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E very once in a while, in the history of science, there 

arises a problem whose statement is so deceptively 

simple as to fit in a few sentences that a curious 

adolescent can understand, and whose solution baffles 

the best minds of a generation. It is of such a problem, 

central to the understanding and use of object-oriented 

principles, that I propose to present both the statement 

and a solution. 

The simplicity of the problem comes from the 

simplicity of the object-oriented model of 

computation, introduced almost thirty years ago by 

Professors Dahl and Nygaard. If one puts aside the 

details of an object-oriented language, necessary to 

write realistic software but auxiliary to the basic 

model, only one kind of event ever occurs during the 

execution of an object-oriented system: routine call. In 

its general form it may be written, using the syntax of 

Simula and Eiffel, as 

⌧ l .f@El 

meaning: execute on the object attached to x the 

operation J; using the argument arg, with the 

understanding that in some cases arg stands for several 

arguments, or no argument at all. Our Smalltalk 

friends would say “pass to the object x the message f 

with argument arg”, and use another syntax, but those 

are differences of style, not substance. At run time, this 

is what our systems do: calling features on objects, 

passing arguments as necessary. That everything relies 

on this canonical scheme accounts in part for the 

general feeling of beauty that object-oriented ideas 

arouse in many people. 

From the simplicity of the model follows the 

simplicity of the typing problem, whose statement 

m iirrors the structure of the Basic Construct: 

The typing problem 

When, and how, do we know that: 

feature corresponding to fand 

tppiicable to the object? 

rvg is an acceptable argument for that 

The policy known as static typing, which I will 

argue is the only reasonable one for professional 

software development, states that we should answer 

the “when” part of the question by “before we ever 

think of running the system”, and the “how” part by 

“through mere examination of the software text”. 

Let us make the terminology precise. x will be called 

an entity; this is a generalization of the traditional notion 

of variable. f will, in interesting cases, be a routine; 

Smalltalk would call it a method, but there is no need for 

a new term since the older one is well established. At 

run time the value of x, if not void, will be attached to a 

certain object, OBJon the figure. 

*This article reproduces the text of the author’s OOPSLA 
keynote address. That it is the transcript of a verbal 
presentation explains that it does not have all the usual 
trappings of a scientific article and makes generous use of 
the first person singular. The final part of the speech 
(general comments about the respective roles of technical 
and methodological work, about OOPSLA, and about the 
current state of development of Eiffel) has been removed 
but is available from the author. See also the Web page. 

20 Austin, TX October H-19,1995 



Listeners already familiar with the issues of typing 

will perhaps appreciate a preview of the conclusion. It 

can be expressed in reference to a conjecture that 

Pierre America from Philips Research Laboratories 

expressed in a panel on the topic at TOOLS EUROPE 

a few years ago. America stated that three properties 

are desirable: static typing, substitutivity, and 

covariance; his conjecture is that one can achieve at 

most two of them. The aim of the present work is to 

disprove the America conjecture and show that we can 

enjoy static typing and covariance while preserving 

substitutivity when it is needed and safe. 

If you do not completely understand these terms do 

not worry; they will be explained shortly. Starting now 

with the basic concepts we must first make sure to 

avoid any misunderstanding. Beginners with a 

Smalltalk background sometimes confuse static q@zg 

with static binding. Two separate questions are 

involved. Typing, as noted, determines when to check 

that the requested routine will be applicable to the 

requested object; binding determines what version of 

the feature to apply if there is more than one candidate. 

Zower~hnding~ear++ 

* deferred 

+ effected 

++ redefined 

For example in the hypothetical inheritance 

hierarchy shown on the preceding figure, we might 

define the feature lower-landingxear only at the 

level of PLANE, not at the general level of AIRCRAFT. 

Then for a call of the form 

my-aircraft. lower-landingsear 

two separate questions arise: when to ascertain that 

there will be a feature lower-landingsear applicable 

to the object; and, if there is more than one, which one 

to choose. The first question is the typing question, the 

second is the binding question. Both answers can be 

dynamic, meaning at execution time, or static, meaning 

before execution. For safety, flexibility and efficiency, 

the proper combination is, I believe, the Eiffel one: 

static typing and dynamic binding. 

Static binding, which if I understand properly is the 

default C++ policy, would mean that we disregard the 

object type and believe the entity declaration, leading 

us for example to apply to a Boeing 747-400 the 

version of a feature, such as lower-Zandingsear, that 

has been defined for the standard Boeing 747 planes. 

This does not seem right, so we should choose dynamic 

binding, defined simply as applying the right feature. 

Dynamic binding, as many of you know, is crucial in 

ensuring the decentralized, evolutionary system 

architectures made possible by the object-oriented 

method. Except when it has the same semantics as 

dynamic binding - and that is a property best left for 

an optimizing compiler to ascertain - static binding is 

always wrong; dynamic binding, as in Eiffel and 

Smalltalk is always the proper policy. (C++ developers 

can obtain dynamic binding for specific features, but 

only by declaring them explicitly as “virtual”.) The 

cost of dynamic binding can be extremely small with a 

good compiler and a supporting language design (in 

which, incidentally, static typing will help 

tremendously, as it does for compiling Eiffel). 

Dynamic binding does not imply dynamic typing. 

Typing is about something else: when to determine 

that there will be at least one feature applicable to the 

object. Dynamic typing, as in Smalltalk, means 

waiting until the execution of the feature call to make 

that determination. Static typing, as in Eiffel, means 

performing the check before any execution of the 

software; typically, this will be part of the verifications 

made by a compiler. 
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It is hardly necessary to emphasize the importance 

of static typing. Anyone concerned with software 

reliability knows how much more expensive it is to 

detect errors late in the lifecycle. This is confirmed 

quantitatively by Barry Boehm’s well-known studies 

(see Software Engineering Economics, Prentice Hall, 

1981): 

1000+ I 

. 

Require- Design- Code Develop-- Accep-- Opera-- 

ments tance tion 
ment test test 

This insistence that the language should permit 

static type checking is one of the major differences 

between Eiffel and Smalltalk, and the Smalltalk policy 

is one of the reasons why I am always skeptical about 

using Smalltalk for serious industrial developments. 

After all, run time is a little late to find out whether you 

have a landing gear. 

For static type checking to be possible, the 

language must be designed accordingly. Here are the 

basic rules as they exist in Eiffel, which at first sight 

seem to allow a compiler, global or incremental, to 

ascertain type safety. 

Simplifying a little, there are three rules; one 

applies to declarations, the second to feature calls, and 

the third to attachments, that is to say assignments and 

argument passing. 

First, we require that every entity be declared with 

a certain type: 

Declaration rule 

Every entity must be declared as being of a 
1 certain type. 

For example: 

x: AIRCRAFT; 

n: INTEGER ; 

bal: BANK-ACCOUNT 

Only to the inexperienced will this appear to be 

constraining. Seasoned software engineers know that 

software written once is read and rewritten many 

times, and that the small effort of declaring the type of 

every entity is generously repaid by the readability that 

such declarations bring to the software text. 

Next, for what we have called the basic operation 

of object-oriented computing, we require that any 

feature call use a feature that exists in the base class of 

the target X: 

Call rule 

If a class C contains the call 

x.f (..*) 
there must be a feature of name f in the base 
class of the type of X, and that feature must be 
available (exported) to C. 

This is easy to determine thanks to the preceding 

rule, which causes the type of x to be known clearly 

and unambiguously to anyone who reads the class text. 

The “base class” of a type defines the applicable features. 
A non-generic class is both a type and its base class, but the 
distinction is needed when we consider generic classes: 
LIST [INTEGER] is a type, with LISTas its base class. 

Finally, we have a rule regarding attachment: for 

any assignment of an expression y to an entity x, the 

type of y must be compatible with the type of ?c. 

argument passing, the base class of the type of 
y must be a descendant of that of x. 

In a classical language such as Pascal or Ada, we 

would require identical types. Thanks to inheritance 

the compatibility requirement is more flexible here: 
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the type ofy may be any descendant, in the sense of 

inheritance between the base classes, of the type of x. 

The same rule applies to the case in which x is a formal 

argument to a routine andy is the corresponding actual 

argument in a call. The term “attachment” covers both 

cases - assignment and actual-to-formal association. 

In a simple world these rules would suffice. They 

are easy for a software developer to understand, and 

easy for a compiler to implement. In particular, the 

compiler can check them incrementally. One of the 

achievements of ISE’s Eiffel compiler development, 

known as the Melting Ice technology, has been to 

show that it is possible to guarantee type checking and 

efficient code generation, as in compiled 

environments, while avoiding the long edit-compile- 

link-execute cycles traditionally required in such 

environments; using Eiffel, one can get the fast 

turnaround that people have come to associate with 

Lisp and Smalltalk while preserving efficient code 

generation and static typing. Even for systems of 

hundreds of thousands of lines, the time to recompile 

after changing a few classes is typically a few seconds, 

including the time for full type checking. 

Strangely enough, one encounters objections to the 

static typing approach. These objections do not hold 

on further examination, but they do highlight the set of 

properties that must be satisfied by a realistic use of 

static typing. 

First, the type system must have no loopholes. There 

is no such thing as “a little bit statically typed” (as in the 

famous “a little bit pregnant”). Either the language is 

statically typed or it is not. The C++ approach, where 

you can still cast- that is to say convert- a value into 

just about any type, defeats in my view the principle of 

static typing. For one thing, it makes garbage collection, 

a required component of serious object-oriented 

computing, very difficult if not impossible. 

Second, a statically typed language requires 

multiple inheritance. The objection against typing 

often heard from people with a Smalltalk background 

is that it prevents one from looking at objects in 

different ways. For example an object of type 

DOCUMENT might need to be transmitted over a 

network, and so will need the features associated with 

objects of type MESSAGE. 

0 
LABLE_ 

DOCUME 

But this is a problem only in languages such as 

Smalltalk that do not permit multiple inheritance. 

Multiple inheritance, of course, must be handled 

properly, with mechanisms as in Eiffel for taking care 

of name clashes, conflicting redefinitions, and 

potential ambiguities in repeated inheritance. I 

mention this because one still encounters people who 

have been told that multiple inheritance is tricky or 

dangerous; such views are usually promoted by 

programmers using languages that do not permit 

multiple inheritance, and are about as convincing as 

opinions against sex emanating from the Papal nuncio. 

Next, static typing requires genericity, so that we 

can define flexible yet type-wise safe container data 

structures. For example a list class will be defined as 

class LIST [G] . . . 

Genericity in some cases, needs to be constrained, 

allowing us to apply certain operations to entities of a 

generic type. For example if a generic class VECTOR 

has an addition operation, it requires an addition also 

to be available on entities of type G, the generic 

parameter. This is achieved by associating with G a 

generic constraint NUMERIC: 

class VECTOR [G --> NUMERICJ . . . 

meaning that any actual generic parameter used for 

VECTOR must be a descendant of this class 

NUMERIC, which has the required operations such as 

“plus” and “minus”. 

We also need a mechanism of assignment attempt. 
This makes it possible to check that a certain object, 

usually obtained from the outside world, for example a 

database or a network, has the expected type. The 

assignment attempt x ?= y will assign to x the value of 
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y if it is of a compatible type, but otherwise will make 

x void. This instruction (which has been made 

available to other languages under the name type-safe 

downcasting) is one of the inventions of which the 

Eiffel community can be proudest. 

Also necessary are assertions, associated, as part 

of the idea of Design by Contract, with classes and 

features. Assertions, directly associated with object- 

oriented constructs in the form of preconditions, 

postconditions and class invariants, make it possible to 

describe the semantic constraints which cannot be 

captured by type specifications. 

Finally, a realistic object-oriented type system will 

require two mechanisms that will be described in more 

detail shortly: covariance, which governs how we can 

redefine the signatures of routines, and anchored 

declarations, of the form 

y: like x 

which avoid endless type redeclarations. 

Ideally, a presentation of typing should stop here. 

Unfortunately, the combination of static typing with 

other requirements of the object-oriented method 

makes the issues more difficult than they appear at first. 

The principal problem is what happens when we 

redefine a feature’s type. To accompany the discussion 

it will be convenient to use the example hierarchy 

shown here, applying to a high-school ski team 

preparing for a trip to a minor-league championship. 

For brevity and simplicity we use the class names 

GIRL as an abbreviation for “member of the girls’ ski 

team” and BOY as an abbreviation for “member of the 

boys’ ski team”. Some skiers in each team are ranked, 

that is to say have already recorded good results in 

earlier championships. This is an important notion: 

ranked skiers will start first in a slalom, giving them a 

considerable advantage over the others; after too many 

competitors have used it, the run is much harder to 

negotiate. (This rule that ranked skiers go first is a way 

to privilege the already privileged, and may explain 

why skiing holds such a fascination over the minds of 

many people: that it serves as an apt metaphor for life 

itself.) This yields two new classes, MNKED_GIRL 

and RANKED-BOY 

To assign the rooms we may use a parallel 

hierarchy; some rooms will be reserved for boys only, 

girls only, or ranked girls only. 

Here is an outline of class SKIER: 

class SKIER feature 

roommate: SKIER; 
-- This skier’s roommate 

share (other: SKIER) is 
-- Choose other as roommate. 

require 
other I= Void 

do 
roommate := other 

end 
. . . 

end -- class SKIER 

We have two features of interest: the attribute 

roommate, shown in blue; and the procedure share, 

which makes it possible to assign a certain skier as 

roommate to the current skier. Note the use of Eiffel’s 

assertions: the require clause introduces a 

precondition stating that the argument must be 

attached to an object. 

A typical call, as in 

sl, ~2: SKIER; 

. . . 

sl . share (~2) 

will enable us to assign a certain roommate to a certain 

skier. 
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How does inheritance get into the picture? Assume 

we want girls to share rooms only with girls, and 

ranked girls only with other ranked girls. We will 

redefine the type of feature roommate, as shown below 

(in this class text and the next, the redefined elements 

appear underlined). 

class GIRL inherit 

SKIER 
redefine roommate end 

feature 

roommate: GIRL: 

-- This skier’s roommate. 

. . . 

end -- class GIRL 

We should correspondingly redefine the argument 

to procedure share, so that a more complete version of 

the class text is: 

class GIRL inherit 
SKIER 

redefine roommate, share end 

feature 
roommate: GIRL* 

-- Thzlr’s roommate. 

share (other: GIRL) is 

-- Choose other as roommate. 

require 

other /= Void 

do 

roommate := other 

end 

end -- class GIRL 

The general picture is this: 

roommate: SKIER 

share 

(other: SKIER) 

t 

roommate 

share+ + 

fg?F 
roommate+ + 

share+ + 

++, a B.O.N. notation (see Kim WaldCn and Jean- 

Marc Nerson, Seamless Object-Oriented Software 

Architecture, Prentice Hall, 1994), means “redefined”. 

Since inheritance is specialization, the type rules 

naturally require that if we redefine the result of a 

feature, here roommate, the new type must always be 

a descendant of the original one. We should 

correspondingly redefine the type of the argument 

other of routine share. This is the policy known as 

covariance, where the “co” indicates that the argument 

and result vary together. The reverse policy is termed 

contravariance. I believe that this terminology was 

introduced by Luca Cardelli. 

Strangely enough, some workers in the field have 

been advocating a contravariant policy. Here it would 

mean that if we go for example to class RANKED- 

GIRL, where the result of roommate is naturally 

redefined to be of type RANKED-GIRL, we may for 

the argument of routine share use type GIRL, or, rather 

scaringly, SKIER of the most general kind. One type 

that is never permitted in this case is RANKED-GIRL! 

Here is what, under various mathematical excuses, 

some professors have been promoting. No wonder 

teenage pregnancies are on the rise. 

As far as I understand, by the way, the C++ policy 

is to bar any type redefinition - novariance as it is 

sometimes called. If this is indeed the rule I do not 

think that it is appropriate. 
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Covariance, of course, is not without its problems. 

Before looking at them we should examine a 

fundamental simplification. It is extremely tedious to 

have to redefine share the way we did in class GIRL. 

This redefinition only changes the type of the 

argument other; the rest of the routine, assertions and 

body, is just replicated. Anchored declarations, 

another Eiffel original, address this problem. In class 

SKIER we can prepare for such redefinitions by 

declaring other as being of type like roommate. This is 

the only difference with the previous version: 

class SKIER feature 

roommate: SKIER; 
-- This skier’s roommate. 

share (other: like roommate) is 

-- Choose other as roommate. 

require 

other /= Void 

do 

roommate := other 

end 

. . . 
end -- class SKIER 

Such a like declaration, known as an anchored 

declaration, means that other is treated in the class itself 

as having the same type as the anchor, here SKIER; but 

in any descendant that redefines roommate then other 

will be considered to have been redefined too. 

One can say without fear of exaggeration that 

without anchored redeclarations it would be impossible 

to write realistic typed object-oriented software. 

But what about the problems of covariance? They 

are caused by the clash between this concept and 

polymorphism. Polymorphism is what makes it 

possible to attach to an entity an object of a different 

type. It is made possible by the attachment rule 

introduced earlier: in the assignment x := y, the type of 

y may be a descendant of that of x. But with covariance 

this may get us into trouble. Assume we have entities sl 

of type SKIER, bl of type BOY and gl of type GIRL; the 

names should be mnemonic enough: 

sl: SKIER ; bl: BOY; gl: GIRL 

In creation instructions, marked with double 

exclamation marks !!, we create two objects of types 

BOY and GIRL and attach them to bl and gl 

respectively: 

!! bl ; !! gl; 

Polymorphism allows us to let sl represent the 

same object as bl: 

sl := bl 

Then the feature call 

sl .share (gl) 

achieves what all of us boys always dreamed of in high 

school, and what all parents fear. 

A similar problem arises out of a very important 

inheritance mechanism: descendant hiding, the ability 

for a class not to export a feature that was exported by 

one of its parent. 

A typical example is a feature add-vertex, which 

class POLYGON exports but its descendant 

RECTANGLE hides, because it would violate the 

invariant of the class: 

class RECTANGLE inherit 

POLYGON 

export 
(NONE} add-vertex 

end 

feature 

invariant 

vertex-count = 4 

end 
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The invariant is expressed here in Eiffel syntax as 

vertex-count = 4. Another well-known example, more 

academic in nature, is a class OSTRlCH that inherits 

from a class BIRD that was equipped with a routine$y. 

Clearly OSTRICH should not export that routine. 

I should note in passing that some people criticize 

such practices as incompatible with a good use of 

inheritance. They are wrong. It is a sign of the 

limitations of the human ability to comprehend the 

world - similar perhaps to undecidability results in 

mathematics and uncertainty results in modern physics 

- that we cannot come up with operationally useful 

classifications without keeping room for some 

exceptions. Descendant hiding is the crucial tool 

providing such flexibility. Hiding add-vertex from 

RECTANGLE or fly from OSTRICH is not a sign of 

sloppy design; it is the recognition that other 

inheritance hierarchies that would not require 

descendant hiding would most likely be more complex 

and less useful. 

Like covariance, then, descendant hiding is made 

necessary by the modeling requirements of the object- 

oriented method. But like with covariance this 

modeling power causes a conflict with the tricks made 

possible by polymorphism. An example is trivial to 

build: 

p: POLYGON; r: RECTANGLE ; . . . 

!! r ; ,.. 

p := r ; . . . 

p . add-vertex (. . .) 

The simplicity of these examples makes up what 

we may call the static typing paradox. A student can 

make up a counter-example showing a problem with 

covariance or descendant hiding in a few minutes; yet 

Eiffel users universally report that they almost never 

run into such problems in real software development. 

This is certainly confirmed by ISE’s own practice, 

even though the ISE Eiffel environment represents 

about half a million lines of Eiffel and about 4000 

classes. But of course this does not relieve us from the 

need to find a theoretical and practical solution. 

The problem was first spotted by several people in 

1988 and has been discussed several times in the 

literature. William Cook described it in a paper at 

ECOOP 1989. At TOOLS EUROPE 1992 in 

Dortmund, Franz Weber proposed a solution based on 

adding a generic parameter for each problematic type. 

In chapter 22 of the book Eiffel: The Language 

(Prentice Hall, 1992, the current Eiffel language 

reference), a solution was described which is based on 

determining the set of all possible dynamic types for 

an entity. So we would for example find out that sl can 

have BOY among its dynamic types and hence 

disallow the call sl .share (gl). 

This approach is theoretically correct but has not 

been implemented since it requires access to the entire 

system; so rather than a mechanism to be added to an 

incremental compiler it is a kind of lint that should be 

applied to a finished system. Incremental algorithms 

seem possible (an ISE report described one a few years 

ago), but they have not been fully demonstrated. 

The new approach that I think is the right one is 

paradoxical in that it is more pessimistic than the 

earlier one. In general, typing is pessimistic. To avoid 

some possibly failed computations, you disallow some 

possibly successful computations. In Pascal, for 

example, assigning 0.0 to an integer variable IZ would 

always work; assigning 1.0 would probably work; 

assigning 3.67 would probably not work; but assigning 

3.67 - 3.67 would actually work. Pascal cuts to the 

essentials by disallowing, once and for all, any 

assignment of a floating-point value to an integer 

variable. This is a pessimistic but safe solution. 

The question is how pessimistic we can afford to 

be. For example we can have a guaranteeably safe 

language by disallowing everything, but this is not 

very useful. What we need is a pragmatic assessment 

of whether the type rules disallow anything that is 

indispensable to real programs. 

In other words a set of typing rules should be sound 

and useful. “Sound” means that every permitted text is 

safe. “Useful” means that every desirable computation 

can still be expressed (reasonably simply) without a 

violation of the type rules. I believe that the rules 

which follow satisfy these two properties of soundness 

and usefulness. 
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I would need a little more time to explain the 

details of the rules here but I will try to give you the 

gist. The full rules may be found on the Web at 

http://www.eiffel.com. Follow the link to “Full type 

rules for the OOPSLA talk”. Workshops to discuss the 

underlying issues will be held at forthcoming TOOLS 

conferences (in particular at TOOLS EUROPE in 

Paris, 26-29 February 1996) and the complete 

discussion will be in the second edition of the book 

Object-Oriented Software Construction. 

The two basic notions are “polymorphic entity” 

and “catcall”. 

Definition: Polymorphic entity 

1 An entity x is polymorphic if it satisfies one of 1 An entity x is polymorphic if it satisfies one of 

the following properties: the following properties: 

l It appears in an assignment x := y where l It appears in an assignment x := y where 

y is of a different type or (recursively) y is of a different type or (recursively) 

polymorphic. polymorphic. 

l It is a formal routine argument. l It is a formal routine argument. 

l It is an external function. l It is an external function. 
I I 

Informally, an entity is polymorphic if it can be 

attached to objects of more than one type. The basic 

case, the first in the definition, is when the entity 

appears as target of an assignment whose source is of 

a different type or, recursively, polymorphic. We also 

consider - this is the second case in the definition, 

and very important although very pessimistic - that 

any routine argument is polymorphic, because we 

have no control over the actual arguments in possible 

calls; this rule is closely tied to the reusability goal of 

object-oriented software construction, where an Eiffel 

class is intended, eventually, to be included in a library 

where any client software will be able to call it. 

A call is polymorphic if its target is polymorphic. 

Next, a routine is a CAT (Changing Availability or 

Type) if in a descendant class some redefinition of the 

routine makes a change of one of the two kinds we 

have seen as potentially troublesome: retyping an 

argument (covariantly), or hiding a previously 

exported feature. A call is a catcall if some redefinition 

of the called routine would make the invalid because 

of such a change. 

I 

Definition: Catcall 

A routine is a CAT (Changing Availability or 

Type) if some redefinition changes its export 

status or the type of one of its arguments. 

A call is a catcall if some redefinition of the 

routine would make it invalid because of a 

change of export status or argument type. 

If we look back at our examples we see that they 

involve catcalls on polymorphic entities, also known 

as polymorphic catcalls, marked ** below: 

sl: SKIER ; bl: BOY;gI. GIRL ; . . . 

!! bl ; !! gl ; . . . 

sl := bl ; 

sl .share (‘gl) -- ** 

p: POLYGON; r: RECTANGLE ; . . . 

!! r ; . . . 

p := r ; . . . 

p . add-vertex (. . .) -- * * 

Polymorphic calls are of course permissible; they 

represent some of the most powerful mechanisms of 

the object-oriented method. Catcalls are also 

desirable; they are, as we saw, necessary to obtain the 

flexibility and modeling power that can be expected 

from the approach. 
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But we cannot have both. If a call is polymorphic, 

it must not be a catcall; if it is a catcall, it must not be 

polymorphic. Polymorphic catcalls will be flagged as 

invalid. 

Ilh’“‘““c’“i61 

Polymorphic catcalls are invalid 

If you remember the America conjecture, we of 

course do not sacrifice static typing; we do not 

sacrifice covariance; and we do not sacrifice 

substitutivity, that is to say polymorphic assignments 

of a more specialized value to a more general entity, 

except in cases in which they would clash with the 

other rules. As evidenced by the practical Eiffel 

experience that was mentioned earlier, such clashes 

are very rare; they are signs of bad programming 

practices and should be banned. 

So this is the type rule: a prohibition of 

polymorphic catcalls. 

This rule is similar to the one in Ez@Z: The 

Language but much, much simpler because it is more 

pessimistic. It is checkable incrementally: a violation 

will be detected either when an invalid call is added or 

when an invalid redefinition is made. It is also 

checkable in the presence of precompiled libraries 

whose source is not available to users. 

As a complement it is useful to show the robustness 

of this solution by giving a technique which will 

answer a common problem. Assume that we have two 

lists of skiers, where the second list includes the 

roommate choice of each skier at the corresponding 

position in the first list. We want to perform the 

corresponding share operations, but only if they are 

permitted by the type rules, that is to say girls with 

girls, ranked girls with ranked girls and so on. This 

problem or similar ones will undoubtedly arise often. 

An elegant solution, based on the preceding 

discussion and assignment attempt, is possible. This 

solution can be implemented in Eiffel right now; it 

does not require any language change. We will 

propose to the Nonprofit International Consortium for 

Eiffel (NICE), the body responsible for Eiffel 

standardization, to add to class GENERAL a new 

function jitted. GENERAL is a part of the Eiffel 

Library Kernel Standard, the officially approved 

interoperability basis; every Eiffel class is a 

descendant of GENERAL. Here is the functionJitted 

(the name might change). 

fitted (other: GENERAL): like other is 

-- Current if other is attached to 
-- an object of exactly the same 
-- type; void otherwise. 

do 
if other /= Void 

and then same-type (other) then 

Result ?= Current 

end 
end 

Function @ted returns the current object, but 

known through an entity of a type anchored to the 

argument; if this is not possible it returns void. Note 

the role of assignment attempt. 

A companion function which examines the types 

for conformance rather than identity, is easy to write. 

FunctionJitted gives us a simple solution to our 

problem of matching skiers without violating type 

rules. Here is the necessary routine match: 

match (~1, ~2: SKIER) is 

-- Assign sl to same room as s2 
--if permissible. 

local 
gender-ascertained-s2: like sl 

do 
gender-ascertained-s2 := 

s2 .jitted (~1); 

if gender-ascertained-s2 /= Void then 
sl . share (gender-ascertained-s2) 

else 
“Report that matching is 

impossible for sl and ~2” 
I 

end 
end 

For a skier s2 we define a version gender- 

ascertained-s2 which has a type anchored to sl. I find 

this technique very elegant and I hope you will too. 

And of course parents concerned with what happens 

during the school trip should breathe a sigh of relief. 
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