
Static typing*

Bertrand Meyer
ISE Inc.

270 Storke Road Suite 7
Goleta, CA 93117 (USA)

<meyer@eiffel.com>, http://www.eiffel.com

E very once in a while, in the history of science, there

arises a problem whose statement is so deceptively

simple as to fit in a few sentences that a curious

adolescent can understand, and whose solution baffles

the best minds of a generation. It is of such a problem,

central to the understanding and use of object-oriented

principles, that I propose to present both the statement

and a solution.

The simplicity of the problem comes from the

simplicity of the object-oriented model of

computation, introduced almost thirty years ago by

Professors Dahl and Nygaard. If one puts aside the

details of an object-oriented language, necessary to

write realistic software but auxiliary to the basic

model, only one kind of event ever occurs during the

execution of an object-oriented system: routine call. In

its general form it may be written, using the syntax of

Simula and Eiffel, as

⌧ l .f@El

meaning: execute on the object attached to x the

operation J; using the argument arg, with the

understanding that in some cases arg stands for several

arguments, or no argument at all. Our Smalltalk

friends would say “pass to the object x the message f

with argument arg”, and use another syntax, but those

are differences of style, not substance. At run time, this

is what our systems do: calling features on objects,

passing arguments as necessary. That everything relies

on this canonical scheme accounts in part for the

general feeling of beauty that object-oriented ideas

arouse in many people.

From the simplicity of the model follows the

simplicity of the typing problem, whose statement

m iirrors the structure of the Basic Construct:

The typing problem

When, and how, do we know that:

feature corresponding to fand

tppiicable to the object?

rvg is an acceptable argument for that

The policy known as static typing, which I will

argue is the only reasonable one for professional

software development, states that we should answer

the “when” part of the question by “before we ever

think of running the system”, and the “how” part by

“through mere examination of the software text”.

Let us make the terminology precise. x will be called

an entity; this is a generalization of the traditional notion

of variable. f will, in interesting cases, be a routine;

Smalltalk would call it a method, but there is no need for

a new term since the older one is well established. At

run time the value of x, if not void, will be attached to a

certain object, OBJon the figure.

*This article reproduces the text of the author’s OOPSLA
keynote address. That it is the transcript of a verbal
presentation explains that it does not have all the usual
trappings of a scientific article and makes generous use of
the first person singular. The final part of the speech
(general comments about the respective roles of technical
and methodological work, about OOPSLA, and about the
current state of development of Eiffel) has been removed
but is available from the author. See also the Web page.

20 Austin, TX October H-19,1995

Listeners already familiar with the issues of typing

will perhaps appreciate a preview of the conclusion. It

can be expressed in reference to a conjecture that

Pierre America from Philips Research Laboratories

expressed in a panel on the topic at TOOLS EUROPE

a few years ago. America stated that three properties

are desirable: static typing, substitutivity, and

covariance; his conjecture is that one can achieve at

most two of them. The aim of the present work is to

disprove the America conjecture and show that we can

enjoy static typing and covariance while preserving

substitutivity when it is needed and safe.

If you do not completely understand these terms do

not worry; they will be explained shortly. Starting now

with the basic concepts we must first make sure to

avoid any misunderstanding. Beginners with a

Smalltalk background sometimes confuse static q@zg

with static binding. Two separate questions are

involved. Typing, as noted, determines when to check

that the requested routine will be applicable to the

requested object; binding determines what version of

the feature to apply if there is more than one candidate.

Zower~hnding~ear++

* deferred

+ effected

++ redefined

For example in the hypothetical inheritance

hierarchy shown on the preceding figure, we might

define the feature lower-landingxear only at the

level of PLANE, not at the general level of AIRCRAFT.

Then for a call of the form

my-aircraft. lower-landingsear

two separate questions arise: when to ascertain that

there will be a feature lower-landingsear applicable

to the object; and, if there is more than one, which one

to choose. The first question is the typing question, the

second is the binding question. Both answers can be

dynamic, meaning at execution time, or static, meaning

before execution. For safety, flexibility and efficiency,

the proper combination is, I believe, the Eiffel one:

static typing and dynamic binding.

Static binding, which if I understand properly is the

default C++ policy, would mean that we disregard the

object type and believe the entity declaration, leading

us for example to apply to a Boeing 747-400 the

version of a feature, such as lower-Zandingsear, that

has been defined for the standard Boeing 747 planes.

This does not seem right, so we should choose dynamic

binding, defined simply as applying the right feature.

Dynamic binding, as many of you know, is crucial in

ensuring the decentralized, evolutionary system

architectures made possible by the object-oriented

method. Except when it has the same semantics as

dynamic binding - and that is a property best left for

an optimizing compiler to ascertain - static binding is

always wrong; dynamic binding, as in Eiffel and

Smalltalk is always the proper policy. (C++ developers

can obtain dynamic binding for specific features, but

only by declaring them explicitly as “virtual”.) The

cost of dynamic binding can be extremely small with a

good compiler and a supporting language design (in

which, incidentally, static typing will help

tremendously, as it does for compiling Eiffel).

Dynamic binding does not imply dynamic typing.

Typing is about something else: when to determine

that there will be at least one feature applicable to the

object. Dynamic typing, as in Smalltalk, means

waiting until the execution of the feature call to make

that determination. Static typing, as in Eiffel, means

performing the check before any execution of the

software; typically, this will be part of the verifications

made by a compiler.

Addendum to the Procrcdings OOPSLA ‘95 21

It is hardly necessary to emphasize the importance

of static typing. Anyone concerned with software

reliability knows how much more expensive it is to

detect errors late in the lifecycle. This is confirmed

quantitatively by Barry Boehm’s well-known studies

(see Software Engineering Economics, Prentice Hall,

1981):

1000+ I

.

Require- Design- Code Develop-- Accep-- Opera--

ments tance tion
ment test test

This insistence that the language should permit

static type checking is one of the major differences

between Eiffel and Smalltalk, and the Smalltalk policy

is one of the reasons why I am always skeptical about

using Smalltalk for serious industrial developments.

After all, run time is a little late to find out whether you

have a landing gear.

For static type checking to be possible, the

language must be designed accordingly. Here are the

basic rules as they exist in Eiffel, which at first sight

seem to allow a compiler, global or incremental, to

ascertain type safety.

Simplifying a little, there are three rules; one

applies to declarations, the second to feature calls, and

the third to attachments, that is to say assignments and

argument passing.

First, we require that every entity be declared with

a certain type:

Declaration rule

Every entity must be declared as being of a
1 certain type.

For example:

x: AIRCRAFT;

n: INTEGER ;

bal: BANK-ACCOUNT

Only to the inexperienced will this appear to be

constraining. Seasoned software engineers know that

software written once is read and rewritten many

times, and that the small effort of declaring the type of

every entity is generously repaid by the readability that

such declarations bring to the software text.

Next, for what we have called the basic operation

of object-oriented computing, we require that any

feature call use a feature that exists in the base class of

the target X:

Call rule

If a class C contains the call

x.f (..*)
there must be a feature of name f in the base
class of the type of X, and that feature must be
available (exported) to C.

This is easy to determine thanks to the preceding

rule, which causes the type of x to be known clearly

and unambiguously to anyone who reads the class text.

The “base class” of a type defines the applicable features.
A non-generic class is both a type and its base class, but the
distinction is needed when we consider generic classes:
LIST [INTEGER] is a type, with LISTas its base class.

Finally, we have a rule regarding attachment: for

any assignment of an expression y to an entity x, the

type of y must be compatible with the type of ?c.

argument passing, the base class of the type of
y must be a descendant of that of x.

In a classical language such as Pascal or Ada, we

would require identical types. Thanks to inheritance

the compatibility requirement is more flexible here:

22 Austin, TX October 15-19,199s

the type ofy may be any descendant, in the sense of

inheritance between the base classes, of the type of x.

The same rule applies to the case in which x is a formal

argument to a routine andy is the corresponding actual

argument in a call. The term “attachment” covers both

cases - assignment and actual-to-formal association.

In a simple world these rules would suffice. They

are easy for a software developer to understand, and

easy for a compiler to implement. In particular, the

compiler can check them incrementally. One of the

achievements of ISE’s Eiffel compiler development,

known as the Melting Ice technology, has been to

show that it is possible to guarantee type checking and

efficient code generation, as in compiled

environments, while avoiding the long edit-compile-

link-execute cycles traditionally required in such

environments; using Eiffel, one can get the fast

turnaround that people have come to associate with

Lisp and Smalltalk while preserving efficient code

generation and static typing. Even for systems of

hundreds of thousands of lines, the time to recompile

after changing a few classes is typically a few seconds,

including the time for full type checking.

Strangely enough, one encounters objections to the

static typing approach. These objections do not hold

on further examination, but they do highlight the set of

properties that must be satisfied by a realistic use of

static typing.

First, the type system must have no loopholes. There

is no such thing as “a little bit statically typed” (as in the

famous “a little bit pregnant”). Either the language is

statically typed or it is not. The C++ approach, where

you can still cast- that is to say convert- a value into

just about any type, defeats in my view the principle of

static typing. For one thing, it makes garbage collection,

a required component of serious object-oriented

computing, very difficult if not impossible.

Second, a statically typed language requires

multiple inheritance. The objection against typing

often heard from people with a Smalltalk background

is that it prevents one from looking at objects in

different ways. For example an object of type

DOCUMENT might need to be transmitted over a

network, and so will need the features associated with

objects of type MESSAGE.

0
LABLE_

DOCUME

But this is a problem only in languages such as

Smalltalk that do not permit multiple inheritance.

Multiple inheritance, of course, must be handled

properly, with mechanisms as in Eiffel for taking care

of name clashes, conflicting redefinitions, and

potential ambiguities in repeated inheritance. I

mention this because one still encounters people who

have been told that multiple inheritance is tricky or

dangerous; such views are usually promoted by

programmers using languages that do not permit

multiple inheritance, and are about as convincing as

opinions against sex emanating from the Papal nuncio.

Next, static typing requires genericity, so that we

can define flexible yet type-wise safe container data

structures. For example a list class will be defined as

class LIST [G] . . .

Genericity in some cases, needs to be constrained,

allowing us to apply certain operations to entities of a

generic type. For example if a generic class VECTOR

has an addition operation, it requires an addition also

to be available on entities of type G, the generic

parameter. This is achieved by associating with G a

generic constraint NUMERIC:

class VECTOR [G --> NUMERICJ . . .

meaning that any actual generic parameter used for

VECTOR must be a descendant of this class

NUMERIC, which has the required operations such as

“plus” and “minus”.

We also need a mechanism of assignment attempt.
This makes it possible to check that a certain object,

usually obtained from the outside world, for example a

database or a network, has the expected type. The

assignment attempt x ?= y will assign to x the value of

Addendum to the Proceedings OOPSLA ‘95 23

y if it is of a compatible type, but otherwise will make

x void. This instruction (which has been made

available to other languages under the name type-safe

downcasting) is one of the inventions of which the

Eiffel community can be proudest.

Also necessary are assertions, associated, as part

of the idea of Design by Contract, with classes and

features. Assertions, directly associated with object-

oriented constructs in the form of preconditions,

postconditions and class invariants, make it possible to

describe the semantic constraints which cannot be

captured by type specifications.

Finally, a realistic object-oriented type system will

require two mechanisms that will be described in more

detail shortly: covariance, which governs how we can

redefine the signatures of routines, and anchored

declarations, of the form

y: like x

which avoid endless type redeclarations.

Ideally, a presentation of typing should stop here.

Unfortunately, the combination of static typing with

other requirements of the object-oriented method

makes the issues more difficult than they appear at first.

The principal problem is what happens when we

redefine a feature’s type. To accompany the discussion

it will be convenient to use the example hierarchy

shown here, applying to a high-school ski team

preparing for a trip to a minor-league championship.

For brevity and simplicity we use the class names

GIRL as an abbreviation for “member of the girls’ ski

team” and BOY as an abbreviation for “member of the

boys’ ski team”. Some skiers in each team are ranked,

that is to say have already recorded good results in

earlier championships. This is an important notion:

ranked skiers will start first in a slalom, giving them a

considerable advantage over the others; after too many

competitors have used it, the run is much harder to

negotiate. (This rule that ranked skiers go first is a way

to privilege the already privileged, and may explain

why skiing holds such a fascination over the minds of

many people: that it serves as an apt metaphor for life

itself.) This yields two new classes, MNKED_GIRL

and RANKED-BOY

To assign the rooms we may use a parallel

hierarchy; some rooms will be reserved for boys only,

girls only, or ranked girls only.

Here is an outline of class SKIER:

class SKIER feature

roommate: SKIER;
-- This skier’s roommate

share (other: SKIER) is
-- Choose other as roommate.

require
other I= Void

do
roommate := other

end
. . .

end -- class SKIER

We have two features of interest: the attribute

roommate, shown in blue; and the procedure share,

which makes it possible to assign a certain skier as

roommate to the current skier. Note the use of Eiffel’s

assertions: the require clause introduces a

precondition stating that the argument must be

attached to an object.

A typical call, as in

sl, ~2: SKIER;

. . .

sl . share (~2)

will enable us to assign a certain roommate to a certain

skier.

21 October 15-19, 1995

How does inheritance get into the picture? Assume

we want girls to share rooms only with girls, and

ranked girls only with other ranked girls. We will

redefine the type of feature roommate, as shown below

(in this class text and the next, the redefined elements

appear underlined).

class GIRL inherit

SKIER
redefine roommate end

feature

roommate: GIRL:

-- This skier’s roommate.

. . .

end -- class GIRL

We should correspondingly redefine the argument

to procedure share, so that a more complete version of

the class text is:

class GIRL inherit
SKIER

redefine roommate, share end

feature
roommate: GIRL*

-- Thzlr’s roommate.

share (other: GIRL) is

-- Choose other as roommate.

require

other /= Void

do

roommate := other

end

end -- class GIRL

The general picture is this:

roommate: SKIER

share

(other: SKIER)

t

roommate

share+ +

fg?F
roommate+ +

share+ +

++, a B.O.N. notation (see Kim WaldCn and Jean-

Marc Nerson, Seamless Object-Oriented Software

Architecture, Prentice Hall, 1994), means “redefined”.

Since inheritance is specialization, the type rules

naturally require that if we redefine the result of a

feature, here roommate, the new type must always be

a descendant of the original one. We should

correspondingly redefine the type of the argument

other of routine share. This is the policy known as

covariance, where the “co” indicates that the argument

and result vary together. The reverse policy is termed

contravariance. I believe that this terminology was

introduced by Luca Cardelli.

Strangely enough, some workers in the field have

been advocating a contravariant policy. Here it would

mean that if we go for example to class RANKED-

GIRL, where the result of roommate is naturally

redefined to be of type RANKED-GIRL, we may for

the argument of routine share use type GIRL, or, rather

scaringly, SKIER of the most general kind. One type

that is never permitted in this case is RANKED-GIRL!

Here is what, under various mathematical excuses,

some professors have been promoting. No wonder

teenage pregnancies are on the rise.

As far as I understand, by the way, the C++ policy

is to bar any type redefinition - novariance as it is

sometimes called. If this is indeed the rule I do not

think that it is appropriate.

Addendum to the Proceedings OOPSLA ‘95 25

Covariance, of course, is not without its problems.

Before looking at them we should examine a

fundamental simplification. It is extremely tedious to

have to redefine share the way we did in class GIRL.

This redefinition only changes the type of the

argument other; the rest of the routine, assertions and

body, is just replicated. Anchored declarations,

another Eiffel original, address this problem. In class

SKIER we can prepare for such redefinitions by

declaring other as being of type like roommate. This is

the only difference with the previous version:

class SKIER feature

roommate: SKIER;
-- This skier’s roommate.

share (other: like roommate) is

-- Choose other as roommate.

require

other /= Void

do

roommate := other

end

. . .
end -- class SKIER

Such a like declaration, known as an anchored

declaration, means that other is treated in the class itself

as having the same type as the anchor, here SKIER; but

in any descendant that redefines roommate then other

will be considered to have been redefined too.

One can say without fear of exaggeration that

without anchored redeclarations it would be impossible

to write realistic typed object-oriented software.

But what about the problems of covariance? They

are caused by the clash between this concept and

polymorphism. Polymorphism is what makes it

possible to attach to an entity an object of a different

type. It is made possible by the attachment rule

introduced earlier: in the assignment x := y, the type of

y may be a descendant of that of x. But with covariance

this may get us into trouble. Assume we have entities sl

of type SKIER, bl of type BOY and gl of type GIRL; the

names should be mnemonic enough:

sl: SKIER ; bl: BOY; gl: GIRL

In creation instructions, marked with double

exclamation marks !!, we create two objects of types

BOY and GIRL and attach them to bl and gl

respectively:

!! bl ; !! gl;

Polymorphism allows us to let sl represent the

same object as bl:

sl := bl

Then the feature call

sl .share (gl)

achieves what all of us boys always dreamed of in high

school, and what all parents fear.

A similar problem arises out of a very important

inheritance mechanism: descendant hiding, the ability

for a class not to export a feature that was exported by

one of its parent.

A typical example is a feature add-vertex, which

class POLYGON exports but its descendant

RECTANGLE hides, because it would violate the

invariant of the class:

class RECTANGLE inherit

POLYGON

export
(NONE} add-vertex

end

feature

invariant

vertex-count = 4

end

26 Austin. TX October E-19,1995

The invariant is expressed here in Eiffel syntax as

vertex-count = 4. Another well-known example, more

academic in nature, is a class OSTRlCH that inherits

from a class BIRD that was equipped with a routine$y.

Clearly OSTRICH should not export that routine.

I should note in passing that some people criticize

such practices as incompatible with a good use of

inheritance. They are wrong. It is a sign of the

limitations of the human ability to comprehend the

world - similar perhaps to undecidability results in

mathematics and uncertainty results in modern physics

- that we cannot come up with operationally useful

classifications without keeping room for some

exceptions. Descendant hiding is the crucial tool

providing such flexibility. Hiding add-vertex from

RECTANGLE or fly from OSTRICH is not a sign of

sloppy design; it is the recognition that other

inheritance hierarchies that would not require

descendant hiding would most likely be more complex

and less useful.

Like covariance, then, descendant hiding is made

necessary by the modeling requirements of the object-

oriented method. But like with covariance this

modeling power causes a conflict with the tricks made

possible by polymorphism. An example is trivial to

build:

p: POLYGON; r: RECTANGLE ; . . .

!! r ; ,..

p := r ; . . .

p . add-vertex (. . .)

The simplicity of these examples makes up what

we may call the static typing paradox. A student can

make up a counter-example showing a problem with

covariance or descendant hiding in a few minutes; yet

Eiffel users universally report that they almost never

run into such problems in real software development.

This is certainly confirmed by ISE’s own practice,

even though the ISE Eiffel environment represents

about half a million lines of Eiffel and about 4000

classes. But of course this does not relieve us from the

need to find a theoretical and practical solution.

The problem was first spotted by several people in

1988 and has been discussed several times in the

literature. William Cook described it in a paper at

ECOOP 1989. At TOOLS EUROPE 1992 in

Dortmund, Franz Weber proposed a solution based on

adding a generic parameter for each problematic type.

In chapter 22 of the book Eiffel: The Language

(Prentice Hall, 1992, the current Eiffel language

reference), a solution was described which is based on

determining the set of all possible dynamic types for

an entity. So we would for example find out that sl can

have BOY among its dynamic types and hence

disallow the call sl .share (gl).

This approach is theoretically correct but has not

been implemented since it requires access to the entire

system; so rather than a mechanism to be added to an

incremental compiler it is a kind of lint that should be

applied to a finished system. Incremental algorithms

seem possible (an ISE report described one a few years

ago), but they have not been fully demonstrated.

The new approach that I think is the right one is

paradoxical in that it is more pessimistic than the

earlier one. In general, typing is pessimistic. To avoid

some possibly failed computations, you disallow some

possibly successful computations. In Pascal, for

example, assigning 0.0 to an integer variable IZ would

always work; assigning 1.0 would probably work;

assigning 3.67 would probably not work; but assigning

3.67 - 3.67 would actually work. Pascal cuts to the

essentials by disallowing, once and for all, any

assignment of a floating-point value to an integer

variable. This is a pessimistic but safe solution.

The question is how pessimistic we can afford to

be. For example we can have a guaranteeably safe

language by disallowing everything, but this is not

very useful. What we need is a pragmatic assessment

of whether the type rules disallow anything that is

indispensable to real programs.

In other words a set of typing rules should be sound

and useful. “Sound” means that every permitted text is

safe. “Useful” means that every desirable computation

can still be expressed (reasonably simply) without a

violation of the type rules. I believe that the rules

which follow satisfy these two properties of soundness

and usefulness.

Addendum to the Proceedings OOPSLA ‘95 27

I would need a little more time to explain the

details of the rules here but I will try to give you the

gist. The full rules may be found on the Web at

http://www.eiffel.com. Follow the link to “Full type

rules for the OOPSLA talk”. Workshops to discuss the

underlying issues will be held at forthcoming TOOLS

conferences (in particular at TOOLS EUROPE in

Paris, 26-29 February 1996) and the complete

discussion will be in the second edition of the book

Object-Oriented Software Construction.

The two basic notions are “polymorphic entity”

and “catcall”.

Definition: Polymorphic entity

1 An entity x is polymorphic if it satisfies one of 1 An entity x is polymorphic if it satisfies one of

the following properties: the following properties:

l It appears in an assignment x := y where l It appears in an assignment x := y where

y is of a different type or (recursively) y is of a different type or (recursively)

polymorphic. polymorphic.

l It is a formal routine argument. l It is a formal routine argument.

l It is an external function. l It is an external function.
I I

Informally, an entity is polymorphic if it can be

attached to objects of more than one type. The basic

case, the first in the definition, is when the entity

appears as target of an assignment whose source is of

a different type or, recursively, polymorphic. We also

consider - this is the second case in the definition,

and very important although very pessimistic - that

any routine argument is polymorphic, because we

have no control over the actual arguments in possible

calls; this rule is closely tied to the reusability goal of

object-oriented software construction, where an Eiffel

class is intended, eventually, to be included in a library

where any client software will be able to call it.

A call is polymorphic if its target is polymorphic.

Next, a routine is a CAT (Changing Availability or

Type) if in a descendant class some redefinition of the

routine makes a change of one of the two kinds we

have seen as potentially troublesome: retyping an

argument (covariantly), or hiding a previously

exported feature. A call is a catcall if some redefinition

of the called routine would make the invalid because

of such a change.

I

Definition: Catcall

A routine is a CAT (Changing Availability or

Type) if some redefinition changes its export

status or the type of one of its arguments.

A call is a catcall if some redefinition of the

routine would make it invalid because of a

change of export status or argument type.

If we look back at our examples we see that they

involve catcalls on polymorphic entities, also known

as polymorphic catcalls, marked ** below:

sl: SKIER ; bl: BOY;gI. GIRL ; . . .

!! bl ; !! gl ; . . .

sl := bl ;

sl .share (‘gl) -- **

p: POLYGON; r: RECTANGLE ; . . .

!! r ; . . .

p := r ; . . .

p . add-vertex (. . .) -- * *

Polymorphic calls are of course permissible; they

represent some of the most powerful mechanisms of

the object-oriented method. Catcalls are also

desirable; they are, as we saw, necessary to obtain the

flexibility and modeling power that can be expected

from the approach.

28 Austin, TX October E-19,1995

But we cannot have both. If a call is polymorphic,

it must not be a catcall; if it is a catcall, it must not be

polymorphic. Polymorphic catcalls will be flagged as

invalid.

Ilh’“‘““c’“i61

Polymorphic catcalls are invalid

If you remember the America conjecture, we of

course do not sacrifice static typing; we do not

sacrifice covariance; and we do not sacrifice

substitutivity, that is to say polymorphic assignments

of a more specialized value to a more general entity,

except in cases in which they would clash with the

other rules. As evidenced by the practical Eiffel

experience that was mentioned earlier, such clashes

are very rare; they are signs of bad programming

practices and should be banned.

So this is the type rule: a prohibition of

polymorphic catcalls.

This rule is similar to the one in Ez@Z: The

Language but much, much simpler because it is more

pessimistic. It is checkable incrementally: a violation

will be detected either when an invalid call is added or

when an invalid redefinition is made. It is also

checkable in the presence of precompiled libraries

whose source is not available to users.

As a complement it is useful to show the robustness

of this solution by giving a technique which will

answer a common problem. Assume that we have two

lists of skiers, where the second list includes the

roommate choice of each skier at the corresponding

position in the first list. We want to perform the

corresponding share operations, but only if they are

permitted by the type rules, that is to say girls with

girls, ranked girls with ranked girls and so on. This

problem or similar ones will undoubtedly arise often.

An elegant solution, based on the preceding

discussion and assignment attempt, is possible. This

solution can be implemented in Eiffel right now; it

does not require any language change. We will

propose to the Nonprofit International Consortium for

Eiffel (NICE), the body responsible for Eiffel

standardization, to add to class GENERAL a new

function jitted. GENERAL is a part of the Eiffel

Library Kernel Standard, the officially approved

interoperability basis; every Eiffel class is a

descendant of GENERAL. Here is the functionJitted

(the name might change).

fitted (other: GENERAL): like other is

-- Current if other is attached to
-- an object of exactly the same
-- type; void otherwise.

do
if other /= Void

and then same-type (other) then

Result ?= Current

end
end

Function @ted returns the current object, but

known through an entity of a type anchored to the

argument; if this is not possible it returns void. Note

the role of assignment attempt.

A companion function which examines the types

for conformance rather than identity, is easy to write.

FunctionJitted gives us a simple solution to our

problem of matching skiers without violating type

rules. Here is the necessary routine match:

match (~1, ~2: SKIER) is

-- Assign sl to same room as s2
--if permissible.

local
gender-ascertained-s2: like sl

do
gender-ascertained-s2 :=

s2 .jitted (~1);

if gender-ascertained-s2 /= Void then
sl . share (gender-ascertained-s2)

else
“Report that matching is

impossible for sl and ~2”
I

end
end

For a skier s2 we define a version gender-

ascertained-s2 which has a type anchored to sl. I find

this technique very elegant and I hope you will too.

And of course parents concerned with what happens

during the school trip should breathe a sigh of relief.

Addendum to the Proceedings OOPSLA ‘95 29

