
CEP GE: a full-screen structural editor

Bertrand MEYER

Computer Science Department, University of California, Santa Barbara, California 93106, U.S.A.

Jean-Marc NERSON

CIMSA, 10 Avenue de l'Europe, 78140 Velizy, France

ABSTRACT
This paper describes CEP A G E1, an editor for structured documents, designed for ease of use on modern terminals. The

design of CEPAGE is the result of work on syntax editors, full-screen editors and advanced software environments.
CEP AGE is a universal editor, in which the language description is merely a parameter; its external interface is designed for
the children of the video age. Although itself a prototype, CEPAGE embodies the properties which a structural editor
usable in an industrial environment should possess.

Keywords: structural editors, syntax editors, human interfaces, man-machine communication, programming environ·
ments, program formatting, ergonomics.

1. Objectives

CEPAGE is a structural editor (a term we prefer to
'syntax editor'), whose human interface was designed
with particular care. It is completely parameterizable and
can be applied to any language defined by a grammar: a
programming language or specification language, but
also languages for describing structured documents of
any kind (we shall from now on use the word 'documents'
for the objects the editor is used to construct). CEPAGE
belongs to a tradition of structural editors developed over
the past few years [Hansen 71; Wilander 80; Donzeau­
Gouge 81; Teitelbaum 81; Habermann 82; Allison 83;
Donzeau-Gouge 84]. Structural editors, as opposed to
normal text editors, permit documents to be manipu­
lated, not as simple sequences of lines or characters, but
as structured objects, by applying operations to them

1 Work carried out initiully at: Electricitc de Fmncc. Direction dcs Etudes et
Recherches. 1 avenue Uti General de Gaulle, 92141 C1amart, France.

defined in terms of their structure. Among the main
advantages of this method are:

1. The guarantee that only syntactically correct docu·
ments will be produced.

2. The possibility of carrying out transformations that
may be complex but are guaranteed correct, e.g. trans·
formations to improve portability or efficiency of pro·
grams.

3. The possibility of relieving the user of some of the
routine tasks associated with the necessity, in a normal
text editor, of supplying all the details of the 'concrete'
syntax of the documents.

4. The possibility of automatically translating docu­
ments from a syntactic framework into another frame­
work (e.g. in the case of conversions between program­
ming languages).

5. The use of standardized data structure (generally the
abstract syntax tree) which can serve as a support for
other software tools (e.g. (Schroeder 83]), or even
complete programming environments [t'iabermann H2].

CEPAGE: A FULL-SCREEN STRUCTURAL EDITOR 61

In spite of these qualities, structural editors have not
made much headway in industry. One of the main
reasons for this is, in our opinion, their external interface,
which, in most cases, is of the 'line-by-line' type; i.e.
dialogue with the user takes place by way of exchanges of
commands and responses. Today's programming en­
vironments, however, increasingly frequently offer full­
screen text editors such as SPF (on IBM), EMACS (on
MULTICS and VAX-UNIX) or VI (on VAX-UNIX),
which take full advantage of the potential provided by
modern terminals. The characteristics of these systems
can include the following [Meyer 83a]:

1. Use of the whole screen instead of a line as a unit of
communication between the system and the user, giving
the user a much wider view of the document during
construction, and consequently permitting him to exer­
cise better control on the whole editing process.

2. The possibility of providing, more easily than in a
line-by-line system, personalized dialogue, by storing
individual user profiles.

3. Providing users with several simultaneous views of
the document being handled.

4. Finally, and more generally, the application of the
'direct manipulation' principle [Schneiderman 83],
according to which, the user has a better command of the
system if he is provided, at any given time, with a clear
representation of the current state of the objects at hand.

The advantage of these different characteristics is such
that it is almost impossible to persuade a user of a
full-screen editor to go back to a line-by-line editor,
regardless of its other qualities. In our experience, this
also goes for structural editors: line-by-line type editors
will not find favour amongst those who are used to
full-screen systems.

The objectives of CEPAGE derive from these con­
siderations. It was a matter of combining the advantages
of structural editors, as regards security and power, with
the power of full-screen text editors and the benefits of
modern terminals.

The CEPAGE project was not intended to be a
research project, but rather an exercise in technology
transfer intended to win industrial support for an idea,
structural editing, which has been the subject of consider­
able research. In fact, we had to 'invent' a little more than
we had originally imagined.

The main sources of our inspiration were, as far as
structural editors were concerned, GANDALF and (to a
lesser degree) MENTOR and CPS; SMALLTALK also
influenced us, as a man-machine interface model.

By any objective standards, CEP AGE is a small-scale
project. Specification and design were carried out by the
two authors of this article. Its implementation was due
almost entirely to lean-Marc Nerson (in addition,
CEPAGE includes a small text editor, written by N.
Triquet). Initial discussions were held at the beginning of
1983 with the aim (which was met) of producing a
working prototype by 20 December 1983. Programming
consists of about 6000 lines of PASCAL; in addition, it
uses the Gescran package for handling the screen
interface [Audin 80], produced by the same group and
made up of 4000 lines of FORTRAN 77 (Gescran is a
collection of subprograms permitting 'full-screen' inter­
action to be described easily by manipulating only objects
belonging to four abstract types, called screen, window,

zone and terminal, and accessible only via primitives
specific to the package [Meyer 82]; it uses the
ENSORCELE I/O package [Meyer 81; Brisson 82]. The
rather special conditions in which this project was carried
out no doubt explain the fact that all this hardly
corresponds to good practice as defined by the most
eminent authorities [Boehm 82].

It may be of interest to note that partial use of formal
specifications, based on the language Z [Abria180], then
on the M method [Meyer 84a] were of some assistance.

2. Using CEPAGE

2.1. THE SCREEN

The screen allocated to a CEP AGE session is divided
into a certain number of windows (Fig. 1). Each window
fulfils a specific function:

1. A 'Document' window contains a representation of
the current state of the document being constructed or
modified; some elements of this representation, dis­
played between chevrons (e.g. <statement», corre­
spond to elements of the document that have not yet been
polished and are said to be 'non-terminal'.

2. A 'Text' window is intended to receive non­
structured texts which it may be necessary to supply at
certain stages of a session (e.g. identifiers, comments).

3. A 'Menu' window provides a list of options available
at any stage.

4. A 'Type' window gives the syntax type of undefined
elements (see discussion below).

5. 'Reserved' windows (not shown in Fig. 1) give
information on documents or elements of documents
other than the document being edited; these windows are
used to change document during a session, as well as for
copy and write operations.

6. A 'Message' window displays diagnostics.

2.2. DIALOGUE

At each stage of a CEP AGE session, the system gives
the user a choice between a certain number of options on
a menu. The menus are sufficient for the basic CEP AGE
functions; a user manual is not necessary once the user
has a reasonable grasp of the basic concepts of the
system. In the current IBM version, choices between the
various elements of the menu are made using function
keys on the terminal. On more advanced terminals, a
mouse might be used.

The cursor is used whenever an element of the
document has to be selected (e.g. to indicate which
terminal will be used for editing, as in Fig. l(a)), by
placing it over the element in question. This is the only
mode of access to a document (the concept of a line
number, for example, is not used). A more rapid device,
such as a mouse, would be particularly valuable.

There are some more advanced functions using com­
mands; these commands are made up of a single word,
and their inclusion is a result only of the limited number
of function keys available (there are twelve). CEP AGE
therefore has no 'command language' in the normal sense
of the word; all interactions within the system are made
by 'pointing and touching'.

In particular, the user writing a program text with
CEPAGE, e.g. in PASCAL, never has to strike a key for
concrete syntax elements such as key words like 'if,

62 INTERFACES AND EDITING I

(a)

r- document ...--menu

procedure p (in x: integer); FUNCTION KEY
type

t == <record>; DOWN 1
t1 = arrCflY <index> of UP 2

<type>; FORWARDS 3
var BACK 4

v: t; REFINE ® II--

v: <type>; MODIFY 6
begin INSERT 7

while<condition>do DELETE 8
p(x - 1);

<statem ent>;
repeat

0
J type I

• <state m ent>
until x = 0

[message I end

(b)

-document .--menu

procedure p (in x:integer); INSTRUC. KEY
type

t == <record>; ASSIGN 1
t1 = array <index> of CALL 2

<type>; 'WHILE' LOOP 3
var 'UNTIL' LOOP 4

v : t; CONDITIONAL ® ... -
v: <type>: BLOCK 6

READ 7
begin WRITE 8

while<condition>do (ABORT 0)
p (x - 1);

-<statement>;

0 c type
--, repeat

<statement>
until x = 0 ,message,

end

(c)

.-document .--menu

procedure p (in x: integer);
type

FUNCTION KEY t = <record>;
t1 = array <index> of DOWN 1

<type> ; UP 2
var FORWARDS 3

v : t ; BACK 4
v: <type>; REFINE 5

begin MODIFY 6
while<con dition > do INSERT 7

P (x - 1); DELETE 8
<statements>;
repeat

- if<condition>then
<statement>

else

0
I type I

<statement>
until x == 0

end ,message "I

- Cursor postion O--Function key selected
by user

Fig. I.-Refinement.

procedure, record', etc. Instead, a menu allows him to
choose between conditional, procedure, declaration,
record type declaration, etc. and the system produces the
correct syntax for him (routine tasks should be done by
machines, not people).

The only case when the keyboard (apart from function
keys) is necessary is when the user has to supply a text
that the system could not invent by itself, such as an
identifier or a comment. The 'text' window is used for
this. The text is written in it, using the full-screen text
editor included in CEPAGE.

2.3. BASIC FUNCTIONS

The main functions offered by CEP AGE fall into the
following categories:

1. 'browse': scan the document (up or down within the
hierarchy of syntax entities, backwards or forwards
within lists);

2. 'construction-modification': creation of entities,
modification of earlier versions, insertion and deletion
wi thin lists;

3. 'copy-transfer': reproducing or moving an element
of text (using the 'definition' operation, as described
below);

4. 'save-retrieve': using a file, in a suitable form, to
save the present state of a partially or completely refined
document; retrieval of a document previously saved;

5. 'generation': production of the final form of a fully
defined document;

6. 'session management': document selection, change
of document selection, library definition, etc. (a library is
a collection of documents; in the course of a session, one
can work on several documents, but only one of them is
active at a given moment; one can move freely from one
to another).

2.4. DELIMITING ELEMENTS OF TEXT

Delimiting text (Fig. 2) is an essential operation for
functions that require the user to define a syntactic
subsection of the document: copying or writing, for
example, make it necessary to define the part of the
document to which the operation applies. The mechan­
ism provided applies direct manipulation principles.

...-document r-- menu

procedure p (in x: integer); FUNCTION KEY type
t = <record>; OUT 1

t1 = array <index> of IN 2
<type>; ACCEPT 3

var ABORT 4
v : t;
v: <type>;

begin
jwhile<condfffon>cio-'

~x.?2~B:;.f I L_ =:L.-,;J I" _____ ...1
<statement> ;
repeat

0
r:;ttype~

<statement> ~atem~
until x = 0

end ,messagei

Fig. 2.-Delimiting.

In order to delimit an element, the cursor is placed
anywhere within it, and the extent of the element is given
by a series of commnds, issued using function keys (as
indicated by the appropriate menu); at each stage the
system highlights the element by means of special display
attributes (e.g. colour or reverse video).

Commands provided for delimitation are as follows:

1. Out: extends the element delimited to the structure
immediately enclosing it syntactically (e.g. if a statement
has just been defined, the whole of the block that
contains it is included).

2. In: cancels the effect of the previous out function, by
returning to the next lower level.

CEPAGE: A FULL-SCREEN STRUCTURAL EDITOR 63

3. Extend left: includes the immediately preceding
element (applicable when the current element is a sublist;
the three complementary operations are: exclude left,
extend right, exclude right).

4. Accept (the currently delimited element is accep­
ted).

5. Cancel.

2.5. LANGUAGE MODIFICATIONS

CEP AGE is completely language-independent; the
syntax (concrete and abstract) is a parameter which can
be modified as required. In the present version, descrip­
tion and modification of the language is carried out by
inputting a grammar. It is expected that this operation
will eventually by implemented as an interface to the
system itself, i.e. that one of the languages that CEPAGE
will be defined for will be a syntax description language
(it is entirely in keeping with the general principles of the
design of CEP AGE, that the user need not have any
knowledge of the concrete syntax of this 'language').

Language modifications may seem fairly useless in
practice, as long as CEPAGE is delivered with descrip­
tions of the main languages. However, the possibility of
easily adapting the language description to local condi­
tions seems highly desirable to us. In particular, it permits
programming standards to be set up more conveniently
(and in a way that makes them more easily acceptable)
than by using a posteriori validation tools. Language
subsets, conventions relating to comments and to the
structure of programs, etc. can also be enforced in this
way.

3. CEP AGE: technical choices

3.1. BASIC DATA STRUCTURES

In the course of a session, CEPAGE works (Fig. 3) on
two main data structures:

1. The internal description of the language, or
grammar graph.

2. The internal description of a set of documents, or
abstract syntax forest.

It is important to note that these two data structures are
treated in the same way. This is what makes CEPAGE a

syntax forest ~ Abstract ~

Dictionary
L...--....,.---

Fig.3.-Data·structures.

completely parameterized system with respect to lan­
guage: the description of the language is interpreted
repetitively by the system. This distinguishes CEP AGE
clearly from a system such as GANDALF, which is
parametrizable but uses a 'compiled' description of the
language; i.e. a 'kernel' version of GANDALF and a
description of a language X (or Z or C) is used as a basis
to obtain a specific tool, GANDALF-X or GANDALF­
C, adapted to the chosen language. The approach
adopted by CEP AGE offers greater flexibility and makes
it possible to modify a language easily. On the other
hand, it does not permit semantic actions to be taken into
account as easily as in, say, GANDALF.

The grammar graph is a data structure representing the
grammar of the language.

Abstract syntax is used as a basis for language
description; it is described by a collection of syntax types
and production rules. Each syntax type appears on the
left-hand side of at most one production rule; any that do
not appear to the left of a production rule are said to be
terminal. There are three types of production rules,
known as 'aggregate', 'choice' and 'list', illustrated
respectively by the following examples:

conditional = c: boolean; st 1, st 2: statement;
statement = assignment I conditionall compound
compound = statement*

Concrete syntax is obtained by 'decoration' of abstract
syntax productions; every list type production rule is
associated with a header, delimiter and end (e.g. begin,
the semicolon and end in the case of compound). The
grammar graph contains all this information.

The abstract syntax forest is a set of abstract syntax
trees, each associated with a document, or an element of
a document, in the course of elaboration.

There are four types of internal nodes on an abstract
syntax tree (Fig. 4), corresponding to the four types of
production rules:

1. 'Aggregate' nodes have a fixed arity.
2. 'Choice' nodes simply represent a choice in a

production rule of the choice type.
3. 'List' nodes can have any number of sons.

Program

/*~
-== LiS~-= Composite

~~~ment Statement Loop 

~D'----eclar-!t?-~' $ /' 

x 

* Concatenated node 
List node 

E9 Alternative node 
# Text node 

~ /~\ Boo!ean 5:tement 

# # 
x # 1 

+ 

Fig. 4.-Abstract syntax tree. 



64 INTERFACES AND EDITING I 

4. 'Text' nodes correspond to the te~min~l elemen.ts 
defined by the user using the text edItor mcluded In 

CEPAGE. 

3.2. OTHER DATA STRUCTURES 

Other data structures complement the first two. Apart 
from abstract syntax trees, the following three represen­
tations are necessary for documents: 

1. A form that can be displayed, as a set of elements to 
be transmitted to the display package GESCRAN,. for 
display on the terminal screen at each stage of the seSSIOn. 

2. A storable form for storage and later retrieval of the 
current state of documents. 

3. Text form, the ultimate aim of the edi~ing pro~ess. 
The abstract syntax forest is also assocIated wIth a 

dictionary, containing the different text elements neces­
sary (identifiers, etc.). The leaves of the syntax trees 
contain references to the dictionary. 

3.3. ALGORITHMS 

Note that the objectives defined above imply the 
absence of syntax analysis (parsing) in CEP~GE. C:0n-
struction of a text takes place by succeSSIve choIces 
corresponding to the abstract syntax; the concrete syntax 
s constructed by the system which actually does the 
nverse of syntax analysis, sometimes known as 'un­
tJarsing' . 

The freedom the user has in describing the language 
permits a good compromise to be established between 
ease of use and the degree of detail that the system 
permits; e.g. expression can be treated as a terminal. 
Another technique for this type of syntax entity, not used 
in the present version of CEPAGE, is that of [Kaiser 82], 
which is halfway between 'parsing' and 'unparsing'. 

Though there is no syntax analysis, we s~ill had o~e 
difficult algorithm to handle, for constructmg the dIS­
played form of documents. The issue here is to provide, 
at any given moment, a representation of the state of the 
document which is as clear as possible, while respecting 
the limits imposed by the physical size of the terminal. 

Using a text editor, whether full-screen or not, we can 
usually only provide an extract of the document, giving a 
few contiguous lines (some editors have an option of 
excluding groups of lines from the part displayed in order 
to concentrate on the most important elements at any 
given moment). A structural editor must be capable of 
giving a global view of the document or part of it, even if 
it cannot represent all its details on the screen. The 
solution is elision: certain elements of the document can 
be replaced by an abbreviation-more exactly, by a 
simple indication of their type. In this way, a 2000-line 
procedure could be represented by the simple indication 
'procedure'; we call this type of abbreviation an abstrac­
tion. The second type of abbreviation carried out by 
CEP AGE is collapsing, which consists of an abstraction 
applied to one or more sublists of a list, as in: 

"231 statements"; 
p: = expression; 
"57 statements" 

At each stage of the session, the system determines the 
focus of the user's apparent attention, after the last 
operations he has carried out, and seeks to display as 
detailed as possible a view of a portion of the document, 

around the focus, and decides on whatever a~straction 
and collapsing is necessary. It deduces the dIsplayable 
form that is then transmitted to GESCRAN, for eventual 
display on the screen. . . 

Finding a good representatIOn for dIsplay purposes 
proved to be an unexpectedly difficult task .. We w~re 
surprised by the lack of available documents; If the .bnef 
reference in [Barstow 84] is excluded, the only publIshed 
reference to the best of our knowledge, is [Mikelsons 
81], which is difficult to use because of its la~k of precision 
and the special characteristics of the enVIronment des­
cribed. 

The abundant literature on program formatting 
('pretty-printing'), is of little use here; the b~s~c assump­
tion, though it is not generally stated explICItly (cf. III 

particular [Oppen 80]) is that, though the .len~th of 
individual lines may be limited, the number of hnes IS not. 
For screen formatting, however, columns and lines are 
severely limited resources. We were consequently led to 
design algorithms we have described elsewher~ [Meyer 
83b, 84b], which are beyond the scope o.f thIS paper. 
These algorithms behave in a linear way ~It? respect to 
the number of nodes in the syntax tree. ThIS IS one of the 
fields in which we have had to resort to 'invention'. 

4. The future of CEPAGE 

As was indicated at the beginning of this article, the 
December 1983 version is a prototype which, however, 
covers the essential functions of the system. We foresee 
the following developments. 

1. It will be necessary to study users' reactions. The 
design of CEP AGE rests on what we think is a ~~od 
ergonomic basis for interactive systems, an OpInIOn 
supported by recent studies resting on solid scientific 
bases [Card 83], but which, naturally, needs experimental 
confirmation. 

2. We also plan to port the system to other environ­
ments. CEP AGE was designed to be portable; the 
decision to use PASCAL, in preference to an object­
oriented language such as SIMULA 67 (used previously 
with success by the same group to implement high-quality 
interactive tools), was deliberately taken with just this in 
mind. In the short term we intend to adapt CEPAGE to a 
UNIX environment both on a VAX and on a SUN 
workstation (at the University of California); the SUN is 
a programmer's workstation based on a 68000 with .a 
high-resolution bit-mapped screen and a n:o~se. Th?s 
project is particularly important for us, as It IS only m 
hardware environments of this quality that tools such as 
CEPAGE can, in our opinion, fulfil all their promise. We 
hope that CEPAGE will also be adapted to other similar 
systems (PERQ, APOLLO, SM90, etc.). 

3. We also need to add the major functions missing 
from the prototype, particularly the language modifica­
tion tool, and to prepare CEP AGE grammars for the 
main languages currently in use (the prototype was tested 
with a grammar of a language similar to PASCAL). 

We expect to be able to answer some questions that 
have had to be left hanging, in the light of experience of 
the system in operation; syntax analysis is one such issue. 
and we have to decide whether to add a parser to later 
versions, allowing existing programs, obtained by other 
means, to be manipulated by CEPAGE. 



CEPAGE: A FULL-SCREEN STRUCTURAL EDITOR 66 

We hope that the use of the first versions will confirm 
our view of the great potential importance of a powerful 
and ergonomic programming environment which could 
be derived from it. 

REFERENCES 

[Abrial 80] J.-R. ABRIAL, S. A. SCHUMAN and B. MEYER: A 
specification language; In: On the Construction of 

. Programs, C. A. R. HOARE and R. PERROT (Eds), 
1980, Cambridge University Press, Cambridge 
(U.K.). 

[Allison 83] R. ALLISON: Syntax-directed program editing; 
Software-Practice and Experience, 13, 453-465, 
April 1983. 

[Au din 80] E. AUDIN, G BRISSON, B. MEYER and F. VAPNE­
FICHEUX: Gescran, Manuel de Reference, Atelier 
Logiciel 22, Electricite de France, 1980. (Fourth 
Edition, 1984.) 

[Barstow 84] D. R. BARSTOW: A display-oriented editor for 
INTERLISP; In: Interactive Programming Environ­
ments, D. R. BARSTOW, H. E. SHROBE and E. 
SANDEWALL (Eds) , 288-299,1984, McGraw-Hill, New 
York. 

[Boehm 82] B. W. BOEHM: Software Engineering Environ­
ments; 1982, Prentice-Hall, Englewood Cliffs, NJ. 

[Brisson 82] G. BRISSON, B. MEYER and F. VAPNE-FICHEUX: 
Ensorcele: Entrees et Sorties Sans Format (2 eme partie); 
Atelier Logiciel 6, Electricite de France, Dec. 1982. 

[Card 83] S. K. CARD, T. P. MORAN and A. NEWELL: The 
Psychology of Human-Computer Interaction; 1983, 
Lawrence Erlbaum Associates, Hillsdale, NJ. 

[Donzeau-Gouge 81] V. DONzEAU-GOUGE, G. HUET, G. KAHN 
and B. LANG: Environment de programmation Men­
tor: present et avenir; In: Actes des Troisiemes 
Journees Francophones sur l'Informatique, 1981, 
Geneva. 

[Donzeau-Gouge 84] V. DONZEAU-GOUGE, G. HUET, G. KAHN 
and B. LANG: Programming environments based on 
structured editors: the MENTOR experience; In: Inter­
active Programming Environments, D. R. BARSTOW, 
H. E. SHROBE and E. SANDEWALL (Eds), 128-140, 
1984, McGraw-Hill, New York. 

[Habermann 82] N. HABERMANN et al.: The Second Compen­
dium of Gandalf Documentation; 1982, Carnegie­
Mellon University, Pittsburgh, PA. 

[Hansen 71] W. J. HANSEN: Creation of hierarchic text with a 
computer display; ANL-7818, Argonne National Lab­
oratory, Argonne, IL, 1971. (Also as dissertation, 
Computer Science Department, Stanford University, 
June 1971.) 

[Lewis 81] J. W. LEWIS: Beyond ALBEIP: language and neutral 
form; In: Proceedings of the 5th International Confer­
ence on Software Engineering, 422-429, 1981, San 
Diego, CA. 

[Kaiser 82] G. E. KAISER and E. KANT: Incremental expression 
parsing for syntax-directed editors; Computer Science 
Report, Carnegie-Mellon University, Pittsburgh, PA, 
Oct. 1982 . 

[Meyer 81] B. MEYER: EnsorceIe: entrees et sorties sans format 
(lere partie))' Atelier Logicie14, Electricite de France, 
April 1981. (Fourth Edition.) 

[Meyer 82] B. MEYER: Principles of package design; Communi­
cations of the ACM, 25 (7), 419-428, July 1982. 

[Meyer 83a] B. MEYER: Towards a two-dimensional program­
ming environment; In: Proceedings of the European 
Conference on Integrated Computing Systems 
(EeleS 82), Stresa (Italy), 1-3 September 1982, P. 
DEGANO and E. SANDEWALL (Eds), 1983, North­
Holland, Amsterdam. 

[Meyer 83b] B. MEYER and J.-M. NERSON: Showing programs 
on a screen; Internal Report HII4590-01, Electricite de . 
France, Sep. 1983. 

[Meyer 84a] B. MEYER: A system description method; In: 
Workshop on Specification Languages, Orlando, FL, 
March 1984 (to appear). 

[Meyer 84b] B. MEYER and J.-M. NERSON: Showing programs 
on a screen; submitted for publication, 1984. 

[Mikelsons 81] M. MIKELSONS: Prettyprinting in an interactive 
programming environment; Sigplan Notices, 16 (6), 
108-116, June 1981. 

[Oppen 80] D. C. OPPEN: Prettyprinting; ACM Transactions on 
Programming Languages and Systems (TOPLAS), 2 
(4),465-483, Oct. 1980. 

[Schroeder 83] A. SCHROEDER: Outils d'analyse des programmes 
sous Mentor; Globule (AFCET), no. 4,1983. 

[Shneiderman 83] B. SHNEIDERMAN: Direct manipulation: a step 
beyond programming languages; Computer (IEEE), 
16 (8), 57-69, Aug. 1983. 

[Teitelbaum 81] T. TEITELBAUM and T. REPS: The Cornell 
Program Synthesizer: a syntax-directed programming 
environment; Communications of the ACM, 24 (19), 
563-573, Sep. 1981. 

[Wilander 80] J. WILANDER: An interactive programming system 
for Pascal; BIT, 20, 163-174, 1980. 


