
S
oftware development evolves
less quickly than the industry’s
own hype would suggest: The
basic issues surrounding the
design and construction of

software have remained unchanged
throughout its history. Nevertheless, it is
possible to identify five breakthroughs
that have occurred since the time soft-
ware development was recognized as a
discipline in its own right:

• Structured programming, in the
early ’70s.

• The rise of the C culture (including
make, pipes, shells, scripting lan-
guages), in the late ’70s.

• The PC revolution, in the mid ’80s.
• Object technology, in the early ’90s.
• The Internet upheaval, happening

now.

These approximate times do not indi-
cate when the ideas were invented (object
technology, for example, dates back to
Simula in 1967) but rather when they
started to affect a large segment of the
industry. Also, the list does not imply a
personal judgment that these events were
intellectually the most important
(although I do think they were all bene-
ficial); they are simply the ones that had
the most effect on the industry. Using
another criterion would have resulted in
a different list (Lisp, for example, is not
a breakthrough in the sense used here but
was an intellectual milestone). Also note
that the third and fifth items are not
strictly software advances: As Niklaus
Wirth remarked many years ago, our

field remains driven in large part by
progress in hardware.

So what will be the sixth break-
through? To predict what might come
next, it is useful to consider two break-
throughs that did not happen.

WHAT DIDN’T BREAK THROUGH
Software reuse did not happen.

Although some reusable software ele-
ments have achieved a remarkable degree
of success, especially in the Windows
world, we have failed so far to realize the
vision of refounding the software field as
a components-based industry. The com-
mon explanation for the failure of reuse
is that it requires a better management
infrastructure. I disagree with this con-
clusion, because I think the major issues
are in fact technical (see “The Reusability
Challenge,” Feb. 1996, pp. 76-78).

Adoption of formal methods did not
happen. Here too we have seen some iso-
lated successes (not to mention incessant
discussions in the pages of Computer and
IEEE Software), but the effect on the
industry as a whole has been little more
than a scratch on the surface. To explain
the failure of formal methods, many
point to the typical programmer’s lack of
mathematical training and to the con-
straints of industrial development.

These explanations don’t seem quite
right to me; they are too narrow. I think
they miss the basic issue: Reuse can only
succeed with some injection of formal
methods. And the only chance for formal
methods to succeed on a large scale is if
they are applied to the development of
reusable components.

BUILDING A NEW FOUNDATION
Let me start with the second proposi-

tion.
Formal methods (such as Z, VDM,

Larch, and B) apply mathematical tech-
niques to specify, document, and when-
ever possible validate software. In spite
of many advances in making these tech-
niques easier to apply, they still require
extra effort and some mathematical
sophistication. In other words, they add
to development cost at a time when our
industry is more focused on productivity
(reducing costs) than quality (getting bet-
ter software in the long term).

This explains why the use of formal
methods has largely been confined to
expensive mission-critical systems—and
in fact to only a subset of such projects.

In the context of developing reusable
components, however, things change
completely! Now the extra effort
becomes economically justifiable. If you
are building a software component of
which you hope to sell tens or hundreds
of thousands, then all the mathematical
apparatus that looked too expensive on

a one-shot development start making a
lot of sense. If formal techniques let you
catch just one bug before the component
reaches your customers, they will more
than pay for themselves.

Which brings us to the potential for
widespread reuse. In my opinion it is
foolish to think that new approaches
being proposed for reuse—such as
CORBA and Java Beans—can succeed
without some degree of formalism. How
can you hope to release thousands of
components without systematically
including what earlier columns here have
introduced as the basic form of compo-
nent specification: the contract?

A contract indicates what each com-
ponent expects from its clients (the pre-
condition), what abstract properties it

The Next
Software

Breakthrough

July 1997 113

O
b

je
c

t
Te

c
h

n
o

lo
g

y
Editor: Bertrand Meyer, Eiffelsoft, 270 Storke Rd., Ste. 7, Goleta, CA 93117; voice (805) 685-6869; ot-column@eiffel.com

Reuse can only succeed
with formal methods.
And formal methods

can only succeed
if used to develop

reusable components.

Bertrand Meyer, Eiffelsoft

.

ensures on its results (the postcondition),
and what global conditions it maintains
(invariants). The ominous counterex-
ample is the $500 million failure of the
Ariane-5 rocket launcher, caused by the
reuse of a component that was not
equipped with the proper specification
(J.-M. Jézéquel and B. Meyer, “Design
by Contract: The Lessons of Ariane,”
Jan. 1997, pp. 129-130).

In the absence of a systematic
approach to reuse based on formal meth-
ods, we risk many more Ariane-like fail-
ures. Moreover, reuse will not take off,
as all the propaganda in the world can-
not make up for precise, clear specifica-
tions. The usual analogy from the
hardware field is clear enough here:
What hardware engineer would reuse an
electronic component without an impec-
cable specification of its inputs, its out-
puts, and its operating conditions?

This is the negative view. But the same
idea can also be rephrased positively: if
we are ready to make the necessary effort
to specify and validate our components

guage supporting formal techniques. I
would submit Eiffel as the candidate to
play that role, because it combines OO
mechanisms and built-in support for
design by contract. Others might prefer
to start from a formal specification lan-
guage such as B or Z.

I s this move to a set of formally speci-
fied fundamental components desir-
able? Yes. It is the best thing that could

happen to the industry today. I know of
no other idea that could do even
remotely as much to address software’s
most crying deficiencies. And nothing
else would improve just about every-
thing—productivity, reliability, ease of
adaptation—by a quantum leap.

Will it happen? I don’t know. We, the
actors in the software game (developers,
managers, and users) are the ones who
will decide, through our actions more
than our words, whether we really want
to carry out the next breakthrough in
software. ❖

formally—an effort that is, as noted, eco-
nomically justified because of the size of
the potential market—then the vision of
a component-based software industry
can become a reality.

The components should be made
available in major OO languages (such

as C++, Java, Smalltalk, and Eiffel), with
IDL interfaces for CORBA integration,
and perhaps versions in non-OO lan-
guages (such as C). All these versions
should be derived—as automatically or
at least as systematically as possible—
from a base version developed in a lan-

No other idea could do
remotely as much

for the software industry
as the movement toward

using a set of formally
specified, fundamental
software components.

Order from the Online Catalog
http://computer.org/cspress/catalog/cs-96.htm

using the convenient shopping cart

1996 CD-ROM: Catalog # SW07700 — $119.95
1996 & 1995 CD-ROM: Catalog #SW07701 — $179.95

We’ve done it again.

All 114 issues from 1996 on 1 CD-ROM
Read the articles you missed. Find published descriptions of

new products. Search for references or articles relevant to your
research or current projects. Computer Society ’96 is a fully

searchable SGML-based CD-ROM containing all 16 magazines
and transactions published by your society in 1996.

Special Member Price: $119.95

Here’s your second chance:
Buy both Computer Society ’95 & ’96 for only $179.95

.

