
0018-9162/03/$17.00 © 2003 IEEE48 Computer

Uncovering
Hidden Contracts:
The .NET Example

C ommercial relationships and business con-
tracts, which formally express the rights
and obligations binding a client and a sup-
plier, provide the inspiration for design by
contract software development methodol-

ogy. Software contracts take the form of routine pre-
conditions (obligations on the caller), postconditions
(benefits to the caller), and class invariants (consis-
tency constraints), written into the program itself.
The design by contract methodology uses such con-
tracts for building each software element.1-3 This
approach is particularly appropriate for developing
safety-critical software and for reusable libraries.
The Ariane 5 accident makes a textbook case for the
precision that design by contract offers in specify-
ing reusable components.4

The methodology is a key design element of some
existing libraries,1 especially the Eiffel software
development environment, which incorporates con-
tract mechanisms in the programming language
itself. As long-time practitioners of design by con-
tract techniques, we see their benefits clearly and
are surprised that recent languages and libraries,
including the official libraries for Java and .NET
and the C++ Standard Template Library, have not
adopted them. Because we see the contract
metaphor as inherent to quality software develop-
ment, we undertook the work reported here as a
sanity check: Do we see contracts everywhere sim-
ply because our development environment makes
using them natural? Or are they intrinsically pre-
sent, even when other designers don’t express or
even perceive them?

To answer these questions, we examined noncon-
tracted libraries for hidden contracts—that is, for
language or documentation techniques that suggest
contract mechanisms such as precondition and post-
condition clauses. Our first target is the Collections
classes of the .NET Framework Class Library,5 the
most recent addition to the world’s collection of fun-
damental data structure and algorithm libraries.

LOOKING FOR WHAT ISN’T OFFICIALLY THERE
This search has sent us rummaging through inter-

face specifications, documentation, even generated
code—which in .NET, as in Java, still retains sig-
nificant high-level information.

Because we are looking for something that offi-
cially isn’t there, we must exercise our judgment to
claim and authenticate our findings, stating explic-
itly why we think a particular class characteristic,
such as an exception, represents an underlying con-
tract. We have therefore performed the work man-
ually, not relying so far on any automatic tools.

A manual extraction process puts a natural limit
on future extensions of this analysis to other
libraries. Automated extraction tools could help,
and our results suggest certain patterns in code and
documentation that point to possible contracts—
just as certain geological patterns point to possible
oil deposits. The final contract-elicitation process,
starting from noncontracted libraries, will always,
however, require subjective decisions.

WHY USE CONTRACTS?
Some programmers who do know about con-

Can libraries written without explicit support for design by contract
benefit from adding contracts? We studied classes from the .NET
collections library for implicit contracts and assessed improvements
that might result from making them explicit.

Karine
Arnout
Bertrand
Meyer
ETH (Swiss
Federal Institute
of Technology)

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

tracts see them as just a way to help test and debug
programs through conditionally compiled instruc-
tions of the form

if not “Some condition I expect to
hold here” then

“Scream”
end

where “Scream” might involve triggering an excep-
tion or stopping execution altogether. However,
such a use—similar to the C language’s “assert”—
is only a small part of the methodology and would
not by itself justify special language constructs.

Contracts address a much wider range of soft-
ware process issues for general application devel-
opment as well as library design:

• Correctness. Contracts help build software
right in the first place by avoiding bugs rather
than correcting them after they appear.
Designers are encouraged to think about each
software element’s abstract properties and to
build observance of them into the software.

• Documentation. Development environments
such as Eiffel that support software provide
automatic tools to extract documentation that
is both abstract and precise. The information
comes from the software text, saving the effort
of writing documentation as a separate prod-
uct and eliminating the risk of divergence
between software and documentation.

• Debugging and testing. Monitoring contracts
at runtime supports an effective form of qual-
ity assurance: Since the code now describes not
only what the program does but what it is sup-
posed to do, runtime checking uncovers the
discrepancies between intent and realization.

• Inheritance control. A coherent approach to
inheritance limits the extent to which routine
redefinitions can affect the original semantics.
The language rule only permits weakening pre-
conditions and strengthening postconditions
in descendants of the original class.

• Management. Project managers and decision
makers can understand a program’s global
purpose without having to go into the code in
depth.

The principles are particularly relevant to library
design. Eiffel libraries are equipped with contracts
stating their abstract properties, thereby helping
users write robust software as well as debug and
document it.

Contract elements
Contracts express the semantic specifica-

tions of classes and routines. They are made
of assertions—Boolean expressions stating
individual semantic properties. For example,
a class representing lists stored in a container
of bounded capacity might require the num-
ber count of list elements not to exceed the
maximum permitted capacity. Contract ele-
ments include

• preconditions—requirements under which a
routine will function properly. A precondition
is binding on clients (callers); the supplier (the
routine) can turn a precondition to its advan-
tage by simplifying its algorithm to assume the
precondition.

• postconditions—properties the supplier guar-
antees to the client on routine exit.

• class invariants—semantic constraints char-
acterizing the integrity of instances of a class.
Each constructor (creation procedure) must
ensure these constraints, and every exported
routine must maintain them.

• check instructions—an assert-like construct,
often used on the client side to check that a
precondition is satisfied as expected.

• loop variants and invariants—correctness con-
ditions for a loop.

Check instructions, loop variants, and loop invari-
ants address implementation correctness rather
than library interface properties, so we will not con-
sider them further here.

Although preconditions and postconditions are
the best-known forms of library contracts, class
invariants are particularly important in an object-
oriented context. Class invariants express funda-
mental properties of the abstract data type
underlying a class and the correctness of the rep-
resentation invariant—the abstract data type imple-
mentation chosen for the class.6

Inherent contracts in libraries
Even a simple example shows the usefulness of

contracts in library design. Consider a square root
function specified as

sqrt (x: REAL): REAL

In this specification, the function takes a REAL
argument and returns a REAL result.

Although some Java and .NET documentation
just calls it a “contract,” this type signature’s spec-

November 2003 49

Eiffel libraries
help users

write robust
software as well

as debug and
document it.

50 Computer

ification defines the function’s signature con-
tract. The more broadly accepted term for
“contract,” which we use here, is semantic
contract, specifying important properties of
the argument and result that type informa-
tion alone can’t capture. An example is what
happens for a negative argument.

A contract—in the form of a precondition
and a postcondition—expresses which spec-
ification the function implements. In Eiffel
the function would appear as

sqrt (x: REAL): REAL is
-- Mathematical square root
-- of x, within epsilon

require
non_negative: x >= 0

do
... Square root algorithm

ensure
good_approximation:
abs(Result ^2 – x)
<= 2 * x *epsilon

end

where epsilon is some appropriate value express-
ing the requested precision, abs gives the absolute
value, and ^ is the power operator. The assertion
tags “non_negative” and “good_approximation”
are for documentation. They also provide a more
precise error message if the execution violates an
assertion, assuming the programmer has enabled
runtime contract monitoring for testing or de-
bugging.

Here we find direct support for the contract
clauses—require, ensure, and the yet-to-be-
encountered invariant—in the language and the
associated documentation standard. The contract
is, more generally, a property of the library’s design
and its interface to application programmers: To
use a square-root function properly, programmers
must know the conditions under which it will oper-
ate and what properties they can expect of its result.

This example raises two general questions:

• If there is no explicit contract discipline, com-
parable to the Eiffel practice of documenting
all libraries through assertions, where will we
find the implicit contract?

• Will the contract always exist, as in this exam-
ple, whether it is expressed or not?

Our study of .NET libraries provides material for
answering these questions.

WHY .NET LIBRARIES?
We used .NET libraries for our study not only

because they are recent and widely publicized col-
lections of general-purpose reusable components
but also because the metadata concept gives them
substantial specification information that appears
directly useful to the contract-elicitation process.

Metadata
The basic compilation unit for a .NET library is

the assembly. The key to the framework’s support
for component-based development is that every
assembly includes metadata providing documen-
tary information that makes it self-describing, in
accordance with the design by contract self-docu-
mentation principle.2

In addition to predefined categories—assembly
name, version, dependencies, and so on—with
proper source-language support, developers can use
custom attributes to define their own specific kinds
of metadata.

.NET Contract Wizard
Both predefined and custom metadata open

attractive new possibilities for analyzing and devel-
oping libraries. We built a prototype .NET Contract
Wizard7 that uses metadata to examine a class and
its features so that users can add appropriate con-
tracts interactively through a graphical interface—
without having access to the source code.

By nature, however, the Contract Wizard is use-
ful only if contracts are intrinsically present in good
software libraries. This observation is one of the
incentives for our study: As we consider further
development of the Contract Wizard, we must first
gather empirical evidence confirming or denying its
usefulness. If contracts add nothing useful and non-
contracted .NET libraries do very well without
them, continuing our work on the Contract Wizard
would be a waste of time.

COLLECTION CLASS ANALYSIS
We first scouted the class ArrayList, part of the

core .NET library (mscorlib.dll), for hidden contracts.
Our choice was almost arbitrary. In particular, we
did not guess beforehand that the class would sug-
gest either more or fewer contracts than any other.

As an informal criterion, ArrayList seemed
typical of the .NET Collections library style, and
it has obvious practical use since it describes
lists implemented through arrays. It also has a
counterpart in EiffelBase, ARRAYED_LIST, open-
ing the way to comparisons after we completed the
contract-elicitation process.

The metadata
concept gives

.NET substantial
specification

information that
appears directly

useful to the
contract-elicitation

process.

The code extracts below represent the different
Eiffel and .NET conventions. For example, Eiffel
uses count, and .NET uses Count. Likewise,
the Eiffel classes ARRAY_LIST and ARRAYED_
LIST match .NET’s ArrayList.

Implicit class invariants
The documentation comments revealed

ArrayList properties in the class invariants cat-
egory.

For example, the class constructors specification
states, “The default initial capacity for an
ArrayList is 16.” This comment implies that the
created object’s capacity is greater than zero. Taking
this lead, we noticed that all three ArrayList con-
structors set the initial list’s capacity to a positive
value. According to design by contract rules, which
require that all of a class’s creation procedures must
guarantee an invariant property, this consistency
suggests a class invariant.

The other key invariant property is that all of the
class’s exported routines must preserve it.
Examining the documentation of all routines
showed the property to be true for ArrayList,
indicating that this property had the characteristics
of an invariant, which Eiffel would express by the
clause

invariant
positive_capacity: capacity >= 0

The documentation further revealed that two of
the three ArrayList constructors “…initialize a
new instance of the ArrayList class that is
empty.” The number of elements Count for an
arrayed list created this way must then be zero.

The third constructor, which takes a collection c
as a parameter, “initializes a new instance of the
ArrayList class that contains elements copied
from the specified collection.” So the new object’s
number of elements equals the number of elements
in the collection passed as argument; we can
express this through the assertion Count =
c.Count.

It is unlikely that c.Count could be negative.
Checking the documentation further revealed that
the argument passed to the constructor can denote
any nonvoid collection, represented by any of the
many classes inheriting from the ICollection
interface.5

According to the specification of the routine
Remove in ArrayList, “The average execution
time is proportional to Count. That is, this method
is an O(n) operation, where n is Count.” This spec-

ification implies that Countmust always be
nonnegative. The evidence is strong enough
to suggest adding a clause to the above
invariant:

positive_count: count >= 0

These first two properties are simple but
already useful.

Next, we examined the class members’
specification. Documentation on the Count
property revealed interesting information: “Count
is always less than or equal to Capacity.” This
statement indicates that this class property always
holds, suggesting a third invariant property for the
ArrayList class and the accumulated clause

invariant
positive_capacity: capacity >= 0
positive_count: count >= 0
valid_count: count <= capacity

Implicit routine preconditions
In addition to implicit class invariants, the docu-

mentation also suggested preconditions. For exam-
ple, the documented exception cases for class
ArrayList require the routine Add to throw an
exception of type NotSupportedException if
the arrayed list on which it is called is read-only or
has a fixed size. This suggests that the underlying
implementation of Add first checks that the call tar-
get is writable (not read-only) and extendible (not
fixed-size) before actually adding elements to the list.

Imposing such a requirement on a method is the
way design by contract defines a routine precon-
dition. An Eiffel Add specification would then
include the following precondition:

require
writable: not is_read_only
extendible: not is_fixed_size

where is_read_only and is_fixed_size are
the Eiffel counterparts of the .NET properties
IsReadOnly and IsFixedSize of class
ArrayList.

This example, one of many in the .NET frame-
work reference documentation,5 suggests a sys-
tematic scheme for extracting preconditions:

• Read the exception conditions—for example,
the array list is read-only.

• Take the opposite—for ArrayList, the con-
dition would be not is_read_only.

November 2003 51

Design by contract
rules require that all
of a class’s creation

procedures must
guarantee an

invariant property.

52 Computer

• Infer the underlying routine precondi-
tion—in this case, writable: not
is_read_only.

A systematic scheme, in turn, opens the door
to the possibility of automated tool support.

Implicit routine postconditions
Does the .NET documentation also reveal

hidden postconditions?
To explore this question, we considered

the query IndexOf. More precisely, since
IndexOf is an overloaded method, we chose
a specific version identified by its signature:

public virtual int IndexOf
(Object value);

The documentation explains that the return value
is “. . . the zero-based index of the first occurrence
of value within the entire ArrayList if found;
otherwise, –1.”

We can rephrase this specification more explic-
itly:

• If value appears in the list, the result is the
index of the first occurrence, hence greater
than or equal to zero (.NET lists are indexed
starting at zero) and less than Count, the num-
ber of elements in the list.

• If value is not found, the result is –1.

This property is guaranteed on routine exit—that
is, it is incumbent on the supplier as a guarantee of
correct completion of its task. As such, it represents
a postcondition. In Eiffel, we would add a corre-
sponding clause to the routine:

ensure
valid_result_if_found:
contains (value) implies
Result > = 0 and Result
< count

correct_index_if_found:
contains (value) implies
item (Result) = value

minus_one_if_not_found:
not contains (value) implies
Result = –1

This analysis suggests that routine postconditions
do exist in .NET libraries, although they are not
explicitly expressed because they lack support from
the underlying environment. Unlike with precon-

ditions—for which it may be possible to devise sup-
porting tools—extracting postconditions is likely
to require case-by-case human examination
because evidence is scattered across the reference
documentation.

Interface contracts
Class ArrayList implements three “inter-

faces”—completely abstract specification mod-
ules—of the .NET collections library: IList,
ICollection, and IEnumerable.

We subjected these interfaces to the same
analysis as the class. We found that IList, ICol-
lection, IEnumerable, and IEnumerator—
of which IEnumerable is a client—have routine
preconditions and postconditions similar to those of
ArrayList. We did not, however, find class invari-
ants in these interfaces. This is probably because
.NET interfaces have a limited scope compared with
“deferred classes,” their closest counterpart in the
object-oriented model that Eiffel embodies.

Deferred classes can have a mixture of abstract
and concrete features. In particular, they can
include attributes. Interfaces, on the other hand,
are purely abstract and cannot contain attributes.
Eiffel policy provides a continuous spectrum of
classes, from totally deferred—the equivalent of
.NET and Java interfaces—to fully implemented.
This policy supports the aims of object-oriented
development, providing a seamless process from
analysis, which typically uses deferred classes, to
design and implementation, which make the classes
progressively more concrete. Class invariants in the
Eiffel libraries often express consistency properties
binding various attributes together.8

The classes implementing a given interface can
share a set of properties that would be candidates
for interface invariants. Our analysis of the .NET
collections library did not, however, reveal any such
properties.

ADDING CONTRACTS
The discovery of hidden contracts in the .NET

arrayed list class suggested building a “contracted
variant” of this class, ARRAY_LIST, that has the
same interface as the original ArrayList plus the
elicited contracts.

Rather than modifying the original class, we can
produce the contracted variant in Eiffel as a new
class whose routines call those of the original class.
This was the only solution, anyway, since we did
not have access to the source code. The Contract
Wizard supports such a process, but for this study
we produced the result manually.

Eiffel policy
supports

object-oriented
development,

providing a seamless
process from

analysis to design
and implementation.

Contracted .NET arrayed list class
Reviewing a few more features helps devise

contracts for the Add and IndexOf routines.
The contracted variant of feature Add with the

two preconditions, tagged “writable” and
“extendible,” also expresses a postcondition (with
different clauses) because its elicitation process is
similar to the process for the IndexOf query. The
Add header comment helps understand the con-
tracts:

add (value: ANY): INTEGER
-- Add value to the end of the
-- list (double list capacity
-- if the list is full)
-- and return the index at
-- which value has been added.

require -- from ILIST
writable: not is_read_only
extendible: not is_fixed_size

ensure -- from ILIST
value_added: contains (value)
updated_count:
count = old count + 1

value_is_last_item:
item (count – 1) = value

valid_index_returned:
Result = count – 1

ensure then
capacity_doubled:
(old count = old capacity)
implies (capacity = 2 *
(old capacity))

The comment -- from ILIST shows that the
precondition and postcondition clauses are inher-
ited from the parent class ILIST. This class is the
contracted version of the .NET IList interface that
class ArrayList implements.

The precondition of feature add uses two queries
of class ARRAY_LIST: is_read_only and
is_fixed_size. These queries correspond to the
properties IsReadOnly and IsFixedSize from
the .NET collections class ArrayList.

The add postcondition relies on other queries:
contains (to check whether an item is in the list),
item (to have access to any list item given its posi-
tion, which must be a valid index for the list),
count, and capacity (for measurements). The
index_of contracts also rely on these routines:

index_of (value: ANY): INTEGER
-- Zero-based index of first
-- occurrence of value

ensure -- from ILIST
valid_result_if_found:
contains (value)
implies Result >= 0
and Result < count

correct_index_if_found:
contains (value) implies
item (Result) = value

minus_one_if_not_found:
not contains (value)
implies Result = –1

Metrics
Measurements of properties of the contracted

class ARRAY_LIST show that 62 percent of the
routines (33 of 52) now have a contract (a pre-
condition or a postcondition, usually both). The
33 routines with preconditions tend to have more
than one precondition clause—2.5 on average (82
precondition clauses total); the 33 routines with
postconditions tend to have more than one post-
condition clause—2 on average (67 postcondition
clauses total). These figures seem to support the
view that writing good reusable components
requires contracts and that many contracts are
there even if not formally expressed.

EXTENDING TO OTHER CLASSES
AND INTERFACES

Equipped with our first results on ArrayList
and its contracted Eiffel counterpart,
ARRAY_LIST, we performed similar transforma-
tions and measurements on a few other classes and
interfaces of the .NET collections library.

Interfaces
First, we considered Eiffel deferred classes

obtained by contracting the .NET interfaces that
ArrayList uses:

• ILIST, ICOLLECTION, IENUMERABLE, from
which ARRAY_LIST inherits.

• IENUMERATOR, of which IENUMERABLE is a
client.

Table 1 shows the results obtained using the
Eiffel environment’s Metrics tool to measure the
contract rate for some .NET collection interfaces.
These statistics highlight three trends:

• Absence of class invariant in the .NET inter-
faces, as already noted.

• Presence of routine contracts, both precondi-
tions and postconditions. The numbers for

November 2003 53

Writing reusable
components requires
contracts, and many
contracts are there
even if not formally

expressed.

54 Computer

IENUMERABLE and ICOLLECTION involve
too few routines to offer valuable infor-
mation. The numbers for ILIST and IENU-
MERATOR are more significant, with at least
one-half of the routines for both classes hav-
ing contracts.

• Presence of multiple routine contracts, with
most routines having several preconditions and
postconditions.

The last two points are consistent with the proper-
ties observed for class ARRAY_LIST.

Other classes: Stack and Queue
To test the generality of our first results on

ArrayList, we considered two other classes of
the Collections library, Stack and Queue. We
selected these two classes because they are concrete
collection classes with no relation to ArrayList,
except that all three implement the .NET
ICollection and IEnumerable interfaces. In
addition, Stack and Queue also have direct coun-
terparts in the EiffelBase library.

We must be careful with any generalization of
the results of our analysis because three classes is
still only a small sample of the library. Any absolute
conclusion would require an exhaustive automated
analysis. With these qualifications, applying the
same manual approach to Stack and Queue as
for ArrayList and its parents confirmed the pre-
viously identified trends. Specifically, both classes
include preconditions and postconditions. Class
Stack has a 29 percent preconditions rate (5 of 17
routines had preconditions) and a 59 percent post-
conditions rate (10 of 17 routines had postcondi-
tions). Class Queue has respective rates of 42
percent (8 out of 19) and 58 percent (11 out of 19).

Further, we also found that routines usually have
several precondition and postcondition clauses. For
example, Stack has 16 postcondition assertions
for only 10 routines equipped with contracts.

Finally, concrete classes have class invariants. For

example, all three classes—ArrayList, Stack,
and Queue—have an invariant clause

positive_count: count >= 0

involving one attribute: count.

AUTOMATIC CONTRACT EXTRACTION
Is it possible to synthesize contracts automati-

cally rather than manually?

Dynamic contract inference
Dynamic inference seeks to derive assertions

from captured variable traces by executing a pro-
gram with various inputs. It relies on a set of pos-
sible assertions to deduce contracts from the
execution output, and it requires the source code
to be available. Dynamic inference determines
whether the detected assertions are meaningful and
useful to the users, typically by computing a confi-
dence probability.

Michael D. Ernst’s Daikon9 is an example of such
a tool. Daikon tries to find class and loop invari-
ants as well as routine preconditions and postcon-
ditions. Its first version was limited to finding
contracts over scalars and arrays; the next version,
Daikon 2, enables contract discovery over data col-
lections and computes conditional assertions.

There are also some Java detectors that operate
directly on bytecode files (*.class), and some of
them do not require the program source code to
infer contracts.

Extracting routine preconditions
from exception cases

Because we do not have the source code of the
.NET libraries, we cannot rely on a dynamic con-
tract inference tool such as Daikon. We need to find
another way to automate the contract-extraction
process.

Our analysis identified some clear patterns in the
form and location of implicit contracts in existing
.NET components. In particular, preconditions
tend to be buried under exception cases. Since
method exception cases are not kept in the assem-
bly metadata, we are currently exploring another
approach: inferring routine preconditions by pars-
ing the Common Intermediate Language code of
.NET libraries to list the exceptions that a method
or a property may throw.

Methodological perspective
The question of automatic analysis is legitimate

but should not obscure the underlying method-

Table 1. Contract rate of some .NET collection interfaces.

ILIST ICOLLECTION IENUMERABLE IENUMERATOR

Routines 11 4 1 6
Routines with 7 1 0 3
preconditions
Routines with 7 1 1 3
postconditions
Number of 14 7 0 4
preconditions
Number of 11 1 2 3
postconditions
Preconditions rate (%) 64 25 0 0
Postconditions rate (%) 64 25 100 50
Class invariants 0 0 0 0

ological issue: Contracts offer the most benefits if,
as in Eiffel, they are used as part of the develop-
ment process rather than after the fact. No auto-
matic tool will derive the best contracts—those
expressing the abstract intent behind a concrete
implementation.

For reusable components, contracts serve as the
specification: the set of properties that describe to
potential component users what a component can
do for them, independently of how it does that. The
component authors should make these properties
explicit—not leave them for an automatic tool to
figure out.

This observation doesn’t invalidate the potential
benefits of automatic contract extraction, an area
that we and others are continuing to investigate.
But it does limit the expectations that we can place
on it. There is no magic. We should encourage
designers to think of contracts as a great help in the
design process, not as a burden. Automatic con-
tract extraction remains interesting as a comple-
ment to explicit methods and as an aid to
improving the quality of existing software that did
not specify contracts in its design.

O ur analysis provides a first step in a broader
research plan, which we expect to expand in
several directions. First, we will apply the

same approach to other libraries, such as C++ STL.
Second, to facilitate the work of programmers
interested in adding contracts a posteriori to exist-
ing libraries, we will investigate the patterns that
help discover each contract type more closely. To
accomplish this, we will continue our work on
developing an interactive tool to support this
process. Finally, we plan to turn the Eiffel Contract
Wizard into a Web service to allow any program-
mer to contribute contracts to .NET components.

Many opportunities exist for extending this work
to a broad investigation of design by contract appli-
cations. For example, Kevin McFarlane has con-
ducted a project to provide a .NET contract
framework.10 We anticipate that such develop-
ments will help improve reusable components
through explicit and implicit contracts. ■

Acknowledgments
We thank Éric Bezault (Axa Rosenberg), Michael

D. Ernst (MIT), Tony Hoare (Microsoft), and
Emmanuel Stapf (Eiffel Software) for their
extremely valuable comments and insights.

References
1. B. Meyer, “Applying Design by Contract,” Com-

puter, Oct. 1992, pp. 40-51.
2. B. Meyer, Object-Oriented Software Construction,

2nd ed., Prentice Hall, 1997.
3. R. Mitchell and J. McKim, Design by Contract, by

Example, Addison-Wesley, 2002.
4. J.M. Jezequel and B. Meyer, “Design by Contract:

The Lessons of Ariane,” Computer, Jan. 1997, pp.
129-130.

5. Microsoft, “.NET Systems.Collections Library,” 2003;
http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/cpref/html/frlrfsystemcollections.asp.

6. C.A.R. Hoare, “Proof of Correctness of Data Rep-
resentations,” Acta Informatica, vol. 1, 1973, pp.
271-281.

7. K. Arnout and R. Simon, “The .NET Contract Wiz-
ard: Adding Design by Contract to Languages Other
than Eiffel,” Proc. TOOLS 39, IEEE CS Press, 2001,
pp. 14-23.

8. B. Meyer, Reusable Software: The Base Object-Ori-
ented Component Libraries, Prentice Hall, 1994.

9. M.D. Ernst, Dynamically Detecting Likely Program
Invariants, doctorial dissertation, Univ. of Washing-
ton, 2000; http://buffy.eecs.berkeley.edu/Seminars/
2000/03.Mar/000302.ernst.html.

10. K. McFarlane, “Design by Contract Framework
for .NET,” 2002; www.codeproject.com/csharp/
designbycontract.asp; www.codeguru.com/net_
general/designbycontract.html.

Karine Arnout is a PhD student at ETH (Swiss
Federal Institute of Technology), Zurich. While
working at Eiffel Software in Santa Barbara, Calif.,
she contributed to porting Eiffel to the .NET
framework and built the first implementation of
the Eiffel contract wizard for .NET. Her research
interests are in the area of trusted components, in
particular the transformation of design patterns
into reusable components and the correlation
between contracts and tests. Contact her at
Karine.Arnout@inf.ethz.ch.

Bertrand Meyer is professor of software engineer-
ing at ETH, an adjunct professor at Monash Uni-
versity, and founder and chief architect of Eiffel
Software in Santa Barbara, Calif. His interest is
quality software development. Contact him at
Bertrand.Meyer@inf.ethz.ch.

November 2003 55

