad- 
vances will require a process of in- 
dustrialization, not unlike what 
happened in those disciplines which 
have been successful at establishing 
a production process based on the 
reuse of quality-standardized com- 
ponents. This implies a shift to a 
“new culture” [14] whose emphasis 
is not on projects but instead on 
components. 

The need for such a shift was co- 
gently expressed more than 20 years 
ago by Doug McIlroy in his con- 
tribution, entitledMass-ProducedSoft- 
ware Components [lo], to the now- 
famous first conference on software 
engineering: 

SoftLoarepmdwtion today appears in 
the scale of industrialization some- 
where below the more backward con- 
struction industries. I think its proper 
place is considerably higher, and 
would like to inuestigate the pmspects 

for mass-production techniques in 
software. [...I 

My thesis 6 that the so3ware industry 
is weak&founded [in part because ofj 
the absence of a software components 
subindustry [...I A components in- 
dust?y could be immense& success$d. 

Although reuse has enjoyed mod- 
est successes since this statement was 
made, by all objective criteria 
McIlroy’s prophecy has not been ful- 
filled yet; many technical and non- 
technical issues had to be addressed 
before reuse could become a reality 
on the scale he foresaw. (See [l] and 
[20] for a survey of current work on 
reuse.) One important development 
was needed to make this possible: the 
coming age of object-oriented tech- 



nology, which provides the best 
known basis for reusable software 
construction. (That the founding 
document of object-oriented meth- 
ods, the initial description of Simula TOOLS 
67, was roughly contemporary with FOR 
Mcllroy’s paper tends to confirm a 
somewhat pessimistic version of Red- 
wine and Riddle’s contention [18] 
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that “it takes on the order of 15 to 20 years NEW 
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software construction derives from 
the growing realization that the shift 
is now technically possible. 

This article presents the concerted 
efforts which have been made to ad- 
vance the cause of component-based 
software development in the Eiffel 
environment [12, 171 through the 
construction of the Basic Eiffel 
Libraries. 

After a brief overview of the li- 



braries, this article reviews the major 
language techniques that have made 
them possible (with more back- 
ground about Eiffe:l being provided 
by the sidebar entitled “Major Eiffel 
Techniques”); it then discusses de- 
sign issues for libraries of reusable 
components, the use of inheritance 
hierarchies, the indexing problem, 
and planned developments. 

The EiFiel Lltwaries 
The standard Eiffel delivery cur- 
rently includes sceven libraries: 

l The Kernel Library includes 
classes for basic: system needs: han- 
dling arrays and strings; input and 
output; exception handling; uni- 
versal features; access to com- 
mand-line arguments; arithmetic 
conversions. 

l The Support Library provides 
classes for “browsing” (accessing 
the properties and structure of Eif- 
fel classes), persistent storage and 
retrieval of objects, debugging and 
interactive testmg of classes, access 
to internal object structures, 
pattern-matching in strings, math- 
ematical operations, memory 
management. 

l The Data Structure Library con- 
tains implementations of many 
fundamental data structures and 
algorithms: lists, trees, stacks, 
queues, hash tables and numerous 
others. 

l The Lexical Library makes it pos- 
sible to produce lexical analyzers 
for regular languages. 

l The Parsing Library offers facili- 
ties for developing parsers and 
compilers. 

c The Winpack Library supports 
the development of window-based 
applications for character-oriented 
(non-graphical) terminals. 

l The Graphics Library allows pro- 
grammers to write applications us- 
ing windows, menus, mouse input 
and geometric figures. 

Together, these libraries currently 
include 300 classes totaling about 
5000 visible operations (features). 
They are rapidly growing. 

The libraries #discussed here only 
cover the standard Eiffel libraries 

developed by Interactive Software 
Engineering. Third parties are devel- 
oping other libraries, especially in 
fields such as user interface toolkits 
and databases. 

Techniques 
It suffices to consider the amount of 
time that has elapsed since the pub- 
lication of McIlroy’s article to realize 
that achieving industrial reuse takes 
more than wishful thinking. A solid 
set of methods and techniques is 
needed. 

Providing the basis for a realiza- 
tion of McIlroy’s dream was the ma- 
jor design goal for Eiffel. The various 
components of the language and en- 
vironment resulted directly from our 
first attempts at building general- 
purpose libraries, and an analysis of 
what was needed beyond the mech- 
anisms of Simula and Ada. 

The sidebar “Major Eiffel Tech- 
niques” reviews the most important 
ideas and techniques. This section 
concentrates on some of the aspects 
that most directly affect the contents 
and style of the libraries. 

Classes and clusiers 
The unit of reuse is the class. This 
seems to provide the right level of 
granularity; in particular, an individ- 
ual routine does not constitute a re- 
usable module independently of the 
class to which it belongs. 

It is useful in practice to gather 
classes into groups, which may be 
called clusters and play a key role in 
a suggested life-cycle model for 
object-oriented design (see [lg] and 
below). For the present discussion, 
“cluster” is really a synonym for 
“library”: for example we may talk 
about the Kernel cluster, the Data 
Structure cluster etc. The notion of 
cluster also applies, however, in the 
case of non-library classes. 

In practice, the classes of a given 
cluster are usually kept in the same 
directory on a hierarchical fde system 
such as Unix or MacOS. A further 
criterion for clusters is that cycles in 
the client relation between classes 
should usually be constrained to oc- 
curring within clusters rather than 
between different clusters. 

AsserMons 
Perhaps the most immediately visible 
aspect of the library classes is the 
presence of elements of formal spec- 
ification, called assertions, associ- 
ated with each routine and class. 

Three language constructs using 
assertions are particularly relevant to 
the construction and use of libraries: 
preconditions, postconditions and in- 
variants. As an example of the first 
two, routine put-lefttsibling, which 
replaces the sibling to the left of a tree 
node, has the following form: 

putGjLribbling (other: TREE [ Tj) 
is 

--Make other the left sibling 
--of current node 

require 
not k-root; 
not 1efLsibling. Void 

do 
. ..Routine implementation 

ensure 
left-sib Ling = other 

end--put-left-sibling 

The require clause introduces the 
precondition, which is the condition 
under which a call is correct (here the 
node must not be a root, and must 
have a left sibling). The ensure clause 
introduces the postcondition, which 
characterizes the situation resulting 
from a successful execution of the call 
(here the new left sibling of the tree 
passed as argument to the routine). 

The same class includes an exam- 
ple of the third major construct using 
assertions, an invariant clause: 

invariant 
arity > = 0; 
ideaf = (arity = 0); 
. ..Many other invariant 
properties... 

Here a+ is the number of children 
of a node. The second property indi- 
cates that query ideaf (an attribute 
or function) must return true if and 
only if the node’s arig is 0. The invari- 
ant expresses properties which must 
be ensured on instance creation and 
maintained by every exported 
routine. 

A hardware analogy is useful for 
understanding why assertions are 
essential to reusable libraries. Few 
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Major Eiff el Techniques 

T he Eiffel libraries make full use of the facilities 
provided by the language and tools. This side- 
bar reviews some of the basics of Eiffel pro- 

gramming. More details may be found in [2] and [7]. 
The various components of the method were de- 

signed as a whole: assertions condition documentation 
tools, genericity complements inheritance, dynamic 
binding is the natural associate of static typing, and so 
on. It would be difficult to remove any of these elements 
without impairing the consistency of the overall con- 
struction. 

Classes 
The object-oriented approach to reusability begins with 
the premise that practical reusable components should 
be organized around objects (data structures) rather 
than functions (action structures). Thisleads to the fun- 
damental modular construct of object-oriented pro- 
gramming, introduced by Simula [2], which is the 
daea, a module built around a data abstraction. A class 
is a model for a set of data structures (objects). Typical 
examples of classes extracted from the Basic Eiffel 
Libraries include: 
l TREE, describing objects which are trees (or, equiv- 

alently, tree nodes), from the Data Structure Library. 
l MENU, describing objects which are pull-down 

menus, from the Graphics Library. 
l CONSTRUClJ describing objects which are com- 

ponents of structured texts, from the Parsing Library. 
Such a class is a descriptive program text specifying 

the properties of run-time objects. An object conform- 
ing to a class specification is said to be an instance of 
the class. For example, an instance of class MEArUis an 
individual pulldown menu, created during the execu- 
tion of a software system. A system using a certain class 
may, during its execution, create an arbitrary number 
of instances of the class. 

A class definition introduces a number of features 
representing operations applicable to instances of the 
class. Examples of features of class MENU are the 
following (whose non-obvious names are explained in 
the text): 
l count, an integer, which for any instance of the class 

indicates the number of its menu entries. 
l item, which for a suitable integer i indicates the i-th 

menu entry. 
l put, which replaces a menu entry by another. 

The first two examples are “query” features, which 
merely return information about an object; the third is 
a “command,” which may change the object. A query 
with no arguments, such as count, may be implemented 
as either: 
l An attribute of the class, in which case each class in- 

stance includes a field containing the corresponding 
value. 

l A function, represented by an algorithm for com- 
puting the value for any given instance. 
A query with arguments, such as item, must be rep- 

resented by a function. 

A command, such as put, is represented by a pro- 
cedure. Procedures and functions constitute the rou- 
tines of a class. 

This technique of describing a set of run-time objects 
(such as tree nodes, menus, construct specimens) 
through the set of operations (the features) follows from 
the theory of abstract data types, which suggests that 
object5 should be known through applicable operation5 
(and the properties of these operations, described 
through assertions) rather than implementation 
aspects. 

A class is indeed not just a module but also a type in 
the traditional programming language sense- 
obtained here as an implementation of an abstract data 
type. The identification of modules and types is central 
to the object-oriented form of software architecture. In 
Eiffel, this identification is complete: there is no other 
form of module than the class, and all types (including 
basic types such as INTEGER and the like) are defined 
by classes. 

This identification goes further than the idea of “pro- 
gramming with abstract data types” which may be ap- 
plied, for example, in Ada or Modula-2. A module in 
one of these languages may be based on an abstract 
data type, but the module and the type remain distinct 
notions. In Eiffel, the module-the class-is also the 
type. Apart from the conceptual simplicity that this fu- 
sion of concepts confers to the method, its main advan- 
tage is to open the road to inheritance, as discussed 
below. 

As a result of this summary, it may be noted that 
“object-oriented” is a misnomer. Not that objects are 
unimportant; in fact, the entire execution of any system 
is devoted to creating object5 and applying features to 
them. But the same is true, to a large extent, of a Pascal, 
Ada or C program, even if the object5 in those cases are 
called records or structures. What is really different 
with Simula or Eiffel is the notion of class. Much con- 
fusion would be avoided if the field were known by the 
more accurate term class-oriented design and pro- 
gramming. 

Information Hiding 
Various classes may use each other’s facilities. A class 
which relies on another is said to be its client; the other 
class is the supplier. 

In the implementation of a class, some features will 
play a purely internal role and should not be visible to 
clients. The syntax of a class includes an export clause 
which lists those features which are available to the 
class’s clients. Any other feature is secret. 

ASSWtiOllS 
As explained in the text, a class and its routines may be 
characterized by assertions, stating their precise 
semantic properties. 

The use of assertions is rooted in work on formal 
specification and verification, beginning with the 
original papers of Floyd and Hoare [3, S], although the 
idea of supporting assertions in programming 
languages dates back to Algol W [6] and may be found 
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in more recent designs such as the Ada-based language 
Anna 191. 

The assertion sublanguage of Eiffel is not a full- 
fledged formal specification language but is limited to 
boolean expressions, with a few extensions. Purely ap- 
plicative expressions are usually sufficient to cover the 
most important semantic properties of routines and 
classes; more advanced properties are captured by 
functions. 

Inheritance 
Inheritance in Eiffel serves both as a module inclusion 
facility and subtyping mechanism. 

The relation on classes induced by inheritance may 
be characterized as “is-plus-but-except”: 
l “Is” since the instances of an heir class may also be 

used as instances of a parent class. For example, an 
instance of class FIXED-TREE (describing trees 
where each node has a fixed number of children) may 
be used wherever an instance of the parent class TREE 
(describing trees in general) is expected. 

l “Plus” since a.n heir may (and usually does) add new 
features to those of its parent. 

l “But” since an heir may change the implementation 
of any feature or its signature (within the constraints 
of the type system). This is the redefinition 
mechanism. The specification of a redefined feature 
must remain co:mpatible with that of the original by 
including an equal or weaker precondition, and an 
equal or stronger postcondition. (This means that the 
redefined version is a subcontractor to the initial ver- 
sion; both client and subcontractor are subject to the 
terms of the original contract. The precondition rule 
means that no additional constraint may be imposed 
on the client; the postcondition rule, that the client 
is entitled to a :result which is as good or better as 
promised by the original contractor.) 

l “Except” since an heir may decide not to export a 
feature exported by a parent if it does not make sense 
for its own clients. (The reverse, exporting a previ- 
ously hidden feature, is also possible.) 
This combination yields a highly flexible classifica- 

tion mechanism. (It also makes static type checking less 
trivial than it might appear at first.) 

Inheritance in Eiffel is multiple: a class may have any 
number of parents. This is necessary whenever a sim- 
ple tree-structured hierarchy would not provide a 
satisfactory classification. Many library classes use this 
possibility. For example, class POPUPJVENU in the 
Graphics Library inherits both from MENUand from 
POPUP (describing “pop-up” objects). 

Multiple inheritance is also commonly used to com- 
bine a parent describing an abstract behavior (a 
deferred class, see below) and one providing the im- 
plementation. For example, LINKED~QUEUE inherits 
from QUEUE and LINKED_LISlY 

A corollary of multiple inheritance is repeated in- 
heritance. whereby a class inherits from another, 
directly or indirectly, more than once. A precise policy 
based on the language’s renaming mechanism allows 
the descendant: to select, for each repeatedly inherited 
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feature, whether it should be just one feature (sharing) 
or one per inheritance path (duplicafion). This is par- 
ticularly useful for obtaining several variants of a com- 
mon notion, as with an iterator on trees which achieves 
several traversal policies (see the sidebar entitled 
“Classifying Data Structures.“) 

Only two relations may exist between classes: in- 
heritance and the client relationship. In particular, 
there is no sharing of information through global 
variables or equivalent mechanisms. This is fundamen- 
tal to achieve the decentralized nature of component- 
based software development. 

Deferred Classes 
A deferred class provides only a partial implementa- 
tion of an abstract data type, or no implementation at 
all. (Deferred classes are close to the Simula notion of 
class with virtual procedures, and to the Smalltalk no- 
tion of abstract class.) 

A deferred class will have one or more deferred 
routines, which have no implementation (the keyword 
deferred is used in lieu of a do clause). Behavior may 
still be specified, however, through assertions. Actual 
implementations in descendants are bound by these 
assertions (through the rules given above for routine 
redefinition). An example is class QUEUE, from the 
Data Structure Library, whose “flat” form (with inheri- 
tance expanded) is shown in the figure below. 

QUEUEis almost entirely deferred (implementation- 
independent). Classes which are only partially defer- 
red are also extremely useful, They describe a set of 
components with common properties. This ability to 
freeze some elements of behavior, while leaving others 
open, is essential to software reuse where (in contrast, 
perhaps, with what happens in hardware) reusable 
components with an entirely fixed behavior are of lit- 
tle practical scope. The ability to reuse must be com- 
bined with the ability to extend and adapt. 

As an example, the Graphics Library includes a class 
FIGURE, which is fully deferred. Its heir 
CLQSED+l?IGURE remains general enough to be also 
deferred; but it is more specific and includes non- 
deferred features such as setJilLstyle (choose a fill- 
ing pattern for a closed figure). 

Polymorphhn and Dynamic Binding 
Inheritance, serving as the basis for the type system, 
allows an entity (variable) to become attached at run- 
time, to objects of more than one type. The basic type 
rule allows assignments or routine calls of the form 

x: = y 
r(Y) for a formal argument x 

if and only if the type of y is a descendant of the type 
of x. This means that x can become attached to an 
object of any descendant type. An entity such as x is 
said to be polymorphic. 

If the type used to declare an entity is called its static 
type, and the type of the object associated with it at 
some run-time instant is called its dynamic type, the 
type rule expresses that the dynamic type must be a 
descendant of the static type. 
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A Deferred Class. deferred class QUEUE [7’J export 
count, empg, fug item, put, remooe, 
wipe-out, nb-elements, 
oldest, add 

feature 

count: INTEGER is 
--Number of items in queue 
deferred 
end;--count 

empp: BOOLEAN is 
--Is queue empty? 

deferred 
end;--full 

full: BOOLEAN is 
--Is queue full? 

deferred 
end; --full 

item: Tis 
--Only accessible item 

require 
not-empty: not empp 

deferred 
end;--item 

put (u: like item) is 
--Put * in queue. 

require 
notfill: not full 

deferred 
ensure 

not empy; 
(old empiy) implies (item = v); 
count = old count tl 

end; --put 

remove is 
--Remove the accessible item. 

require 
not-empty: not empo 

deferred 
ensure 

not-full: not full: 
count =old count-l 

endpremove 

wipe-out is 
--Remove all items. 

deferred 
ensure 

empty 
en&,--wipe-out 

invariant 
count > =0 

end--class QUEUE 

A key property associated with polymorphism is 
dynamic binding, which ensures that if a feature with 
more than one variant is called on a polymorphic en- 
tity (for example in a call of the form x.f where f is 
redefined in D to have an implementation different from 
the default C implementation), then the appropriate 
variant is selected on the basis of x’s dynamic type (that 
is to say, the type of the object actually associated with 
x), not its static type. 

Static binding (the reverse choice) would be a grave 
conceptual mistake: it would mean that the wrong ver- 
sion of an operation could be applied to an object, for 
example the C version of f to an object of type D. This 
could result in inconsistent objects, since the Cversion 
off is only constrained to preserve C’s invariant, not 
D’s, which may be stronger. Once you start producing 
inconsistent objects, you cannot guarantee any proper- 
ty about your programs. (The only case in which static 
binding is justified is when it yields the same result as 
dynamic binding, that is to say, when f is not redefin- 
ed in D. But then applying static binding becomes a 
matter of optimization, which should be applied by the 
compiler, and indeed is in the current Eiffel implemen- 
tation.) 

Dynamic binding is important from a client’s 
perspective; it means that an application class that 
manipulates polymorphic entities does not need to test 
repeatedly for their dynamic types. For example, a class 
that uses a tree t may include a call of the form 

t.postorder 
to perform a postorder traversal of the tree; even though 
the details of the algorithm differ for various implemen- 
tations of trees, the client need not discriminate ex- 
plicitly between them. Similarly, a call of the form 

w.display 
will automatically select the appropriate display opera- 
tion for a window w, even though various kinds of win- 
dows will be displayed in different ways. 

Flattened Forms 
The use of inheritance raises a potential problem for de- 
velopers who may want to deliver a class to a user 
without necessarily delivering the entire inheritance 
diagram that led to the class. This is also a documen- 
tation problem: short does not know about inheritance 
and will not provide useful information about the in- 
herited features of a class. 

These issues are solved by the notion of class flatten- 
ing. The flattened form of a class is the text of the class 
with the same features as the original, but with no in- 
heritance clause. Features inherited directly or in- 
directly are put in the flattened form at the same level 
as the features declared locally. Of course, the flatten- 
ing process takes renaming and redefinition into 
account. 

From a client’s perspective, there is no difference 
between using a class and using its flattened form, with 
the exception of polymorphism and dynamic binding. 
(If C is a descendant of B and b is of type B, then the 
assignment b : = c is valid for c of type C, but not if the 
type of c is a class obtained by flattening C.) 

COUY”WIC.TIOWSOFT”EAC1CYlSeptember 19901Vol.33, No.9 73 



II I 

Command flut may be used in conjunction with short 
to produce a full interface documentation of a class, 
with local and inherited features treated on an equal 
footing. The result is called the “flat-short” version of 
a class. Using ‘Unix-style “piping,” this can be obtain- 
ed through the command 

flut class_name 1 short 
This technique is the one used to produce final 

library documentation (as discussed in the text). 

Dynamic bincltng is often confused with dynamic 
typing. 

Dynamic typing would mean having to wait until run- 
time to determ.ine whether operations are applicable 
to their arguments. In contrast, the Eiffel approach to 
typing is static: whenever possible, the applicability of 
fto x in x.fis determined statically, by examination of 
the class text in which such a call appears. Static typ- 
ing and dynamic binding are equally important for the 
reliability of software systems based on reusable com- 
ponents: the former means, for every call of the form 
x.6 a static guarantee that there will be at least one ver- 
sion of fappliaable to x; the former a static guarantee 
that, if more than one version is in fact available, fire 
right one (based on the type of the object attached to 
x) will be used. 

The presence of a statically-typed language and the 
use of a type-checking compiler are considerable 
assets in produciog correct systems. (The current Eif- 
fel compiler m&es some cases of type mismatches [15). 
They are, however, of little practical consequence and 
work is proceeding to correct them.) 

OeXIeridfy 
Typing would be meaningless without the possibility of 
defining generic classes. A generic class is one which 
has one or more parameters representing types. This 
is particularly useful for classes representing container 
data structures, used to gather objects; most of the 
classes of the Data Structure Library, covering sets, 
lists, trees and the like, fall into that category. 

A class with one generic parameter is declared 
under the form 

class C[Tj . . . 
and used by clients in declarations of the form 

x: C[AJ 

where A is some type. For example, with a generic class 
LIST [T], you may declare entities of types LXX!’ 
[SIGNAL], LIST [POPUPJdENU], LIST [LIST 
[POPUPiWENU]] etc. 

Combining hheritance and geuericiiy 
Of particular interest is the combination of inheritance 
and genericity. One of its applications is the possibili- 
ty to define “polymorphic data structures:” with a 
declaration of the form 

a: LINKED-TABLE [C] 

the type rules allow calls of the form a.put (x) for x not 
just of type C but of any descendant type of C. This 
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means that the corresponding lists may contain objects 
of different types, subject to the consistency rules of the 
inheritance-based typing mechanism. The figure below 
illustrates this combination of inheritance and generici- 
ty by showing how a class describing a specific data 
structure, say linked tables of points, may be generaliz- 
ed both horizontally (to linked tables of objects or other 
types) and vertically (to more abstract data structures 
such as sequential tables, or more specific ones such 
as two-way linked tables). 

Abstraction 

INHERITANCE 
TABLE~OF~P0~NT.S 

0 
SEQUENTIAL-TABLE- 
OF-POINTS 

GENERICITY 

LINKED-TABLE- 
OF-PLANES 

b 
UNKED-TABLE- 
OF-ACCOUNTS 

f 

TWO-WAY-LINKED- 
TABLE-OF-POINTS 

An Example Depictlag tile 
Coeblaatton of Inheritance 
and Gereriritv. 

Specialization 

Another way to combine genericity and inheritance 
is offered by the mechanism of constrained generici- 
ty. This allows a generic parameter to be restricted to 
descendants of a given class. For example, a VECTOR 
class needing a generic parameter on which arithmetic 
operations are available may be declared as 

VECTOR [T -> NUMERIC] 

meaning that acceptable actual generic parameters 
must be descendants of the Kernel Library class 
NUMERIC. This class, used as ancestor by the classes 
describing standard arithmetic types (A?T, F.ATetc.) 
has a short form beginning with 

deferred class interface NUMERIC exported 
features 

infix ” + ” infix “2’ 

infix ,,\* “,‘infix ‘/“, ;prefix ,\ + ‘: 

prefix ‘I-” 
feature specification 

infix “+‘I (other: NUMERIC): NUMERIC 
--Sum of current element and “other” 

deferred 

infix “-‘I (other: NUMERIC): NUMERIC 
--Difference between current element and 
“other’ 

deferred 
. . . (etc.) . . . 
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Any actual parameter corresponding to Tmust here be 
a descendant of hV..C, meaning that it is equipped 
with the appropriate operations. (Because there is no 
restriction on multiple inheritance, any class that a pro- 
grammer desires to use as actual generic parameter 
may be made a descendant of NUMERIC if it was not 
already one.) 

This example also illustrates the use of “infix” and 
“prefix” features, which will be called by clients, not 
through the usual dot notation (as in v.plus (w)), but in 
operator form (as in v + w). 

Other Aspects 
Other important facilities also play a role in building 
and using quality libraries: 
l Persistence: When a session terminates, not all ob- 

jects should go away. The environment supports the 
automatic storage of objects with all their dependents 
(including cyclic structures), and their retrieval in 
later sessions. 

l Garbage collection: Writing serious object-oriented 
applications, which typically need to manipulate 
complex dynamic data structures, requires a good 
garbage collector to reclaim space automatically for 
unused objects. The language was designed to make 
efficient garbage collection possible and the current 
implementation supports an incremental, tunable 
garbage collector. 

l Exception handling: It is essential to offer program- 
mers a way to recover from abnormal cases, or at least 
to terminate execution gracefully when no other 
recovery scheme is possible. One of the contributions 
of Eiffel is a disciplined exception mechanism, built 
on the contracting theory, which provides for both 
recovery (resumption) and graceful termination. The 
exceptions handled may be hardware signals or 
malfunctions, violated assertions, software bugs, etc. 

people would buy an amplifier 
without at least three elements of 
information: 

l What range of input voltage is ac- 
ceptable-the precondition. 

l What the corresponding output 
voltages will be-the postcon- 
dition. 

l What general conditions, such as 
the temperature range, will be both 
expected and maintained-the in- 
variant. 

Without such information, there 
would be no way to use the amplifier 
other than by resorting to internal 
implementation information (such as 
wiring diagrams). 

The same applies in software. Al- 

* Tools: Practical usage of the approach requires a 
number of tools such as automatic recompilation after 
a change, source-level debugging etc. The tools of 
the environment run on top of a modem operating 
system (such as Unix). 

l Simplicity: A programming language should be easy 
to learn and use, enabling client programmers to con- 
centrate on putting library components to good use. 
Eiffel’s design focuses on a small number of power- 
ful constructs. In particular, it does not try to be “com- 
patible” with older languages which would destroy its 
conceptual integrity and simplicity. 

l Openness: Refusal of compatibility at the language 
level by no means precludes compatibility with 
previously written software elements and openness to 
other tools. Both of the latter goals are essential for 
reuse. As a consequence, Eiffel supports both call- 
out of utilities written in other languages, and call-in 
(of Eiffel routines from those other languages). This 
makes it possible to use the languages’ structuring 
capabilities (classes, information hiding, multiple in- 
heritance, genericity) as an encapsulating mecha- 
nism for software whose actual “meat” is written in 
other languages. For example, a relational database 
system can be packaged in one or more classes. (We 
have found that this approach to interfacing with 
older languages, which keeps each world separate 
and forces communication to occur through well- 
defined bridges, permits more effective reuse and ex- 
change than an approach which would, in a single 
language, mix the object-oriented paradigm with in- 
compatible ideas.) 

l Cross-development: The implementation supports 
generation of final code in other programming 
languages (currently C). This complements the open- 
ness techniques described above: one can develop 
library components on a certain platform in Eiffel and 
use them on a different platform in their C form. 

though some reusability may be 
achieved (as the Smalltalk example 
shows) in a context where “reusers” 
must peruse the source code of the 
modules themselves, large-scale re- 
use in the industrial sense seems to 
require mechanisms for understand- 
ing the purpose of reusable elements 
based on their external, abstract 
properties. 

Assertions are not a control struc- 
ture; in other words, they are not a 
substitute for conditional instructions 
(such as “if the node is a root 
then...“). In the execution of a correct 
system, no assertion should ever be 
violated; a violated assertion is al- 
ways the manifestation of an error in 
the software-a bug. 

As a consequence, assertions pro- 
vide an excellent debugging tool; on 
option, assertion checking may be 
enabled at runtime, making it possi- 
ble to catch many defects. It is also 
possible to check preconditions only 
(PRECONDITIONS compilation 
option). 

The Contract Theory 
The presence of assertions illustrates 
the underlying theory of software 
construction, “programming by con- 
tract” 1131, which plays an important 
role in the design and use of libraries. 

Reusing a software component, 
rather than writing a new compo- 
nent, is similar to contracting for a 
job, rather than doing the job your- 
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self. In software contracts, as in hu- reusable components; the sheer bur- 
man ones, both parties are entitled to den of dealing with all possible cases 
some benefits and subject to some (those which make sense and those 
obligations. Assertions are the con- which do not) would make compo- 
tract document, which expressly nents far too complicated, decreasing 
specifies each party’s obligations and the likelihood that they are correct, 
benefits as follows: efficient-or just usable. 

l The precondit.ion is an obligation 
for the client and a benefit for the 
supplier. 

l The postcond:ition is a benefit for 
the client and an obligation for the 
supplier. 

This is illustrated for the above 
example in Table I. 

The bottom-right box of Table I is 
particularly important. It shows the 
precondition as a protection for the 
supplier-limiting the set of cases 
that the supplier must be prepared to 
handle. Without such limitations, it 
would be difficult to write effective 

This goes against much of the 
conventional wisdom in software en- 
gineering, which favors “defensive 
programming”-the principle ac- 
cording to which programs elements 
should be as general as possible. For 
example, a well-known text about 
“abstraction and specification in pro- 
gram development” [8] warns sternly 
against partial routines (that is to say, 
routines with preconditions other 
than true) by stating (page 53) that: 

Partial [routines] are not a5 safe as 
total ones, since they leave it to the 
[client] to sati@ the constraint in the 

[precondition]. 

I I I 

I I Client Provide node which is not a Make otherthe new left sibling. 
root and has a left sibling. 

I Supp’ier I Get tree updated so that other is 
l:he current node’s left sibling. 

NO need to care about roots, or 
nodes which have no left sibhng. 

Cluster 2 

Cluster 1 
b 

time 

FIGURE 1. The Cluster Model of the Software life Cycle. 

I I I I 

As the only argument in favor of 
partial routines, the authors cite 
efficiency. 

Our experience with designing re- 
usable software leads to a different 
view. Although restricting the scope 
of routines certainly helps improve 
their efficiency, the main argument is 
the very one used against them in the 
above quotation: reliability. By tak- 
ing a system approach to the con- 
struction of reliable software, one 
realizes that reliability is not obtained 
by trying to make every software ele- 
ment responsive to every kind of pos- 
sible input, a futile pursuit which 
usually results in elements that are 
too complex-and hence in less reli- 
ability, since in software complexity 
breeds bugs. More conducive to the 
production of reliable systems is an 
approach which ensures that every 
element is characterized by a precise 
indication of its duties as well as its 
rights. 

The programmer of a client mod- 
ule does not expect the supplier to 
perform in every imaginable case; he 
knows this is unrealistic. Much more 
important to him is the precise defi- 
nition of what constraints must be 
satisfied by the client, and the knowl- 
edge that this performance will be 
guaranteed if the client abides by 
those constraints. 

This assurance that the precondi- 
tion is suficient to guarantee correct 
functioning-in other words, that the 
contract has no hidden clauses-is 
what makes it possible to write cor- 
rect client modules. This appears to 
be a more fruitful approach to soft- 
ware reliability than an endless race 
for more general supplier modules. 

Software may have bugs, of 
course, leading to contract violations. 
This justifies the presence of a 
general-purpose mechanism to mon- 
itor satisfaction of assertions- 
observance of contracts. This soft- 
ware equivalent of the “Better 
Business Bureau” is the run-time 
assertion-checking mechanism. If 
assertion monitoring is on, the result 
of an assertion violation is to trigger 
an exception (see the sidebar entitled 
“Major Eiffel Techniques”). 

I 

76 



I I I I I I I 

Sottom-up Development 

The preceding discussion also illus- 
trates the precise role of assertions in 
the general bottom-up strategy of 
software development which library- 
based object-oriented design natu- 
rally implies. 

A violated precondition is a bug in 
the client (which has not observed 
the consistency condition on calling 
a routine); a violated postcondition is 
a bug in the supplier (which has 
been unable to produce the expected 
result). 

This has an important conse- 
quence on the run-time checking of 
assertions. Checking all assertions 
(preconditions, postconditions, in- 
variants) may imply significant 
overhead. If, however, classes are 
developed in clusters, as suggested 
above, and the clusters are built in a 
bottom-up order, According to the 
“Cluster Model” of the software life 
cycle (see [14] and Figure l), you will 
release a cluster for general use as 
part of a library only once it has been 
thoroughly validated and you have 
good confidence in its reliability. This 
means that you may be prepared to 
switch off the run-time monitoring of 
its postconditions (and also invari- 
ants). But the client modules (the 
higher-level clusters) may not have 
reached the same degree of reliabil- 
ity yet and may still contain bugs, 
which would manifest themselves as 
violated preconditions. In such a case 
it is useful to monitor preconditions 
only, as obtained with the PRE- 
CONDITIONS compilation option. 

As a trivial but typical example, an 
incorrect client class could call an ar- 
ray operation with an out-of-bounds 
index, violating the following routine 
precondition in class ARRAY: 

require 
lower < =( i< =uppn 

Precondition monitoring will catch 
the error by triggering an exception. 
Of course, the exception is raised in 
the client: class ARRAY will not even 
see the call. 

Intericrce Documentation 

One of the major problems confront- 
ing the designers of reusable com- 
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The Status 
of Efffel 

T he Eiffel language was 
designed by the author 
and his group at Inter- 

active Software Engineering. 
The basic language specifica- 
tion can be found in “Eiffel: The 
Language” (reference [llr]). 

The language specification is 
in the public domain and any- 
one is welcome to write Eiffel 
compilers, interpreters, tools or 
specialized libraries, which will 
of course remain the property 
of their developers. 

To ensure wide support and 
accessibility, the original 
designers and a number of 
users have started the Interna- 
tional Eiffel Consortlum. 
Operational on August 31, 
1990, the consortium will take 
full control over the evolution of 
the language, free from pro- 
prietary concerns. Fundamen- 
tal elements of the Basic 
Libraries’ specification, as 
described in this article, will 
also be transferred to the con- 
sortium. In addition, Interac- 
tive Software Engineering will 
relinguish the Eiffel trademark 
to the consortium. 

ponents is how to document them. 
Beyond documentation of a general 
explanatory nature on clusters and 
classes, there is a need for very pre- 
cise documentation which spells out 
the way each class and feature may 
be used by clients-the contracts. 

A method which would handle this 
second part ofthe documentation as 
a product separate from the classes 
themselves would face severe obsta- 
cles. First, producing such detailed 
documentation is a tedious process, 
requiring as much attention as actual 
programming but intellectually far 
less rewarding. Then, perhaps even 
more importantly, it is next to im- 
possible to guarantee that the docu- 
mentation will be updated when the 
components evolve. Yet (as will be 
discussed below) library evolution is 
an inevitable phenomenon. 

The solution used in Eiffel is to ex- 
tract the documentation, as much as 
possible, from the class texts. This is 
made possible by the structure of the 
language and in particular by the 
presence of assertions. The short 
form of a class (also called its abstract 
form) shows the interface properties 
which are relevant to client program- 
mers-but no implementation de- 
tails. This excludes any information 
on non-exported features and, for ex- 
ported features, includes only the 
signature declarations (types of argu- 
ments and result), the assertions and 
header comments. 

For example, the routine put- 
l&sibling given above appears in 
the short form of its class as 

put-&-sibling (other: TREE [T]) 
--Make other the left sibling 
--of current node 

require 
not is-root; 
not leftsibling. Void 

ensure 
l&sibling =other 

A short form of a complete class, 
extracted from the Library Refer- 
ence, is given in Figure 2. (This is in 
fact a “flat-short” form, as explained 
below.) 

In the Eiffel environment, the 
short form is produced automatically 
from a class text by a command 
called short. For an Ada or 
Modula-2 programmer, this would 
amount to having the “interface” or 
“definition” part of a module pro- 
duced automatically on demand by 
a software tool rather than being 
written and maintained by program- 
mers. All standard documentation 
on the Eiffel libraries in the library 
reference book [16] is produced in 
this way. Of course, chapters still 
begin with general explanations, 
corresponding to the first kind of doc- 
umentation mentioned at the begin- 
ning of this section. 

Inheritance 

It is not possible to manage a library, 
with its potentially large number of 
components, without a classification 
scheme for these components. The 
arguments made in the discussion of 
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documentation. apply even more 
forcefully here: no classification can 
be successful unless it is built into the 
components themselves. This is 
shown a contranro by the difficulty of 
building satisfactory libraries in lan- 
guages such as Ada, which do not in- 
clude any classification mechanism. 

In Eiffel, inheritance provides the 
basic classification mechanism, and 
one of the two reuse mechanisms, the 
other being the Iclient relation (see the 
sidebar entitled “Major Eiffel Tech- 
niques”). Two main properties distin- 
guish these mechanisms: 

l Being a client means reusing the 
specification. You access the fea- 
tures of a class through its official 
interface. 

l Being an heir (or more generally a 
descendant) means having access 
to the implementation. You can ac- 
cess all of the class properties and 
redefine them as needed to adapt 
them to a more specific context. 

Design Issues 
Producing and using the libraries has 
taught us a number of lessons. This 
section and the accompanying side- 
bar discuss some of the principles 
that seem to have been successful as 
well as some of what we have learned 
from our mistakes. 

ClassIikatlon 
The organization of the libraries is 
not arbitrary In particular, the archi- 
tecture of the Data Structure Library 

--One-dimensiona.l arrays 

class interface .Ah!RAY [T] exported features 

item, put, lowtu, uppet; count resize, force, clear-all, 

all-cleared, w{be-out, empv 

feature specification 

item (i: INTEGER): T 

--Entry of index i Applicable only if i is 
--between currently defined bounds. 

require 

index--large-enough: lower <= i; 

index~small-enough: i <= upper 

put (v. like item, i: INTEGER) 

--Assign item u to i-th entry. Applicable only 
--if i is between currently defined bounds. 

require 

index-large-enough; lower <= i; 

index-small-enough: i <= upper 

Create (mininak, maxindex: INTEGER) 

--If minindex ,<= maxindex, allocate array with 
--bounds brwar and upper; otherwise create empty 
--array. 

ensure 

(not (upper < lower and count = 0)) implies 

(upper > = lower and count = maxindex - minindex + I) 

lower: INTEGER 

--Minimum. current legal index. 

upper: ZNTEGE R 

--Maximum current legal index. 

count: INTEGER 

--Current available entries. 

FIGURE 2. A Class Interface. 

is the direct result of an ongoing 
theoretical effort to provide a general 
taxonomy of the fundamental data 
structures of computer pro- 
gramming. 

The taxonomy uses several or- 
thogonal criteria: 

l Access method: Do clients access 
elements through keys (as with ar- 
rays or hash tables), on the basis of 
the order of insertions (as with 
stacks or queues), with respect to a 
client-controlled cursor position (as 
with lists and other “active data 
structures”, as discussed below), or 
through some other access 
method? 

l Traversing: Is the data structure 
traversable? If so, what defines the 

resize (minindex, maxindex: INTEGER) 

--Rearrange array so that it can accommodate indices 
--down to minindex and up to maxindex. DO not 
--lose any previously entered item. 

force (v: 7; I: INTEGER) 

--Assign item u to i-th entry. Always 
--applicable: resize the array if i falls out of 
--currently defined bounds. 

ensure 
inserted: item (i) = v; 

highhercount: count > =old count 

clear411 

--Reset all items to default values. 

all-cleared: BOOLEAN 

--Are all items set to default values? 

wipe-out 

--Empty the array: discard all items. 
ensure 

wiped-out: empty 

empty: BOOLEAN 

--Is array empty? 

invariant 

conristent__size: count =upper--lower f I; 

nonnegativesize: count > = 0; 

end interface--class ARRAY 
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traversal order or orders? 
l Storage: Does the representation 

use a fixed storage structure, one 
that is initially fixed but resizable, 
an unbounded one? 

Each of these criteria gives rise to 
an inheritance hierarchy. Classes 
describing specific structures-for 
example, “linked tables,” with a key- 
based access method, a linearly 
traversable structure, and an un- 
bounded representation-are ob- 
tained by combining classes from all 
three hierarchies, using multiple in- 
heritance. 

The three inheritance hierarchies 
corresponding to the above criteria 
are shown in the sidebar entitled 
“Classifying Data Structure.” (They 
are fully used in the version of the 
Data Structure library to be released 
at the end of 1990.) 

Other criteria could also have been 
used: for example, some structures 
are read-only, others are read-write; 
some are persistent (files), others only 
exist for the duration of a session; and 
so on. But this would have pushed the 
granularity of the classification too 
far. Any classification results from a 
set of choices: deciding which criteria 
are essential, and which are secon- 
dary. The decisions we have made 
are not the only possible ones; the 
guiding principle has been to try to 
get the simplest and most convincing 
structures. 

The taxonomy process has been 
one of trial and error, and more work 
remains to be done. This effort at a 
multi-threaded classification of data 
structures and the associated algo- 
rithms-in other words, of some of 
the fundamental tools of our disci- 
pline-has been one of the most chal- 
lenging and exciting aspects of the 
library design. 

Naming 
An interesting issue is the choice of 
names for class features. 

Name choices illuminate the prob- 
lems that library designers and users 
face when libraries reach industrial 
size. At that stage, the concern for 
consistency and regularity takes over 
the concern over the individual prop- 
erties of each class and feature. 

When you only have a few dozen 
classes, you tend to select names 
based on the precise functionality of 
each feature. Standard names for 
operations are also an immediate 
influence. 

The “container” classes of the 
Data Structure Library (in other 
words, classes describing various 
ways of storing and accessing objects 
such as arrays, trees, stacks and the 
like) provide good examples. Some of 
the classes in the original version of 
the library had among their features 
those shown in Table II. 

A typical call, a.enter (i, XJ would 
enter value x at index i in array a; the 
call h.inrert (x, k) would enter value x 
associated with key k in the hash- 
table h; and so on. 

These name choices reflected the 
traditional terminology employed for 
the corresponding data structures in 
computer science textbooks. In other 
words, the naming criterion was an 
internal one, adapted to each 
structure. 

When the usage of the libraries 
and its size started to grow, however, 
we realized that it was preferable to 
use more external criteria. All the 
above container data structures have 
a basic mechanism for inserting an 
element, another for accessing an ele- 
ment, yet another for removing an 
element and so on. Because the over- 
all goal of each of these operations is 
the same regardless of the variant 
chosen, it is preferable in the long 
term to forget about traditional, spe- 
cific terminology and to use consis- 
tent names. As a result, a small set of 
standard names was chosen; for ex- 
ample, the names of the above exam- 
ple are replaced by those of Table III. 

Table IV shows some of the stand- 
ardized names used throughout the 
libraries. 

After the initial shock of seeing a 
STACK module without a push opera- 
tion, the change appeared to be wel- 
comed by users for the consistency 
and regularity it brought. 

At first sight the use of a single 
name, such as item, for operations 
which have a quite different practical 
behavior might seem confusing for 
client programmers. What is impor- 

tant is the difference of signature and 
specification. For example 

l item for stacks takes no argument 
and returns an element (the stack 
top) chosen by the supplier. 

l item for hash tables takes a string 
argument chosen by the client and 
returns the element associated with 
the corresponding key in a hash 
table. 
These differences are expressed 

clearly by the signature and specifica- 
tion (assertions) as they appear in the 
flat-short form of the class. A client 
programmer will have to understand 
them to use the classes effectively. 
Having to learn different names 
would bring no benefit to the client 
programmer, but would only add to 
the effort of understanding and re- 
membering the interface. With the 
new conventions, a client program- 
mer can approach a new class and 
recognize the feature names; this 
helps him grasp quickly what each 
feature is about and removes the 
need to learn unfamiliar terminol- 
ogy. This is confirmed by the experi- 
ence of Smalltalk libraries, where the 
recommended style also favors con- 
sistency over specificity. 

One exception to the generally 
favorable response to the above name 
changes was the use ofput for opera- 
tions which appear to add an ele- 
ment in some cases and merely 
replace an element in others. This 
caused some confusion. Further 
analysis has led to the following finer- 
grain characterization: 

l A routine which replaces an ex- 
isting element, associated with a 
certain key k, with a new value v, 
will be called replace. This applies 
for example to arrays and hash 
tables. The rough postcondition in 
this case is , 

item (k) =v 
l A routine which adds a new value 

v will be called add. The rough 
precondition in this case is that the 
structure now includes one more 
occurrence of v than before. Ex- 
amples are lists or “dispenser” 
structures (stacks, queues). 

l There is still a need for a basic put 
operation which simply ensures 
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Classityling Data Structures 
Data Structures are classified according to three 
criteria: access method, traversal and storage. 

Acceso Method 
An essential property of “container” data structures is 
the way elements are accessed. The following classifi- 
cation captures some of the most important variants. 
(The figure below illustrates the top of the hierarchy.) 

The only two operations on “containers” are has, the 
membership test; and fill, which fills a certain structure 
with the elements of another. Procedure ffiLlis variusly 
redefined at different levels of the hierarchy and pro- 
vides a universal conversion mechanism 

Containers may be “collections” or “tables.” 
In a table, every element is stored with and 

retrievable through a certain key. This covers hash 
tables and “indexable” structures such as arrays. The 
declaration of HASHTABLE begins with 

deferred class HASH-TRBLE[T, KEY -> 
HASHABLEj 

using constrained genericity (see the sidebar entitled 
“Major Eiffel Techniques”) to express that the type of the 
key must be a descendant of class HASHABLE, which 
has a function .hash delivering a hash value. An exam- 
ple of such a d.escendant is class STRING. 

In a collection, elements are retrieved through some 
criterion other than a key. In a “set:’ the only significant 

property regarding an element is whether or not it ap- 
pears in the collection. For a “bag,” in contrast, the 
number of times an element appears is significant. Most 
of our bags are active data structures which have a no- 
tion of current position or cursor; most operations are 
then relative to the cursor position. 

Examples of active data structures include 
“dispensers,” where the client has no control over the 
cursor: insertions and retrievals occur at positions 
determined by the structure’s properties. Typical ex- 
amples are stacks (last-in, first-out) and queues (first- 
in, first-out). 

Other data structures such as lists are “cursor data 
structures,” where the client has explicit control over 
the cursor (see the figure entitled “Active Data Struc- 
ture with Cursor.“). For example, operations on a chain 
(a general notion including non-circular lists as a 
special case) include 

position Current cursor position (integer) 
forth Move cursor ahead one position 
item Element at cursor position 
before Is cursor at the left of the first element, if 

any? 
after Is cursor at the right of the first element, 

if any? 
COUrJf Number of elements in list 

As the specification for before and after indicates, 
the cursor is allowed to go one position off the right or 

Classifiring Structures by their Aaess Metlod. 
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left edge. Such properties are captured as invariant 
clauses such as 

0 <= position <= count +l; 
not (before and &er); 

More generally, invariants and other assertions are the 
principal guide for making sure that the conventions 
(regarding default initial states, borderline cases, com- 
patibility between the various features) are sound, con- 
sistent and easy to teach. 

The notion of cursor as it exists for chains is 
generalized in CURSOR-TREE to two-dimensional 
cursors. Here the features also include the Boolean 
queries above and below (to test whether the cursor has 
been taken higher than the root or below a leaf), the 
procedures up (to parent) and down (i) (toi-th child), 
etc. Again, assertions play a key role in getting the con- 
ventions right. 

Traversal 
Many data structures are traversable. The Data Struc- 
ture Library includes a set of “iterator” classes which 
define traversal mechanisms, allowing programmers to 
avoid writing loops; instead, they define the actions to 
be applied to every element. The top of the “traversable” 

fktlve Data Structure with Cursor. 

hierarchy is shown in the figure below. 
As an interesting use of “repeated inheritance” (in- 

heriting twice or more from the same parent), tree 
iterators (inorder, preorder, postorder) are obtained by 
inheriting repeatedly from the same basic iterator, with 
a different redefinition of the basic stepping procedure 
in each case. 

Storage 
The top of the “storage” hierarchy is shown in the figure 
below. A “box” is finite or infinite (infinite structures 
cannot be fully constructed, of course, but may be ap- 
proximated using “lazy” techniques, and are also useful 
to describe predefined concepts such as the set of in- 
tegers); a finite box may be ‘bounded” or “unbounded.” 
A bounded structure may be fixed or resizable. The 
tendency in the library is to avoid fixed structures as 
much as possible; built-in size limits are a plague of 
traditional programming methods. In the libraries, 
even arrays are resizable. (More precisely, the put 
operation requires an index within the current bounds, 
as specified by a precondition; but the force operation 
will accept any index, and will resize the array if 
needed.) 

after 

(cursor) positkW 

classifying StrUcms by their Traversal Policy. 

The Top of the “Storage” Hlerarcky. 
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that its argument, v, is present in 
the structure. In other words, the 
visible postcondlition in this case is 
bus (v). This specification is less 
strong than for the other two oper- 

- 

ations; indeed, put will normally be 
a synonym for either replace (for ar- 
rays, etc.) or add (for stacks, etc.). 
Having such a generally available 
feature, with a well-understood 

TasLE II: Sam@ Ortglnat Feature Names. 

class 

STACK 

ARRAY 

QUEUE 

H-TABLE 

: 

Features 

push POP 

enter 

add remove-oldest 

insert delete 

TABLE Ill: A More Unliorm Terminology. 

- 

Class Features 

- 

STACK Pot remove 

- 

ARRAY Put 

- 

QUEUE Put remove 

- 

H-TABLE Put remove 

top 

entry 

oldest 

value 

item 

item 

item 

item 

- 

TABLE IV: Some StanUard Feature Names. 

- 

item 

count 

has 

Put 

force 

remove 

wipe-out 

empty 

full 

I3asic access operation. 

Number of significant items in the structure. 

13asic membership test: does a given item appear in the structure? 

Basic operation to insert or replace an item. 

Like put, but will alWayS succeed when it can. For example, if may 
resize the structure if full. 

Basic operation for removing an item. 

Basic operation for removing all items. 

Test for absence of any significant items. Should return the same 
value as count = 0. 

Test for lack of space for more items. 

-- 

l I I I 

semantics, is essential to enable 
client programmers to grasp the 
essentials of a new class quickly and 
feel immediately at ease with it. 

Note how the reasoning which led 
to this solution required (as almost 
always in such cases) a precise 
analysis based on assertions, here 
postconditions. 

Further criteria must be applied to 
the choice of names in a successful 
library. 

Names should be both simple 
(which usually implies that they 
should be short) and chosen accord- 
ing to consistent conventions. 

One consequence is that library 
authors should resist the temptation 
to over-qualify names (a typical 
beginner’s mistake). For example a 
procedure for handling an event in 
class EVENT in a graphics system 
should not be called handle-event or 
event-handle but just handle. ’ 

This would not necessarily be true 
in a less-typed language because of 
ambiguities that might result if many 
classes use the same simple names 
such as handle, put, item, etc. Typing 
averts these problems. When you see 

e.handle (...) 

the declared type of e immediately 
tells you which version of handle is 
meant (while leaving the desirable 
ambiguity provided by dynamic 
binding). 

To facilitate quick recognition and 
understanding of the role of each fea- 
ture, the Eiffel libraries usually follow 
uniform rules as to the syntactic cat- 
egory of feature names: 

l Names for procedures are verbs in 
the imperative, as in put. 

l Names for attributes or functions 
of type other than Boolean are 
nouns, as in item. 

l Names of Boolean queries are ad- 
jectives, as with full, or verbs sug- 
gesting a question, as with &leaf: 

Because English is the default lan- 

I The fashion of using-in-word capitalization, as in 
EventHandle, does not conform to normal English 

usage and is frowned upon in the recommended 
Eiffel style. 
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guage for the libraries, these rules 
cannot be absolute; we need addi- 
tional conventions regarding the use 
of words such as @n/Q, which may be 
used both as an adjective and as a 
verb. 

Feature Obsolescence 

Name changes such as the ones expe- 
rienced when the library moved to 
the new naming system, as describ- 
ed above, are only a special case of 
changes to the interface to a class. In- 
ternal implementation changes do 
not affect clients (the Eiffel automatic 
recompilation mechanism in fact 
guarantees that clients will not be re- 
compiled in such a case); but of 
course interface changes will affect 
them. 

This raises a key question, which 
surprisingly does not seem to have 
been addressed in the reuse litera- 
ture: feature obsolescence. 

Perfect reusable components are 
not obtained at the first shot. Yet if 
one is aiming at a full-fledged indus- 
try of reusable software components, 
perfection is what we should even- 
tually strive for. 

This raises the question of what 
you do when you have produced a 
first version of a reusable class, or 
even a second and a third, and you 
realize that you could have done bet- 
ter. Two spirits are at odds: 

l The Great Tempter of Perfec- 
tionism exhorts: “Correct it here 
and now before it is too late!” 

l The Guardian Angel of the In- 
stalled Base warns: “Think of the 
current users!” 

To try to placate both, the library 
designer or maintainer needs a 
mechanism to phase out obsolete fea- 
tures progressively without impair- 
ing the correct functioning of existing 
client classes whose programmers 
may not wish to “migrate” im- 
mediately. 

Eiffel includes a language mecha- 
nism devised to support this process. 
A routine may be declared as “obso- 
lete.” For example, the new ARRAY 
class still has a feature enter of the 
form 

enter (i: v v: T) 
obsolete ” Use put (value, index)“’ 
is 

do 

Put (4 9 
end--enter 

Such a feature is normal in every 
respect but two. It can be used by cli- 
ents (if it is exported) and by descen- 
dants, but such uses will trigger 
compile-time warnings, listing the 
message given after the obsolete key- 
words. Furthermore, an obsolete fea- 
ture does not appear in the short 
form of the class. 

Because they cease to be docu- 
mented in the official reference, ob- 
solete routines pose no immediate 
threat to the simplicity of the class as 
perceived by new users. This is dif- 
ferent from what would occur ifboth 
old and new features were merely 
kept as synonyms. 

More sophisticated effects could 
have been devised for obsolete fea- 
tures; for example, one may imagine 
a mechanism which would on option 
take care of updating client calls (al- 
though this is not so trivial when the 
new routine has different arguments 
or, as in the above example, changes 
the order of arguments). As it is, 
however, the mechanism has played 
a key role in allowing Eiffel library 
developers to take advantage of bouts 
of esprit de I’escalier without disturbing 
existing clients too much. (Esprit de 
l’escalier, or “wit of the staircase,” 
is a great thought which unfortun- 
ately is an afterthought, like a clever 
reply that would have stunned all the 
other dinner guests-if only it had 
occurred to you before you started 
walking down the stairs after the 
party was over.) 

Of course, if you uncover a serious 
design mistake in the original version 
of the class you should not leave it 
around but just rewrite the class. In 
this class, the first spirit (the Tempter) 
wins handily. Feature obsolescence is 
useful in the following cases: 

1) You can think of a better name for 
a routine. 

2) You want to advise programmers 
not to use the routine any more. 

3) You can think of a better signature 
or specification (assertions). 

Situation 1 may occur as you are 
doing an after-the-fact cleanup of 
your library and realize that naming 
conventions could be made more 
consistent (as discussed above). 

Situation 2 may arise when the 
routine’s action is not needed any 
more (as with a routine which per- 
formed some initialization which you 

later realize can be carried out auto- 
matically on object creation). 

Situation 3 may occur (among 
other cases) when you realize that a 
routine has too many arguments and 
should be split into two or more rou- 
tines. For example, you may have a 
procedure adding a subwindow to a 
window, under the form 

w.add_subwindow (other-window, 
horitontalLposition, vertical-position) 

but then you realize that it would 
have been better to omit the last two 
arguments and have the subwindow 
be initially positioned at the top left 
corner of the parent window, and let 
clients move it if necessary by using 
a specific move procedure, which is 
needed anyway. 

Cases 1 and 3 often involve 
changes small enough that it is 
tempting to heed the Angel’s advice 
and resist any change at all. But in 
the long term this is dangerous. Here 
the Angel is really a front man for the 
hideous Devil of Eternal Compatibil- 
ity with the Horrors of the Past, 
whose nefarious influence is all too 
visible in the computer industry. 

Arguments ancl OptIons 

The last example illustrates a general 
guideline about choosing the proper 
arguments for library routines. 

In general, a routine should only 
include among its arguments what 
may be called “indispensable argu- 
ments,” as opposed to “options.” An 
option is recognized by the class’s 
ability to set reasonable default val- 
ues, as for horizontal-position and 
vertical-position above. In contrast, 
there is no reasonable default for 
other-window, which should thus be 
an indispensable argument. 

A widely applicable guideline is to 
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avoid including clptions among the 
arguments to a routine. Rather, the 
creation procedures of the class 
should set defaults for each option, 
and there should be separate routines 
to change the option’s values. (Some 
of these issues were discussed, in the 
context of much more primitive tech- 
nology, in [ll].) 

Obtaining the Proper 
inheritance Structures 
By reading theoretical discussions of 
object-oriented techniques, it would 
seem that one always gets the inheri- 
tance structure-the classilication- 
right from the start. The reality, how- 
ever, is usually more painful. 

Classification tends to be the result 
of hard work as much as of immedi- 
ate insight. This work may be called 
generalization and is worth more 
attention.* 

CIass Abstrac:tlon 

Object-oriented library design is a 
quest for abstraction. Using inheri- 
tance means that one writes classes 
that are more general than what is 
immediately needed for the problem 
at hand. Deferrd classes are par- 
ticularly useful here. Once you have 
captured a general pattern through a 
deferred class, you or others may pro- 
duce specific variants by writing non- 
deferred classes which implement the 
parts of the pattern that had been left 
open in the deferred class. Object- 
oriented techniques ideally support 
this remarkably elegant process of 
working from tbe abstract to the 
concrete, from the general to the 
specific3 

In practice, however, the scheme is 
not always as smooth and intellec- 
tually satisfying .as the theory would 
have it. Even library developers tend 
to produce classes which initially are 
often too specific: particular imple- 
mentations of a (certain abstraction, 
rather than the abstraction itself. It is 

2This section draws heavily on an earlier publica- 
tion [12] 

3Because of the common graphical representa- 
tions for inheritance diagrams, this process is some- 
times mistakenly viewed as “top-down.” It is in fact 

a typically bottom-up process of particularizing 
general-purpose tools. 

I I I 

hard to blame them: programmers 
are inherently problem solvers. Few 
will complain if they get the job done 
first. 

If reusable products are part of the 
goal, however, the process cannot 
stop there. When you realize that a 
certain class is less general than it 
could have been, you should use this 
discovery as an opportunity to reor- 
ganize the inheritance hierarchy. 
There have been numerous examples 
of this type of reorganization in the 
evolution of the Eiffel Libraries: 

l The Data Structure Library orig- 
inally contained a TREE class, 
which has proved powerful and 
useful, serving as a basis for the 
hierarchical windowing system of 
the Graphics and Winpack li- 
braries, for the data structures of 
the Parsing library, and for the 
abstract syntax tree of our Cipage 
structural editor. But it was too 
specific, describing just one imple- 
mentation of trees rather than the 
general concept. Recognition of 
this situation led to a deferred class, 
of which the original became an 
heir. 

l In the version of the library avail- 
able at the time of this writing, fdes 
and strings are still treated as spe- 
cial classes, instead of inheriting 
from more general “chain” or 
“stream” classes (used for example 
as ancestors to classes describing 
lists). Here the taxonomy effort 
mentioned above obviously did not 
go far enough. After taking a closer 
look, we came to the realization 
that strings should be treated just 
as sequences of characters, based 
on a SEQUENCE Data Structure 
Library class. As for text files, they 
came out just as a specific variant 
of strings, with only one clearly 
distinctive property: their persis- 
tence. The class hierarchy has been 
both enriched and simplified as a 
result. 

The need for an a posteriori ab- 
straction process was discussed in the 
Smalltalk context by Johnson and 
Foote4 [7]. 

The process is aided in the Eiffel 
environment by a variant of the short 

I I I I 

class abstracter. The command 

short -e class_name 

will produce a deferred version of 
class-name, with all implementation 
details removed. This is usually a 
good basis for obtaining a more 
abstract class while keeping the inter- 
face for clients. 

ExtraCtIOn oi 
CommonaIltles 

A related activity arises from the a 
posteriori realization that duplication 
of efforts has led to similar classes be- 
ing written by different people, or 
even by the same person at different 
times. 

Inheritance is the ideal mecha- 
nism for capturing commonalities 
between similar components. If the 
developers initially missed the com- 
monalities, then it is always possible 
to reconstruct the inheritance struc- 
ture a posteriori. 

As with the previous case, the 
result is to produce more abstract 
classes, often deferred, of which the 
original classes become descendants. 

As an example, both the Winpack 
non-graphical windowing library 
and the Graphics library use hierar- 
chically structured windows, with 
many concepts in common. The two 
WINDOW classes are not, however, 
part of the same inheritance hierar- 
chy. This is clearly a mistake, which 
is in the process of being corrected. 
The result should yield a library 
which supports the execution of the 
same applications both on a graph- 
ical terminal and, in somewhat 
degraded mode, on a character- 
oriented terminal, at the cost of a 
minimal change to the client software 
(such as a different call at initializa- 
tion time). 

’ Many of the design rules of that article are con- 
firmed by our experience. One point of divergence 
is its recommendation that inheritance hierarchies 
be narrow and deep. Although it is always reward- 

ing to obtain deep classifications, in some cases in- 
heritance just serves to classify a potentially large 
set of alternate cases, all at the same level. For ex- 
ample, class EVENT in the graphical library has 

many heirs describing various event types. The 
same situation occurs in classifications of natural 
objects such as plants or animals: sometimes the 
categories are complex; at other times they are just 

*“mt?rOUS. 
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SwIte~lng to Reverse 

What is common to the previous two 
activities -abstraction, extraction of 
common&ties-is that they depart 
from the view of inheritance which is 
usually suggested in the object- 
oriented literature: the idea that the 
bright designer will somehow obtain 
the proper inheritance structure the 
first time around. 

It is always preferable, of course, to 
get the inheritance right initially. But 
it serves no useful purpose to pretend 
that this will always be the case. Bet- 
ter recognize that the process may in- 
volve trial and error, as a result of our 
yearning for the concrete, and of our 
frequent failure to detect commonali- 
ties early enough. It is best to be pre- 
pared for the inevitable changes of 

direction-switching to reverse, as it 
were-in building the inheritance 
structure. What counts is that in the 
end we should get the useful and 
elegant inheritance hierarchies that 
condition effective object-oriented 
reuse of components. 

An important aspect of both ab- 
straction and extraction is that they 
normally do not affect the clients of 

Up 
(ENVIRONMENT) 
EXCEPTlONS 
EXPOSE-EVENT 
EJXASS 
E-INFO 
FIGURE’ 
FIGURE-IMP 
FILE 
FILE-STAT 
FIXED-LIST 
FIXED-WEUE 
(FIXED-STACK) 
(FIXED-TREE) 
(FlX-CIRCULAR) 
FLOAT 
FLOAT-CONV- 
FOCUS-EVENT 
FONT-CONST 
FONT-SUPPORT 
GEN-EVENT 
GEN-FIGURE’ 
GEN-POINT 
GRAPH-CONST 
GRAPH-SHELL 
GRAFM~WINDOW 
GTEXT 
GTEXT-IMP 
HASHABLE’ 
HASHJNT 
HERE 
HI-LlTEJEM’ 
HTABLE 
H-TABLE 
INDECABLE’ 
INDIRECT 
INPUT 
(INSPECTOR) 
INT 
INTERNAL 
(INT-BHTREE) 
(INT-COMPAR) 
(INT-STRING) 
KEP-EVENT 
LINKABLE 
LINKED-LIST 
(LINKED-OUEUE) 
(LINKED-SET) 
LINKED-STACK 
(LINKED-TREE) 
LIST’ 

Up I Down 

Parents (shown) . 

Heirs (none) , 

Clients (none) 

Suppliers 

All 

Allributes 

Routines . 
Constants 

Visibility . 
Deferred 

Renamed 

Redefined 

FIGURE 3. ABrowser Screen. 
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the classes being re:structured, since 
the interface of a cla.ss will not change 
if it is rewritten with a different an- 
cestry. In Eiffel, clients will not even 
be recompiled, since the automatic 
(makefde-free) recompilation mech- 
anism will recognize that an interface 
has remained untouched and that the 
clients are hence still valid as com- 
piled before. 

This observation highlights a 
fundamental, although often mis- 
understood, aspect of inheritance: in- 
heritance is a supplier’s mechanism, 
not a client’s mechanism; it does not 
affect the interface. For the clients of 
a class, what the class inherits from 
is irrelevant. Such tools as the flat- 
tener support this view by providing 
inheritance-free versions of a class 
when needed for the benefit of 
clients. 

As a result of the abstraction and 
extraction activities, a general phe- 
nomenon may be observed in organi- 
zations (such as our own) that have 
made a serious effort at producing, 
using and mainmining libraries. This 
phenomenon, also noted in [7], is a 
progressive elevation of the level of 
abstraction of the classes produced by 
a group or organization committed 
to object-oriented programming. As 
one starts reusing previous classes, 
cataloging them, archiving them into 
libraries, the need for more general 
versions becomes apparent. It does 
not make sense to lament that these 
versions were not produced right 
from the start; what counts is the 
constant improvement in quality and 
generality that the process yields if 
properly implemented. 

SCoring and mccesrlna 
Components 
A common problem in the compo- 
nent-based approach to software de- 
velopment is determining how to 
enable client programmers to find 
out about available components and 
retrieve them easily. Obviously, the 
seriousness of this problem grows 
with the number of components. 

The concern over this issue, espe- 
cially among managers, is exagger- 
ated. Compared to the need for 
reusable components, the libraries 

that now exist are only a small begin- 
ning. A manager or programmer 
who hesitates about reuse for fear of 
being overwhelmed by the potential 
number of resulting components is 
similar to someone who refuses a pay 
raise for fear of not knowing what to 
do with the money. The natural reac- 
tion of a coworker (in such an un- 
likely situation) is: “why don’t you 
give me the money as well as the 
troubles-I’ll handle both.” Simi- 
larly, the first problem in introducing 
the new culture is not to keep on top 
of the components, but to build 
enough high-quality components 
initially. 

Srowslng 
This being understood, the retrieval 
problem must of course be ad- 
dressed. The first step was provided 
by “browsers,” a concept introduced 
by the Smalltalk environment [4]. 
The graphical Eiffel browser 
(GOOD) makes it possible to obtain 
information about all the classes in a 
“universe” (set of directories). The 
information is displayed in graphical 
form (see Figure 3). By clicking on a 
class bubble, one can request the 
display of other bubbles and their 
relation to the original class: parents, 
ancestors, clients, suppliers etc. One 
can also obtain information ab.out 
the class, for example the list and 
signatures of its features or the class 
text in its various forms (full, short, 
flat-short). 

Beyond the browser stage, what is 
required are veritable databases of 
software components. Standard 
database technology seems directly 
applicable here to support archival 
operations and queries. 

The use of database tools is consis- 
tent with a principle stated in the 
above discussion of documentation: 
all information about a class should 
be deducible from the class text-as 
opposed to information kept sepa- 
rately, for which it would be difficult 
to guarantee that consistency is 
maintained as the class evolves. 

#nclexlnm 
This suggests a need for including in 
class texts higher-level information 

than is given just by the executable 
class text. Examples of such infor- 
mation include keywords, hardware 
requirements, and more generally 
elements of “domain analysis” [il. lb 
cater to this need, Eiffel classes may 
include an initial indexing clause, 
which is part of the language. This is 
a clause of the form 

indexing 
index: value, value, value, 

where each subclause lists the values 
associated with a given index. For ex- 
ample, the ARRAY_LIST class from 
the Data Structure Library has the 
following clause: 

indexing 
names.’ list, sequence; 
representation: array, linked; 

A access: fixed, cursor; 
size: resizable, 
contents: generic 

Once included in a class, such in- 
formation may be used by various 
query tools. Such tools are currently 
being written for the Eiffel en- 
vironment. 

InUexfng GuIGellnes 
The choice of indices and values is 
free (values may be identifiers, inte- 
gers etc.). This makes it possible to 
define a precise style for a given li- 
brary or installation. Such a stan- 
dardized style has been defined for 
and applied to the current libraries 
[17]. It includes the following 
guidelines: 

l Keep the Indexing clauses short (2 
to 5 entries is typical). 

l Avoid repeating information which 
is in the rest of the class text. 

l Use a set of standardized indices 
for properties that apply to many 
structures, such as choice of repre- 
sentation. (Examples of such in- 
dices are given below.) 

l For values, define a set of standard- 
ized possibilities for the common 
cases. 

l Include positive information only. 
For example, a representation index is 
used to describe the choice of rep- 
resentation (linked, array, . ..). A 
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deferred class does not have a rep- 
resentation. For such a class the 
clause should not contain the entry 
representation: none but simply no en- 
try with the index representation. A 
reasonable query language will 
make it possible to use a query pair 
of the form <representation, 
NONE > . 

The indices chosen for the library, 
along with typical values, are the 
following. 

An entry of index names is used to 
record the names under which the 
corresponding data structures are 
known. Although a class has only one 
official name, the abstraction it im- 
plements may be known under other 
names. For example, a “list” is also 
known as a “sequence.” Also, the of- 
ficial name may need to be of an ab- 
breviated form; in such a case, the 
names entry may give the expanded 
form of the abbreviation. 

An entry of index access records the 
mode of access of the data structures. 
Standard values include: 

l fixed (only one element is accessible 
at any given time, as in a stack or 
queue). 

l fzfo (first-in-first-out policy). 
l 123 (last-in-first-out). 
l index (access by an integer index). 
l key (access by a non-integer key). 
l cursor (access through a client- 

controlled cursor, as with the list 
classes). 

l membership (availability of a mem- 
bership test). 

l min, max (availability of operations 
to access the minimum or the 
maximum). 

Obviously, more than one of these 
values may be used. 

An entry of index size indicates a 
size limitation. Among common 
values: 

l fixed means the size of the structure 
is fuced at Create time and cannot be 
changed later (there are few such 
cases in the library). 

l resitable means that an initial size is 
chosen but the structure may be 
resized (possibly at some cost) if it 
outgrows that size; for extendible 
structures without size restrictions 
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Graphical 
Conventions 

T he class diagrams in this 
article use some simple 
elements of a formalism 

under development by Tean- 
Marc Nerson and the author for 
graphical representations of 
object-oriented system analysis 
and design. Classes are repre- 
sented by elliptic bubbles; an 
asterisk indicates a deferred 
class; single arrows indicate in- 
heritance; double arrows in- 
dicate the client relation. The 
full formalism also includes 
conventions (not used here) for 
representing the class’s fea- 
tures, its preconditions, post- 
conditions and invariant. 

this entry should not be present. 

An entry of index representation in- 
dicates a choice of representation. 
Value array indicates representation 
by contiguous, direct-access memory 
areas. Value linked indicates a linked 
structure. 

An entry of index contents is appro- 
priate for “container” data struc- 
tures. It indicates the nature of the 
contents. Possible values include ge- 
neric (for generic classes), int, real, bool, 
char (for classes representing con- 
tainers of objects of basic types). 

For example, the ARRAYLIST 
class describes lists implemented 
by one or more arrays, chained to 
each other. Its indexing clause, as 
given above, reflects the preceding 
guidelines. 

Eu0lutl0n OF the 
Llbrarles 
Much work remains to be done, of 
course, on the Eiffel libraries. The 
main areas of improvement are the 
following: 

l Improve the regularity and con- 
sistency of the existing classes, ap- 
plying methods of “abstraction” 
and “extraction of commonality” 
as described above. 

l Build more archival and query 
tools, based on indexing clauses 

and related concepts. 
l Add uniform mechanisms to the 

classes, for example iterators on 
every data structure. 

l Add many classes used as examples 
in the object-oriented literature (in 
particular [12]) in the form of full- 
fledged reusable components. 

l Extend the Data Structure Library 
to cover the essential part of the 
classical textbooks on this subject. 

l Extend the graphical and user- 
interface classes. 

l Develop more specialized libraries: 
database access, numerical soft- 
ware, etc. 

The list of attractive new areas to 
cover is considerable and beyond the 
reach of any single group. We do 
hope that a real “software compo- 
nents subindustry” (using McIlroy’s 
terms) will join us in producing the 
high-quality components which are 
needed to make the new culture a 
reality. 
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