
0018-9162/99/$10.00 © 1999 IEEE July 1999 35

Component-Based
Development:
From Buzz to Spark

W
e software folks easily get carried away
by the latest panacea, but there is a dif-
ference between a buzz and a spark.
Buzzes happen all the time, and their
effect lasts anywhere between a few

Web-years (defined by convention as traditional
trimesters) and a few traditional years. Whether use-
ful, useless, or downright harmful, whether in the end
they succeed in affecting actual practice or just fade
away, buzzes at best address specific issues. A spark is
something else: It happens when the entire industry—
or, at least, a substantial group of opinion leaders—
suddenly and synchronously “clicks” on an idea and
determines that it’s going to change forever the way
we do our business. Sparks can hardly occur more
than once a decade or so. The difference between
buzzes and sparks is not value (a buzz can be a great
contribution) but scope and depth. Structured pro-
gramming, Windows, object technology were sparks;
many of the fads that have grabbed people’s attention
in the past few years are just buzzes.

It’s still early to tell for sure, but component-based
development will most likely become a spark—if we
get it right. It is the intent of this special issue of
Computer, the first on the topic, to help get it right.

Component-based development (CBD) is the build-
ing of software systems out of prepackaged generic
elements. The current excitement about CBD results
from the convergence of four phenomena originating
from quite different backgrounds:

• On the scientific side, the progress of modern soft-
ware engineering ideas with their special empha-
sis on reuse.

• On the industrial side, the widespread success of the-
oretically unpretentious but practically useful tech-
niques for building GUIs, databases, and other parts
of applications out of components: Microsoft’s VBX,
OCX, and ActiveX, and Imprise’s Delphi. As Wojtek
Kozaczynski and Grady Booch wrote in their intro-
duction to IEEE Software’s Component-Based
Software Engineering issue (Sept./Oct. 1998):
“Software engineers voted with their keyboards in

favor of OLE and Visual Basic.”
• On the political side, the push by some of the major

players for competing interconnection technolo-
gies: CORBA, COM, and Enterprise JavaBeans.

• In the software world at large, the generalization
of object technology, which provides both the
conceptual basis and the practical tools for build-
ing and using components.

The catalyst that has made these four elements fuse
into the current CBD movement is the growing real-
ization by the software industry— and more impor-
tantly its customers (companies whose business
depends on software, external or internal)— that “we
can’t continue like this forever.” Something must be
done to control the costs of developing software prod-
ucts and boosting their quality; any solution requires
an industrialization of the process, based on the reuse
of standard components rather than the still dominant
practice of doing too much from scratch.

A fifth element should, in the future, join the above
four: Enterprise Resource Planning systems. ERP prod-
ucts (from such vendors as SAP, PeopleSoft, and Oracle)
have taken by storm much of the world of management
information systems. But they have also caused strong
resentment because of their high price, monolithic
nature, cost of installation and customization, and gen-
eral heaviness. Only through componentization can the
ERP systems of the future continue to compete; con-
versely, ERP gives components a chance to affect the
very heart of business systems, not just the periphery.

Recent discussions of CBD have focused on binary
components made possible by COM and CORBA.
There is no reason, however, to take a restrictive view
of components—which would mean, in particular,
renouncing the benefits of object-oriented libraries
developed in OO languages, first Smalltalk and then
NextStep, Eiffel, C++, and Java. Object-oriented
libraries and frameworks provide components in their
own right, and indeed are some of the best ones
around. The difference of reuse technology between a
class framework and a COM binary affects the form
of the components, not the nature of the reuse process.

The catalyst behind component-based development is the growing
realization by the software industry that something must be done to control
the costs of developing software products and boosting their quality.

Bertrand
Meyer
Interactive
Software
Engineering/
Monash
University

Christine
Mingins
Monash
University

Gu
es

t E
di

to
rs

’
In

tr
od

uc
tio

n

36 Computer

More generally, in our opinion, it is absurd to
present CBD as “the next thing after objects.”
Not only does object technology pursue the
same basic aims as CBD (building software
from reusable components), it also provides the
only serious known technical basis to achieve
these aims. CORBA and COM components,
through their interface definition languages, rely
on the principles of OO encapsulation; the very
word interface, as well as the “O” in both
acronyms and the very nature of these compo-

nents (classes), proceed directly from object technol-
ogy. When it comes to implementing such
components, there is really nothing else around other
than OO methods, at least if we want to be able to
guarantee some degree of quality.

QUALITY
Quality is the one issue that stands between us and

the realization of the CBD objectives. It seems not to
have dawned yet on the industry that components
without a draconian attitude to quality at all stages of
the process may be worse than the evils they are try-
ing to cure. It is striking here to see that the literature
on CBD—articles in this special issue included—is
divided into two almost distinct subsets: those that
focus on technical issues and try to take ever more
subtle advantage of the available construction and
interoperability mechanisms; and those that discuss
how to guarantee the quality of the components.

Two of the articles in this issue indeed have quality
as their primary focus. In “Making Components
Contract Aware,” Antoine Beugnard and his colleagues
take a closer look at the notion of contract beyond the
original correctness contract concept. They distinguish
four levels: basic contracts as provided by a simple com-
ponent interface that lists operations and their signa-
tures (types of inputs and outputs) with no semantic
properties; behavioral contracts (the correctness con-
tracts mentioned above) that make it possible to express
what operations do, independently of how they do it;
synchronization contracts in parallel and distributed
systems; and quality-of-service contracts, which bring
attention to system-level issues. This is an important
classification that will enable component discussions
to be based on strong quality concerns.

Cynthia Della Torre Cicalese and Shmuel
Rotenstreich’s “Behavioral Specification of Distri-
buted Software Component Interfaces” also relies on
contracts for describing components’ behavioral prop-
erties. One of its contributions is a new mechanism,
Biscotti, for introducing contracts into Java. Numer-
ous Java contract extensions have been proposed,
including iContract and Jass. Contrary to most of its
predecessors, this one is not preprocessor-based, but
a language change implemented through a modifica-

tion of the Sun JDK source code. Although we think
it is preferable to use a language such as Eiffel or
Sather with built-in contract support, the article makes
a convincing case for the style of extension it proposes.
It also contains a cogent presentation of the role of
components in distributed systems and the merits of
the various proposed approaches.

EXTENDING CURRENT
COMPONENT TECHNOLOGIES

An area that is crying out for component-based
development is the nec plus ultra of software: operat-
ing systems. In “Component-Based APIs for Ver-
sioning and Distributed Applications,” Robert J. Stets,
Galen C. Hunt, and Michael L. Scott, from Microsoft
Research and the University of Rochester, present an
attractive redesign of the Windows interface based on
components. As they are careful to point out, it is not
a redesign of the operating system itself, but only of
the application programming interface—the system
as viewed by application developers through the facil-
ities they can call. They give some convincing argu-
ments for componentizing operating systems: to
facilitate OS evolution without endangering legacy
applications and to support distributed applications
better. Although the article makes no mention of
whether and when these ideas will be applied to a
commercial operating system—Windows NT being
the obvious candidate—one can only hope its advice
will be heeded by the designers and maintainers of
mainstream offerings.

It is striking to find one of the basic techniques used
by Stets and colleagues in the COM world developed
again under another name, interception, in an article
that focuses on CORBA. Interception (which may be
viewed as a generalization of the dynamic binding
mechanism that plays such a key role in object-oriented
development) consists of catching operation requests
at the last moment to make them do something differ-
ent, or something extra, without changing the existing
components that carried out the original operations.
In “Using Interceptors to Enhance CORBA,” Priya
Narasimhan, Louise E. Moser, and P. M. Melliar-Smith
discuss the notion of interceptors and its many appli-
cations to such areas as security, compression, and
scheduling. The range of applications is indeed stag-
gering, especially when extended with the applica-
tions described in the previously mentioned
COM-oriented article. Here, perhaps more than any-
where else, the differences between the two parts of
the component community are striking: If you start
invoking component operations at runtime, how do
your clients know that you are not violating the oper-
ations’ original intent? This is one of the areas where
the component community will have to come
together.

Quality is the one
issue that stands

between us and the
realization of the
CBD objectives.

In “Component Assembly for OO Distributed
Systems,” Guijun Wang, Liz Ungar, and Dan Klawitter
from Boeing describe the key architectural concepts
that preside over component-based development.
They introduce a division of CBD into three levels and
a number of fundamental concepts, especially ports
and links, which they apply to the study of the prin-
cipal component standards. This will be particularly
useful in focusing future discussions of component-
based approaches.

T his set of papers offers a rich view of the current
trends in CBD. Much more is needed to fulfill
the promises of the approach and allow it to

have the effect it deserves on the practice of software
development. The Component and Object Technol-
ogy department of Computer will continue to present
challenging views on the progress in the field; note in
particular the first public description of CORBA 3 by
Jon Siegel in the May issue, complemented in the pre-
sent one by Guy Eddon’s description of ongoing devel-
opments in COM+, Microsoft’s strategic effort in the
field. Look for more component contributions in the
months to come, as the buzz turns into a spark. ❖

Bertrand Meyer is president of Interactive Software
Engineering, where he has directed the design of numer-
ous tools, component libraries, and customer applica-

Just how risky is your software project?

Get the software that helps you manage risk!

1999 Codie
Award

Nominee

member price
$180

See our 30-day risk-free guarantee @ http://computer.org

Buy SERIM
and get...

Version 1.0 for
Windows 95

A LearnerFirst® Software tool

...Software
Engineering

Risk
Management...

...free!

tions. His nine books include Object-Oriented Software
Construction. He is the designer of the Eiffel method
and language, chairs the TOOLS conference series, and
edits Computer’s Component and Object Technology
department, JOOP’s Eiffel column, and Prentice Hall’s
Component and Object Technology book series. He is
an associate member of the French Academy of Sci-
ence’s Application Council and since 1998 has held a
position as adjunct professor at Monash University,
where he helped start the Trusted Components initia-
tive (http://www.trusted-components.org) as part of the
new EDST industry/government consortium for Enter-
prise Distributed Systems Technology.

Christine Mingins is associate Head of School in the
Faculty of Computing and Information Technology at
Monash University (Melbourne), where for several
years she has led the use of object-oriented methods at
various stages of the curriculum, including introduc-
tory programming. Her publications have ranged over
software metrics, reusable components, IT education,
analysis and design methods, and management issues.
She has been for several years the program chair of
TOOLS Pacific. She helped start the Trusted Compo-
nents Initiative and is a member of its core group.

Meyer can be reached at ot-column@eiffel.com and
Mingins at cmingins@csse.monash.edu.au.

