
6

On Formalism in Specifications=
Bertrand Meyer, University Of california, santa Barbara

A crilique of a natural~language specification,
followed by presentation of a mathematical

alternative, demonstrates
the weakness of

natural language
and the strength

of formalism
in requirements

specifications.

O7;tO.74}918510001 / 0006S01 ,00 198,S 1(::1::1'.

Specification is the software life·
cycle phase concerned wit h precise

definition of tile tasks to be performed
by the system. Allhough soflwarc ell
gineering textbook s emphasize it s ne
I.:essi!y. the specification phase is often
overlooked in practice. Or, m OTe pre
cisely. it is confused with eit her the
preceding phase. definition of system
objectivC$, or Ihe following phase, de
sign. tn the first case, considered here
in particular. a natural-language re
qllin>mellfs dOCllmen' is deemed suf+
licient !O proceed to system dcsign
without further specification :Ictivity.

This article emphasizes the draw
backs of such an informal a l>Droach
and shows the usefu lness of formal
specifications. To avoid possible mis
undefstanding. however. let's clarify
one point at the outset: We in no way
advocate forllla l specifications as a
replucement for natural-language re
quirements; ralher. we view them as a
cOlllplelllell(to natural-language de
script ions and. as will be illustrated by
an example. as an aid in improving the
qualit y of natural-language spccifica-
110 m.

Readers a lready convinced of the
benefits of fOfmal s(X'Cificat ions might
find in this art icle some useful argu
Illent s to reinforce their viewpoinl.
Readers not sharing Ihis view will, we
hope, find some interesting ideas to
ponder.

The seven sins
of the specifier

The study of requirements docu
menlS, as they arc routinely produced
in industry, yields recurring patterns of

IEEE SOFTWARE

deficiencies. Table I lists sevcn classes
of deficiencies that we have found 10

be both common and particularly
damaging to the quality of require
ments.

The classilication is interesting for
two reasons. First. by showing the pit
fall s of natural-language requirements
documents, it gives some weight to the
thesi5 that formal specificat ions arc
needed as an intermediate step be
tween requirements and design. Sec
ond. since natural-language require
ments arc necessary whether or nOl
one accepts the thesis that they should
be complemented with formal specifi
cat ions, it provides writers of such re
quirements with a checklist o f COIll
mon mista kes. Writers of Illost kinds
of software documentation (user man
uals, rrogr;lmming language manuals,
etc.) should find this list useful; we'll
demonstrat e its use through an exalll
ple that exhibit s all the defe<.:ts cxcert
the last one.

A requirements document
The reader is invited to st udy. 111

light of the rrevious list. some of the
soft wan: documentation available to
him . We could do the same here and
discuss ac tual requiremen ts docu
ments, taken from indll~trial son ware
projccts. as we did in a prcvious ver
sion of this article. I But such a discus
sion is not cntirely satisfactory; the
reader Illay fccl that the examples cho
scn are not representative. Also. one
sometimes hears the remark that noth
ing is inherently wrong with natural
language specil'ications. All one has to
do, the argument continues. is to be

January 1985

Requirements \

\ Specification

\
:Ware \
llfe cyde

This "water-
fall model" of the
software life cycle

Global
-- DESIGN

Detailed \

originated with W. w.

\ Implemen'ation \

\ Royce ("Managing the
Development of Large Solt

Validation

\ ware Systems: Concepts and
Techniques," Wescon Proc .. Aug.
1970), but many variants have been
published. A well-known one is in

\ Distribution

\
\LI_ope_"_,,o_n--l

Boehm (1975). The IEEE Standard on Soft
ware Quality Assurance (Standard P732) also
defines a variant.

Noise:

Silem'e:

Overlpecijica/ ion:

COl/fradiclion:

A mbiguilY:

Forward reference:

Wish/ ul/hinkin$;:

Table L
T hc sc\'cn ~in\ of Iht' ~ P<'cificr .

The presence in the tC'I; t of an element tlHl t does not
carry information relevant to any fealU rc of the
I'rob lem. Variants: redllndallcy; remorse.

T he existence of a fea ture of the problem that i~
not covered by any clement of the IC'l;1.

Thc presence in the ICxt or an clcment that cor
re,>ponds not 10 a feature of the I' roblem but to
fea tures of a possi ble .. o lution .

The presence in the te'\ t of two or more clements
thm defi ne a feature of the system in an incompati
ble way.

T he pre~enc(' in the t(''I; t of an clement thaI !l1a ~es it
pos5ible to interpret a feat ure of the problem in at
lea~t two different ways .

The prc~encc in the text of an clcment that uses
fea tures of the I' roblem not defined unti l later in
the text.

The presencc in the text of an d emcnt that defines
a fea ture o f the prob lcm in such a way that a can
didate sol ution ca nnot rea listically be val idated
wit h respect to this fea ture.

7

careful when writing them or hire peo
ple with good writing sk ills. Although
well-written requirements arc obvious
ly preferable to poorly written ones,
we doubt that they solve the problem.
In OUT vicw, natural-language descrip
tions of any significant system, even
ones of good qualit y, exhibit deficien
cies that make them unacceptable for
rigorous software development.

To support this view, we have cho
sen a single example, which, although
openly academic in nalUre. is especial
ly suitable because it was ex plicitly and
ca refully designed to be a ';good"
natural -la nguage spc(;ifica tion. This
example is the specificat ion of a well
known texl-processing problem. The
problem first appeared in a 1969 paper
by Peter NauT where it was described
as reproduced here in Figure I.

Naur's paper was on a method for
program construction and program
proving; Ihus, the problem statement
in Figure I was accompanied by a pro
gram and by a proof that the program
indeed satislicd the requiremems.

The problem appeared again in a
paper by Goodenough and Gerhart,
which had two successive versio ns.
Both versions included a crit icism of
Naur's original specificat ion .

Goodenough and Gerhart's work
was on program testing. To explain
why a paper on program testing in
cluded a l: riticism of Naur's text, it is
necessary to review the methodologi
cal dispute surrounding the very con
cept of testing. Some researchers dis
miss testing as a method for validating
software because a 1t'S1 can cover only
a fraction of significant cases . In the

B

Formalism

words of E. W. Dijkstra,2 "Tt"Sting
ca n be a very effective way to show the
presence of bugs, but it is hopelessly
inadequate for showing their absence."
Thus, in the view of such critics, tes
ting is futile; the on ly acceptable way
10 validate a program is to prove its
correctness mathematically.

Since Goodenough and Gerhart
were discussing lest data selection
methods, they felt compelled to refut e
this a priori objection to any research
on testing. They dealt wilh it by show
ing significant errors in programs
whose "proofs" had been published.
Among the examples was Naur's pro
gram, in which they found seven er
rors-some minor, some serious.

Goodenough and Gerhart
found seven errors-some
minor, some serious-in

Naur's program.

Our purpose here is not to enter the
testing-versus-proving cont roversy.
The Naur-Goodenough/Gerhart prob
lem is interesting, however. because it
exhibits in a panicu larly clear fashion
some of the diflicuhies associated with
natural-language speci fications. Good
enough and Gerhart mention thaI the
trouble with Naur's paper was partly
due to inadequate specification; since
their paper proposed a replacement for
Naur's program, they gave a corrected
specification. This spedlication was
prepared with particular care and was
changed as the paper was rewritten.

Apparently somebody criticized the
initial version, since the last version
contains the following footnote:

Making these specifications precise is
difficult and is an excellent example of
the specification task. The specifications
here should be compared with those in
OUT original paper.

Thus, when we examine the final
specification. it is only fair to consider
it nOl as an imperfcct document writ
ten under the schedule constraints
usually imposed on software projects
in industry, but as the second version
of a carefully lhought-out text, de
scribing what is really a toy problem,
unplagued by any of the numerous
special considerations that often ob
scure real-life problems. If a natural
language specification of a program
ming problem has ever been written
with care, this is it. Yet, as we shall see,
it is nOl without its own shadows.

Figure 2 (sec p. I J) gives Good
enough and Gerhart's final specifi
cation, which should be read carefully
at this point. For the remainder of this
article, numbers in parentheses-for
example, (21)- refer to lines of text as
numbered in Figure 2.

Analysis of the speeification
The first thing one notices in look

ing at Goodenough and Gerhart's
specification is its lengt h: about four
times that of Naur's original by a sim
ple character count. Clearly. the au
thors went to great pains to leave noth
ing out and to eliminate a ll ambiguity.
As we shall sec, Ihis overzealous effort
actually introduced problems. In any
case, such length seems inappropriate

tEEE SOFTWARE

Rococo interior with fashionable pair dancing;
engraving by Gravelol. 1770.

for specifying a problem that. after all.
looks fairly simple to the unprejudiced
observer.

Beforc embarking on a morc dc~
tailed analysis o f this text, we shou ld
emphasize that the aim o f the game is
not to criticize this particular paper;
the official subjcct maHer of Good
enough and Gerhan's work was test
ing, not specificat ion, . and the pre
scription period has expired anyway.
We take the paper as an example be
cause it provides a particularly com
pact basis for the st udy of common
mistakes.

Noise. "Noise" elements are identi
fied by solid underlines in Figure 2.
Noise is not necessarily a bad thing in
itself; in fact, it can play the same role
as comments in programs. Often. how
ever. noise clements actually obscure
the text. When first encountering such
an element, the reader thinks it brings
new information, but upon closer ex
amination, he realizes that the element
only repeats known information in
new terms. The reader must thus ask
himself nonessential questions, which
divert attention from the truly difficult
aspects of the problem.

Hcrc, a fraction of a second is needed
to realize that a "nonempty seq uence"
of characters (8) is the same thing as
"one or more" characters (9). These
two expressions appear within a line of
each other; the authors' aim was, pre
sumably, 10 avoid a repetition. One is
indeed taught in elementary writing
courses that repetitions should be
avoided, and no doubt this is a good
rule as far as literary writing is con-

January'985

Given a text consisting 01 words separated by BLANKS or by NL(new line)
characters, convert it toaline-by-Ijneform in accordance with thelollowing
rules:

(1) line breaks must be made only where the given text has BLANK or NL;
(2) each line is filled as far as possible. as long as
(3) no line will contain more than MAXPOS characters.

Figure 1. Naur's original statement of a well-known tUI-processing problem.

References on tile Naur-<lOOclenough / Gerhart Problem
Original reference, Naur:

Peter Naur, "Programming by Action Cluster;," BIT, Vol. 9, No. J, 1969, pp.
250-258.

First version, Goodenough and Gerhart:
John B. Goodenough and Susan Gerhart. "Towards a Theory of Test Data
Selection," Proc. Third 1m 'I ConI. Reliable SojIWOf(!. 1.08 Angeles, 1975, pp.
493-510. Also published in IEEE Trans. SOjl ,oreEngineering, Vol. SE-I. No.2,
June 1975. pp. 156-17J.

Revi~ed version, Goodenough and Gerhart:
John B. Goodenough and Su~n Gerhart , "Towards a Theory of Test: Data
Selcction Criteria." in Curren! Trends in Progralllllling Melhodolog)', Vol. 2.
Raymond T. Yeh, cd .. Prenticc-Hall, Englewood Cliffs, N.J., 1977, pp. 44-79.

AnOlher paper thai uses the same problem as an example:
Glenford J. Mycrs. "A Controlled Experiment in Program Testing alld Code
Walkthroughs/Inspections." Comm. ACM, Vol. 21, No.9, Sept. 1978. PP.
760-768.

9

cerned. In a lechnical document, how
ever, the rule to observe is exactly the
opposite-namely, the same concept
should always be denoted by the same
words , lest the reader be confused.

An interesling variant of noise is
remorse, a restriction to the descrip
tion of a certain specification element
made not where the element is defined
but where it is used, as if the specifier
suddenly regretted his initial defini
tion. An example here is "the output
text, if any" (20). Up to this point. the
specification freely used the notion of
oulput text (12, 17); nowhere was there
any hint that such a text might not ex
ist. I f the reader wondered about this
problem, the specification did not pro
vide an answer. Now, suddenly, when
the discussion is focusing on some
thing else, the reader is "reminded"
that there might be no such thing as an
output text, but no precise criterion is
given as to when there is and when
there isn't.

Another instance of remorse is the
late definition of the "line" concept
(24), 10 which we will return. We wi[[
meet again the tendency 10 say too
much, which generates noise, as a
source of contradiction and ambiguity.

Silence. In spite of all his efforts, the
specifier often leaves, along with over
documented elements, undefined fea
tures. Commonly, these features are
fairly obvious to a community of ap
plication specialists, who are close to
the initial customers, but they will be
more obscure to those outside this cir
cle. An example is the concept of
"line," which is not really defined ex-

10

Formalism

cept in a parenthetical bit of remorse
toward the end of the text (24), where it
is described as a sequence of characters
"between successive NL characters."
(By the way, are those characters part
of the line?)

An interesting point here is the cul
tural background necessary to under
stand this concept. In ASC II -oriented
environments, "New Line" is a char
acter; thus, people working on ASCII
environments (DEC machines, for ex
ample) will probably understand easily
the specification's basic hypothesis
-namely, that NL is treated as an or
dinary character upon input but trig
gers a carriage return upon output.
These concepts are foreign, however,
to somebody working in an EBCD IC
environment, especially on IBM OS
systems, on which files are made up of
a sequence of "records" (correspond
ing, for example, to lines), each made
up of a sequence of characters. A per
son coming from such an environment
would not have written the above speci
fication and will probably have trouble
understanding it.

Besides, the late definition of line is
plainly wrong. It applies only to lines
that are neither at the very beginning
nor at the very end of the text. In both
these cases, a line is not "between suc
cessive NL characters" but between
the beginning of the file and an NL, or
between an NL and the end of the
file-that is, between an NL and an
ET. If we accept the authors' defini
tion, the first and last lines of the out
put may be of arbitrary length; in fact,
an output containing 110 NL at allisac
ceptable regardless of its length, since

it does not have lines according to the
definition given! This is obviously ab
surd and not what the authors had in
mind, but the use of natural language
leads naturally to such slips of the pen.

Another interesting silence concerns
the variable Alarm. Line 16 specifies
that this variable should be set (0

TRUE in case of an error, but nothing
is said aboul what happens to it in
other cases. The answer is obvious, of
course; but the matter can only be
brushed aside as minor by program
mers who have never run into a bug
due to an uninitialized variable ...

It must be pointed out that Good
enough and Gerhart corrected a nota
ble silence in Naur's original descrip
tion. Naur's text does not explain what
should be done with consecutive groups
of more than onc break character; this
is one of the seven errors analyzed in
Goodenough and Gerhan's paper.
Their specification corrects it by re
quiring that such groups be reduced to
a single break character in the output.
Although something had to be done
about the problem, note that this solu
tion is, to some extent, obtained at the
expense of simplicity. Eliminating re
dundant break characters and dividing
a text into lincs are two unrelated prob
lems; merging them into a single specifi
cation complicates the whole affair.

It is probably better to deal with
these twO requirements separately, and
this is what we do in the formal
specification given below. Some of the
current trends in programming meth
odology emphasize this approach
most notably under the influence of
the Unix programming environment,

IEEE SOFTWARE

-

Ball at the home of a German baron:
engra~ing circa t 750,
The Bettmann Afchive

which, at least in principle, favors
tools that are simple and composable
rather than large and multipurpose.

Contradictions. There is another
problem with the concept of line.

Given a type " one should distinguish
between the types seq(!], whose ele
ments arc finite sequences of objects of
type I, and seq (seq (Ill, whose ele

ments arc sequences of sequences of
objects of type I. Such a confusion can
be found in Figure 2, where we are first
told (I) that the input i s a " stream," or
sequence, of characters and later (10)
that it "can be viewed" as a sequence
of words and breaks. A s any Lisp pro
grammer knows, the sequences

and

<ab acca >
[sequence of objects]

«a> <ba > <ce a»
]sequence of sequences of objects]

are not the same. Note that lhe same
problem with respect to the output is
redeemed only by ambiguity; the type
of the output is not clear:

• Is it seq [CHAR] as (21 -22) seems
to imply?

• Is it seq (WORD]- that is, seq
[seq [CHARIJ -as (12- 13) in
dicates?

• Or is it even scq [LINE] -that is,
seq[seq[seqICflA RllI-if we con
sider a line as a sequence of words
and breaks?

Thus, a sentence that at first appears
to be only noise (9-11) yields a con
tradiction within a few lines (13-14):
"The program 's output should be the
same sequence of words as in the in-

January 1985

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

The program's input is a stream orcfiaracter~ whose end is

signaled with a speCial end·ol·text character, ET. There Is exactly

one ET character in each input stream. Characters are classified I
.,

• break characters-BL (blank) and NL (new line);

• non break characters-all others except ET;

• the end·of·text indicator- ET.

A word is a nonempty sequence of non break characters. A

break is a sequence of one or more break characters. Thus, the

input can be viewed as a sequence of words separated by breaks,

with possibly leading and trailing breaks, and ending with ET.

The program's output should be the same sequence of words

as in the input, with the exception that a~ ?ersize word (I.e., a

word containing more than MAXPOS characters, where MAXPOS

is a positive integer) should cause-an error exit from the program

(i.e., a variable, Alarm, should have the value TRUE). Up to the

point of an error(the pro.,Qram's output should have the following

properties :

1. A new ffne should start only between words and at the be·

ginning of the output text, if any.

2. A break in the input is reduced to a sing le break character in

in the output.

3. As many words as possible should be placed on each line

(i .e., between successive NL characters).

4. No line may contain more than MAXPOS characters (words

and BLs).

Figure 2. Goodenough and Gerhart's final specification of Ihe origul3l prub·
lem statemt'nl in Figure J. Analysis of this lext, overprinted in blue, is accord
ing 10 the foliowinJ,: key :

Noise
Remorse
Contradiction

Ambiguity
Ovt'rspetifieation
Forward reference

11

put." This last comment is remarkable
since neither the input nor the oU/put
is a sequence of" words. Worse yet,
even if we parse the input into a se
quence of words, this sequence is not
sufficient to determine the oulpu{
one also needs (wo binary informa
tions: whether there is a leading and/or
a trailing break.

The same sentence (9-11), in its
overzealous effort to leave no stone
unturned, ends up introducing another
contradiction. An unbiased reader
would be puzzled. How can the input
"end with [the character] ET" (II)
and at the same time have a "trailing
break" (II)? "Trailing," precisely,
means "at the end"! What's the last
character if (here is a • 'trailing" break:
ET or a break character?

A more experienced reader, such as
a programmer, will have no difficulty
resolving this contradiction; his experi
ence will tell him that "end" markers
follow "trailing" characters. But this
reliance on intuition and knowledge of
the application domain can be par
ticularly damaging when transposed to
large requirements documents, which
will be handed down to a group of
system designers and implememors of
diverse backgrounds and abilities.

Overspccirication. Overspecifica
tion in requirements can be annoyingly
close to silence. The reader is told too
much about the solution while he is
desperately trying to grasp the problem
and figure out-by himself-features
not covered by the text. Overspecifica
tion is typically, although certainly not
exclusively, found in requirement s

12

Formalism

documents written by programmers.
Psychologically, this is understand
able. An implementation-level concept
is good, concrete, technical stuff,
whereas true requirements deal with
much less tangible material. To a com
puter specialist, a stack is easier to
visualize than, say, the flow of infor
mation in a company or the needs of a
radar operator. ll1Us, many specifiers
have a natural tendency to cling to pro
gramming concepts. There is a price to
pay for this: Implementation decisions
taken too early may turn out to be
wrong, and important problem fea
tures can be overlooked.

The example text contains an over
specificat ion right from the first
sentence: the notion of Ihe end-of-text
character ET. The only reason for Ihe
presence of this notion is Goodenough
and Gerhart's desire to correct Naur's
original program. Input-output facili
ties of the version of Algol 60 used by
Naur (and, for fairness. by Good
enough and Gerhart) do not provide
for end-of-filedetection when reading,
so one must assume the presence of a
special character at the end of the file
to make up for this deficiency. But ET
is an implememation detail and should
not be included in an abstract specifi
cation. Conceptually, the input is a fi
nite sequence of characters; it should
be transformed into an output that is a
sequence of lines or. depending on the
interpretation chosen, a sequence of
characters. It is a programmer's vice 10
insist that finile seq uences be specially
marked at. the end.

Why does the ET character receive
such emphasis in Goodenough and

Gerhart's specification? The reason is
one of the errors in Naur's original
program, which would go imo an in
finite loop unless the input was incor
rect (that is, contained an oversize
word). Upon closer examination, how
ever, a case can be made for Naur's
solution (without the other errors, of
course). It is not so unrealistic to con
sider the required program as a poten
tially infinite process, which takes
characters as input and produces lines
as output. working somewhat like a
device handler (for instance one that
drives a printer) in an operating sys
tem. Such an interpretation should, of
course, be clearly described in the
specification, which was not the case
with Naur's text. That decision would
be less arbitrary than the one taken by
Goodenough and Gerhart: their inclu
sion of ET changes the data structure
at the specification level to accom
modate the programming language
used at the implementation stage.

The unacceptability of Ihe change is
fUflher evidenced by the fact that the
output does not satisfy the require
ment on the input. Is it realistic to ex
pect an existing fileto beterminated by
an explicit marker? If it is, the output
produced by the program should satis
fy that condit ion; however, examina
tion of the specificat ion. which is not
completely clear on this matter, and.
as a final criterion, of the proposed
program. shows that ET will not be
passed on to the OUlput file. Assume
that we want to write another pro
gram, for. say, right-justifying the
text, that will take Goodenough and
Gerhart's output (in "pipe" mode a la

IEEE SOFTWARE

I

Dancing the minuet In the open air:
copper engraving by Charles Eisen.

Tho

Unix). In designing that program, we
will not be able to make the samc
assumption on its input. Thus, the
overspedfication has opened the way
to serious inconsistencies.

Another overspecification in thc
text is the concept of "crror exit" (16),
which causes a "variable," Alarm, to
have the value TRUE. Clearly, the no
tion of a variable belongs to the world
of programs, not specifications. This
piece of overspecification would have
been less shocking if the problem had
been defined as the task of writing a
procedure, with Alarm as one of its
parameters, or as <?nc of thc "excep
tions" (in the sense of Clu or Ada) it
might raise. A variablc is internal to
the program unit to which it belongs,
whereas thc specification of a param
eter or an exception can be given rela
tive to the environment of that unit.

The problem of the Alarm variable
is less innocuous than it seems. One
reason for shock at meeting the refer
ence to this variable in a sequential
reading of the text is that the definition
of the error case (the onc in which there
is an oversize word) looks like over
specification until onc sees the las/ sen
tence (25-26), 10 lines down. which
gives the basic line-size constraint,
MAXPOS. The world is really stand
ing upside down here. Clearly. the
constraint on word size is a eonsc
quence of the constraint on line size,
and the definition of the error case
cannot be understood until the latter
constraint has been introduced.

We sec here one of the major defi
ciencies plaguing requirements docu
ments of morc significant size: early

January t985

1 2 3 4 5 6 7 6 9 10

1 U N I X I S A

2 T A A 0 E M A A K

3 0 F B E l l

4 l A B 0 A A T 0 A I E S

1 2 3 4 5 6 7 8 9 10

Figure 3. Output requirement (MAXPOS = 10) .

inclusion of detailed descriptions of er
ror handling, interwoven with descrip
tions of normal cases, which are usual
ly much simpler. Here the matter is
even worse; error processing is de
scribed before the reader has had a
chance to recognize the problem-that
is, before gaining an understanding of
normal processing. Failure to clearly
separate normal cases from erroneous
ones makes the document much harder
to understand.

Mathematically. a program that
performs an inpul-IO-autput transfor
mation often corresponds to the im
plementation of a panial function.
which is Ilot defined for some argu
ments of the input domain. Error pro-

ces.sing then consists in "completing"
the function with alternate results,
such as error messages, for those
arguments. This completion should
not be confused with the definition of
the function in its normal cases. Here.
as we']] see later in a formal specifica
lion, failure to accommodate words
larger than MAXPOS is a conse
quence of the requirements for normal
processing. which can be proved. as a
theorem, from the defini tion of the
function.

Ambigui tics. Error processing raises
an ambiguity in the example text (Fig
ure 3). The requirement that the out
put text satisfy propertjes I to 4 "upto

\3

the point of an error" is susceptible to

at leasl two interpretations.
The text says that up to (and pre

sumably including) the point of the er
ror,lhe program's output should cor
respond to the input. But where is the
"point of the error" in Figure 3? Is it
[1ine 4, column IOJ. last acceptable let
ter, or]3, 7), end orlhe lasl acceptable
word? Nothing in the text allows the
reader to decide between these two in
terpretations .

Another imcresting ambiguity is
connected with the basic constraint on
acceptable solutions (23); "As many
words as possible should be placed on
each line." [fwe have, say, MAXPOS
= [0 and the input text

WHO WHAT WHEN

there aTC two equally correct Iwo-line
solutions (WHAT may bean either the
first or second line). This ambiguity
may be acceptable since neither solu
tion appears superior to the other; the
speci fication as such is nondeter
ministic. We suspect (perhaps wrong
ly) that this nondeterminism was not
intentional and that there was an im
plicit overspecification in the authors'
minds: they considered it obvious lhat
the input would be processed sequen
tially. so any ambiguity, as in the ex
ample above, would be solved by plac
ing as many words as possible on the
earlier line (giving line WHO WHAT
followed by line WHEN). In this inter
pretation, property 3 (23-24) actually
means, "As many words as possible
should be placed on each line as if is
enCOlllllered in Ihe se</llenlial con
structiofl oj tile OlltPIIl." If this is the

14

Formalism

case, the specification should state it
precisely.

Another potential source of am
biguity is t he use of imprecise or poorly
defined terms-for example, the usc
of "stream" (I) rather than the more
standard "sequence." The expression
"error exit" (15), stemmi ng from the
overspecification seen above, is am
biguous, and the reader is nO! com
fOrled by the explanation that follows
it ("Le., a variable, Alarm, should
have the value TRUE"); the notion of
assigning a value to.a variable does not
by itself imply the idea of an "exit,"
which also means that the program
stops in some fashion. We have seen
that the concept of "line" is not well
defined (24). Also note that t he expres
sion "new line" is to be parsed as a
single entity (the flew line character) in
its first appearance (5) and as separate
words ("a new line should start . .")
in it s second (19).

Forward reFerences. In a require
ments document, not all forward
references are bad. Some, corre
spond ing 10 a top-down presentation
of the concepts ("the notion of ...
will be studied in detail in sec
tion ... "), might even be considered
good practice, provided there arc not
too many. But implicit forward refer
ences (that is, uses of a concept that
come before the proper definition of
the concept, without particular warn
ing to the reader) can preselll much
moreofa problem. They makea docu
ment extremely hard to read, especial
ly in the absence of the technical ap
paratus (index, glossary, etc.) that

should be a part of all requirements
specifications and other software
documents.

Here, of course, the text is very
short , so the annoyance caused by
forward references is nowhere ncar
what it can be with full-size docu
ment s. Note, however, that ET is used
three times (2, 3, 6) before it is defined
(7), that the notion of line, defined not
quite satisfactorily (24), has been used
earlier (19-20), and that MAXPOS is
used just before its definition (14).

So what? In dissctting Goodenough
and Gerhan's specification, we iden
tified a significant number of prob
lems in a text that may scem innocuous
to a superficial observer. Not all the
problems were equally serious, and the
reader may have felt that we were a bit
pedantic at times. We submit, how
ever, lhat one must be pedantic in deal
ing with such mailers. Inconsistencies,
ambiguities. and the like may not war
rant the gallows when the problem is to
split up a sequence of characters into
lines. But keep in mind how the above
defects transpose to more ser-ious mat
ters-a nuclear reactor control system,
a missile guidance system, or even just
a payroll program. The computer that
excclltes the code resulting from a faul
ty specification is more pedantic than
any human referee could ever be.

Thus, we should consider Good
enoug h and Gerhart's specificat ion
not only as an object of study in itself
but also , and more importantly, as a
microcosm for conveniently observing
deficiencies typical of more mean
ingful requirements documents. At-

IEEE SOFTWARE

Two people do1ng the minuet;
copper engraving by Nilsson.

though the text was written with great
care, we have witnessed how the au
thors, who started out to improve
upon Naur's terse but simple text,
sentence after sentence became a little
more entangled in their own rosary of
caveats. This says a lot about why in
terminable manuals occupy so much
shelf space in programmers' offices
and computer rooms.

In our opinion. the situation can be
significantly improved by a reasoned
use of more formal specifications. But
again, let's emphasize that such speci
fications are a complement to natural
language documents . not a replace
ment. In fact, we' ll show how a detour
through formal specification may
eventually lead to a better English de
scription. This and other benefits of
formal approaches more than com
pensate for the effort needed to write
and underSland methemalical nota
tions.

We will now introduce such nota
tions, which will allow us to give a for
mal specification of the Naur-Good
enough/Gerhart problem.

Elements for a
formal specification

Many formal specification lan
guages have been designed in recent
years (see box). Choosing one of these
languages would force the reader to
learn its particular notation and would
obscure the essential fact-namely.
that their underlying concepts are, for
the most part, well-known mathemat
ical notions like sets, functions, rela
tions, and sequences. We thus prefer
to use a more-or-less standard mathe-

January 1985

_ on fOrmal spedfIcatIon

Many formal specification languages have been designed in recem years.
A few are listed here. without any claim to exhaustivity.

Jean.Raymond Abrial. Stephen A. Schuman, and Benrand Meyer, "A Specifica
tion Language. " in On the Construction 0/ Programs. R. McNaughten and R.C.
McKeag, eds .• Cambridge University Press, 1980.

Rod M. Burstall and Joe A. Goguen, "Putting Theories Together to Make
Specifications," Proc. Fifth Int'f Joint Con! Artificiaf Inreffigence, Cambridge.
Mass, 1977, PP. 1045-1058.

Oiff B. , Jones, So/twore Development: A Rigorous Approach. Prentice-Hall.
Engle ood Clim, N.J., 1980

R. Locasso, John Scheid, Val Schorre, and Paul R. Eggen, "The Ina Jo SpecifICa
tion Languase Reference Manual." Technical Repon TM-(L)-/602I100Il00,
System Developmenl Corporation. Santa Monica. Calif., June 1980.

David R. Musser, "Abstract Data Type Specification in the AFFIRM System,"
IEEE Trans. So/rware Engineering. Vol. SE-6. No. I, Jan. 1980, pp. 24-32.

L. Robinson and Olivier Roubine, Speciaf Re/eren('e Manuaf. Stanford Research
Institute, 1980.

malical notation. The style of exposi
tion will be similar to that found in
mathematical texts; translation to a
specific formal specification language
should not be hard, provided the lan
guage supports the relevant concepts.

Overview. Perhaps the only difficult
part of the Naur-Goodenough/Ger
hart problem is thal the processing to
be performed on the text involves three
aspects; reducing breaks to a single
break character, making sure no line
has more than MAXPOS characters,
and filling lines as mu!::h as possible. If
these three requirements are sepa
rated, things become much simpler.
Consequently. we will define the prob
lem formally by considering two sim
ple binary relations, called sho,,_

breaks and limifed~/engfh, and a
function called FEWEST_ LINES.
(Throughout the discussion of the for
mal specification, the reader may wish
to refer to Figure 4 for a picture of the
overall structure of the relations and
functions involved.)

Relation shorLbreaks holds be
tween two sequences of characters a
and b if and only if b is identical to a.
except that breaks in a (i.e., successive
break characters) have been reduced to
single break characters in b.

Relation limifelLlellgfh holds bc+
tween two sequences of characters b
and c if and only if c is a "limited
length version" of b: that is, no line in
c has length greater than MAXPOS,
and cis identical to b except thai some
blanks may have been replaced with

15

•

new lines and/or some new lines with
blanks.

By applying these two relations suc
cessively. we associate with any se
quence of characters a all scquencesof
characters that are "made of the same
words," separated only by single
breaks, and fit on lines no longer than
MAXPOS. Given such a sct of se
quences. say. sse, then FEWEST_
LINES (SSe) is the subset of sse
containing those sequences that con
sist ofa minimum number of lines and
thus arc acceptable outputs for the
program.

We'll now define these notions for
mally, but a few simple conventions
arc needed first.

Rasic form or t.he specification. As a
general convention, we usc uppercase
for sets and for functions whose results
are sets and lowercase for olher func
lions. elements of sets (except for
MAXPOS. which we write in upper
case as in the original specification).
sequences, and relations .

The program to be written is the im
plementation of a function

A reminder on fUnctions and relations

16

Consider two sets-for example.
INPUT and OUTPUT. A binary
relallon between these two sets is a
sct of pairs

1<;101>' < i2_ 02>.··· I
whcreeachiA bclongstoset INPUT
and each 0. belongs to set OUT
PUT. Such a relation is represented
pictorially at right. If gool is a rela
tion. then we write gool (i, 0) to ex
press that the pair < i, 0> belongs
to the relation.

0 ,

A marion.

The domain of such a relation. written dam (goo/). is the subsct of IN
PUTcontaining only those elements i such that goof (i, 0) holds for allra!if
one element 0 in OUTPUT. Thus. in the example pictured, it. i 2• and i4 •

but not i), belong to the domain of the relation.
A rund60n is a relation f such that for any i there is al most one a for

whichf (i, 0) holds: if 0 exists. then one may write 0= f(;) . The relation
pictured above is nOt a function. since ii' for instance. has two buddies 0 I
and 02' Note that the domain of a function is made of those e1emcnt ~ of
INPUT for which there is e"ac=II),onecorrespondingelement in OUTPUT.

sol: INPUT - OUTPUT

where INPUT and OUTPUT are the
set s of possible inputs and outputs,
which we will describe below as sets of
sequences. Function sol must satisfy
(,:ertain constraints. which it is the role
of the specification to express.

As noted above. there may be more
than one correct output for a given in
put; in other words, a truly general
specification of the problem should be
nondeterministic. We will represent
this fact by defining a binary relation
between sets INPUT and OUTPUT.
We cal1goolthis binary relation; then a
function sol will be a correct solution if
and only if the following two condi
tions are satisfied (readers who are not
so sure about functions and relations
arc referred to the refresher in the ad
jacent box):

• function sol is defined wherever
relation gool is defined-that is.
sol (i) exists for any i in the do
main of gool;

• for any i for which gool is defined,
then sol (i) yields a "solution" to
gool- that is. gool (i, sol (i»
holds.

This definition is expressed in math
ematical notation by writing that sol is
an acceptable function if and only if

vi E dom (goal),
i E dom(so/) and gool (i. sol (i»

where dom (sol) is the domain of
function sol. Note that there may be
some inputs for which there is no ac
ceptable solution (those not in the do
main of goo/), so sol may be a partial
function. Also. in more concise nota
tion, the above property can simply be

IEEE SOFTWARE

expressed by writing that the domain
of sol is at least as large as the domain
of goal, and thai sol is included in goal
(both being defined as Sets of pai rs):

dom (goal) C dom (sol)
and sol C goal

This way of presenting a specifica·
tion is of very general applicability for
programs performing input·to-output
transformations. Such a program may
be viewed as the implementation of a
certain function (sol) which must en·
sure that a certain relalion (goal) is
satisfied between its argument and its
result ; in mathematical terms, the
function is included in (is a subset of)
the relation . To speci fy the problem is
10 define Ihe relation; to construC1lhe
program is 10 find an implemenlable
fu nction sol satisfying Ihe above can·
ditions.)

Characters a nd seq uences . The
principal sct ofinterCSI in ou r problem
is the set of characters, which we de·
nOte by CHAR. The only properly of
CHAR that matte rs here is that
CHAR contains two clements of par
ticular interest, blank and new~line.
We call BREAK_CHAR the subset of
CHA R consisting of Ihese two ele·
ments:

BREAK_CHAR . I blank, !lel'dille I
The basic concept in this problem is

that of seq uence. If X is a set, we
denOle by seq IX I the set whose ele-
ments are finit e sequences of clements
of X. Such a sequence is written, for
example, as

<a, b. a, C, C, d >

January 1985

shor'-./Jrea/(s (r)
COMPACTED (F)

IImiled--.Jength (r) FEWEST_ LINES
TRIMMED(F)

.=t===~ .
~~=====t:.~-------+ .. -+---

•
• •

o
(acceptable

out puis)

Figure 4. O"erall structure of the speci fi cat ion: (r) indicates a relation. (t') a
function .

Baslc set and logic notations
The definitions marked (*) introduce predicates. that is, expressions

which may have value "true" or "false."

I u. b, C, ... I: the set made lip of elemellls a, b , C, •••

xEA:xis an clement of A(*).

xf,'A: x is not an clement of A (*).

A C B: A is a subset of B (all clements of A arc elements of B) (*).

IXEA I p(x) I: The (possibly empty) subset of A made up of those
clements x which satisfy property P.

't'xEA, P (x): All clements xof A, if any, satisfy property P (or: no ele·
ment of A violates P); holds in particular whenever A is empty (*).

3.\'EA, P(x): There is at least one clement xin A which satisfies property P;
may only hold if A is nonempty (*).

uz!> b: a implies b.

a .. b: the integer interval cOlllaining all the integers i such that a si sb;
empty if a>h. This notation is borrowed from Pascal.

The symbol . means "is defined as."

17

and has a length that is a nonnegative
integer; thus, length is a function from
seq (XI to the SCI of natural numbers.
Elements are numbered starting at I;
the i-th element of a sequence s (for
I :Si:slength(s» is wrillcn s(i). A
subsequenct of s is a sequence made of
zero or more of the clements of s, in
the same order as ins; for example. if s
is the above sequence, then some of ils
subsequences arc

<0, b. c, d >
<b, C, c>

On the other hand, < b. d, c> is nOi a
subsequence of s because the original
order of its elements in s is not pre
served.

The sct of subsequences of s will be
written SUBSEQUENCES (s).

The concept of sequences is well
known, and we rely on the reader's
understanding here. A formal defini
tion of sequences and of the above no
lions is given in the box on theadjacent
page.

Minima and maxima. If X is a set,
and/is a function from Xto the set of
natural numbers,

MIN SET (X,J)

denotes the subset of X consisting of
the elements for which the value of /
is minimum. For example, if X is the
following set, containing four se
quences

X-I <a, C, b, a >, <a, b>,
<b, U, b>, <C, c> I

and / is the lenglll function on se
quences, then MIN_ SET (X, /) will
be the set consisting of the shortest of

"

Formalism

these sequences, namely, the second
and last.

In the same fashion, we denote by

MAX_SET (X,J)

the subset of X consisting of the ele
ments for which the value of/is max
imum; thus, in the above case, MAX_
SET (X,f) is the set I <a, C, b, a> I,
containing just one sequence.

MAX_ SET, however, is not always
defined; we have to be careful 10 apply
it only to SetS X which are finite; other
wise, there might be no maximum
value for f. Note that the results of
MIN_ SET and MAX_ SET are a
subset of X rather than a single ele
ment, since there may be more than
one clement with minimum or max
imum/value. These subsets are non
empty if and only if X is nonempty.

We will also need a way to denote
the minimum and maximum elements
of a set of natural numbers SN. They
will be written, in the usual fashion,
min (SN) and max (SN). Thus, if SN
is the set

SN-134I,7,),6S41

then min (SN) is) and max (SN) is
654. Note that min and max, contrary
to MIN_SET and MAX_SET, yield a
natural number, nOI aset. Also in con
strast to MIN_SET and MAX_SET,
which are defined for empty sets (they
yield an empty result), both min and
max are defined only if the scI SN is
not empty; max further requires that
SNbe finite. It is essential to check for
these conditions whenever using these
functions.

Input and output sets. In the prob
lem at hand, the input is a sequence of
characters; we choose to describe the
output as a sequence of characters as
well. Thus, we define the two sets:

INPUT _ seq [CHARI

OUTPUT - seq [CHAR]

Note that, as mentioned above,
another interpretation could have
defined the set of possible outputs as
seq (LINE], with LINE itself being
defined as seq (CHARI (or possibly
seq (WORD] with WORD _ seq
[CHARI. plus information on leading
and trailing breaks).

We will now define the relations
shorLbreaks and Iimile{Llenglll and
the function FEIVESLLlNES.

The formal specification
Shorl breaks. Let a be a sequence

of characters. We define SINGLE_
BREAKS (a) as the set of subse
quences of a such (hat no two con
secUlive characters are break charac
ters:

SINGLE_BREAKS (0) _

Is E SUBSEQUENCE (a) I
vi E 2 .. lenglh (s).

sU-I) E BREAK CHAR
- sci) f BREAK_CHAR I

Note thaI we use the Pascal notalion,
a .. b, to denote the (possibly empty)
set of integers i such that as i s b.

Ncxt, we define COMPACTED (a)
as the subset of SINGLEJ)REAKS (a)
containing those sequences of maxi
mum length:

COMPACTED (a) I!i MAX_SET
(SINGLt."'JJREAKS (a), length)

IEEE SOFTWARE

As stated abovc, MAX_SET (X,f)
may be be undcfined if X is an infinitc
SCI. This cannOt occur here. howevcr,
si nce SINGLE BREAKS (a) is a
subse t of SUBSEQUENCES (a)
which, for any sequence of charactcrs
at is finite.

Note lhal any sequence b in COM
PACTED (a) must have rctained
from aall non break characters (if such
a character had been omitted, it could
be inserted illlo b and yield a longer
clement of SINGLE BREAKS (a»,
and has a single break character whcre
D had one or morc consecutive break
characters.

Thus, the relation shorLbreaks (a,
b), which holds betwccn aand bifand
on ly if a and b are made o f the same sc
quences of words and breaks but the
breaks in b consist of a single break
character, can be expressed simply by

shorLbreaks (a, b) •
bE COMPA CTED (a)

Limited length , The relation lim
ile(L/englh (b, c) holds between se
quences b and c if and only if

• c is the same sequcnce as b, except
that it may have a new_line wher
ever b has a bialik, or conversely;
and

• the maximum line length of c,
defined as the maximum number
of consecutive characters none of
which is a lIew lille, is less than or
equal to MAXPQS.

This is expressed more precisely as
fo llows:

fimite(Llellglh (b, c) •
c E TRIMMED (b)

January 1985

A deflnltlon Of sequences
The following presentat ion is based on the formal specification of

sequences given in the Z reference manual. 11

N wi ll denOle the set of natural numbers.

IJtofinilion:

!Irq [X), the set of finite sequences of elements of X, is defined as the set of paoial
functions from N to X whose domains arc intervals of the fonn I .. n for some
natural number n.

So a sequence is defined a~ a partial function: for example, the se
quence s= <u, b, D, c> is the function defined for arguments 1,2, 3,
and 4 only, and whose value is a for 1 and 3, b for 2, and c for 4. The
following is a pictorial representation of s:

s
a

2
I
b

3

•

4
I
c

l 6 7 N

x
Note that the above definition allows 1/=0 (empty interval, thus

empty function - that is, empty sequcnce) and that it justifies the nota~
tion sCi) for the ith element of sequence s(which is the result of apply
ing function s to element i).

The lenglh of a sequence is defined as the largcst integer for which
the associated partial function i~ defined (i.e .• n in the above defini
tion).

Now let s be a sequence of elements of X and g be a (total) function
from X to some set Y. The composition

g os

is a partial function from the set of natural numbers to Y. which has
the same domain as s; thus, it is a sequence of elements of Y. with the
same lenglh as s. This sequence is obtained from s by applying g to all
the elements of s. Again, a picture may help (we set g(a)=o', elc.):

2 3 4 l 6 7 N
s I I

a b a c X
g I I I

a' b' .' c' Y

Now take for X the set N of natural numbers. A sorted sequence of
natural numbers is an clement s of seq IN] such that

"'i E 2 .. length (s), s(i-I) ssU)

With this definition, it becomes easy to formally define Ihe notiOIl of
subseq uence used in the texl.

Definitio n:

Let s be an clement of ~q IXI for some sel X. A sub~equence of s is a se
quence of the form s. II where u is a SOrted sequence of natural numbers.

The following picture shows how <a abc> is obtained as a subse-
quence of <a b a a b d (' d> using the above definition. The sorted
sequenccllofnatural numbers used here is <3 4 5 7 >: < 1 357> or
< I 4 5 7> would also work.

I 2 3 4 l N
u "-.... I /~

I 2 3 4 l 6 7 8 9 10 N
s I I I I

(J b (J a b d c d X

••

where

TRIMMED (b).
{s E EQUIVALENT (b) {

mQ.Lline_lenglh (s) s MAXPOS I

EQUIVALENT (b) .
Is E "",[CHAR[I

length (5) = lel/gth (b) and
(V; E I. .Iength (b)'
sO) ;o! b(i) ~

sU) E BREAK_CHAR and
b(i) E BREAK_CHARI I

mox_line_lenglh (s) _
max (\) - i l

Osisjslengrh (s) and
(V k E i+ I. .j,

s(k) ;It new_line) I)
A few explanations may help in

understanding these definitions. If s is
a sequence of characters. maLlin(L
length (s) is the maximum length of a
line in s, expressed as the maximum
number of consecutive characters,
none of which is a new line. In other
words. it is the maximum value ofj- i
such that s(k) is nOI a new line for any
k in the interval i+ t. ,j. (We will have
more to say about this definition
below.) EQUI VALENT (b) istheS(!(
of sequences that afe "equivalent" to
sequence b in the sense of being iden
tica110 b, except that new_linecharac
ters may be substituted for blank
characters or vice versa. Finall y,
TRIMMED (b) is the set of sequences
which are "equivalent" to band havc
a maximum line length less than or
equal to MAXPOS.

Fewcst lines. Let SSC be a set of se
quences of characters. These sc-

20

Formalism

quences can be interpreted as con
sisting of lines separated by new_line
characters. We define the set FEW
ESLLlNES (SSC) as the subset of
SSCconsisting of those sequences that
have as few lines as possible:

FEWEST LINES (SSC) •
MIN_SET (SSC.

nllmber of_new_lilles)

where the function number of new_
lines is defined by:

number of_new_lines (s) •

card (liE 1 .. length (s)
sCi) = new_line!)

and card (X), defined for any finite
set X, is the number of elements (car
dinal) of X.

The basic (('Ialion . The abovc defi
nitions allow us to define the basic re
lation of the problem, rdalion goal,
precisely. Relalion goal (i, 0) holds be
tween input i and output 0, both of
which are sequences of characters, if
and only if

o E FEWESLLlNES (TRANSF (i»

TRANSF (i) is the set of sequences
related to i by the composition of thc
two relations shorLbreaks and lim
ited_length:

TRANS!' U) • Is< "'" [CHARI I
tr(i,s) I

with

(r 91 IimiletLfenglh . sharcbreaks

The dot operator denotes the composi
tion of relations (sec box). A look at

Figure 4 may help explain t he role of
the various functions and relations in
the above specification.

Existence of solutions. Once wc
have a formal specification. wha! can
we do with it? Relying on thespecifica
tion as a basis for the next stages of the
software life cycle-program design
and implementation (e.g .. transla ting
... s into loops) is the most obvious use.
However. we'd like to emphasize two
others. One usc, studied in the next
section, is as a staning point for beller
natural-language requirements. The
other, to which \"e now turn, is query
ing the specification to learn as much
as possible about properties of the
problem and valid solutions.

What can the given specification
teach us about the Naur-Goodenough
IGerharl problem and its solution?
First, let's determine when solutions
doexist.lt iSl rivialtoprovethal,given
a sequence of characters a, there is
always at least onc sequence b such
that relation shari_breaks (a, b)
holds. Given b, however, the necessary
and sufficient condition for the ex
istence of at least one sequence c such
Ihat IimiletL/englh (b. c) holds is that
b contains no word (i.e .. contiguous
subsequence of non-break characters)
of length greater than MAXPOS. This
follow s from the definition s of
TRIMMED and max_line_lellglh used
in the definition of IimiletLlengtit.
Thus, the domain of definition of the
relation Ir, which is a lso the domain or
the function TRANSFand thus of the
relation goal, is Ihe set of input texts
containing no word longer than MAX·

tEEE SOFTWARE

" The Compleat Agul'! ot the Minuel .··
an engraving lrom George B1ckhams's

IlII Easy InlroduclKJfllO DancitI{}.
shows the base spalaal shapes

used m tile minuet: t738
_ Schll.lf1CII •
• Rivefside

POS. This can be formulaled as a
theorem:

dom (goo/) =
Is< seq ICHARI I

vi E I . . Ienglh(s) - MAXPOS,
3j E i . . i + MAXPOS,

sUI' BREAK_CfIAR I
The property expressed by this

theorem is that the domain of relation
goo/consi51S of sequences such that. if
a character c is followed by MAXPOS
other characters, at least one character
among cund the other characters must
be a break.

An important problem, not ad
dressed here, is how the specification
deals with erroneous cases-t hat is,
with inputs not in the domain of the
goal relation - like seq uences with
oversize words. Clearly , a robust and
complete specification should include
(along with goal) another relation, say.
exceplionaLgool. whose domain is IN
PUT - dom (goo/) (set difference);
this relation would complement goal
by defining alternative results (usually
some kind of error message) for er
roneous inputs. Formal specification
of erroneous cases fa lls beyond the
scope of this article. but a discussion of
the problem and precise de finitionsof
terms such as "error," "failure," and
"exception" can be found in a paper
by Cristiano ~

Iliscussion. What we have obtained
is an abstract specification-t hi s is. a
mathematical descript ion of t he prob
lem. It would be difficult to cr itici ze
this specification as being oriented
toward a particular implementmion: if

January 1985

composition Of relations
Let r and I be two relatiom: r i\

from Xto Yand I is from)'to 7
(see figure).

The composition of the .. e two
relations, written I . r (note the
order), is the relation w between
sets X and Z such that w (.\. ;:)
hold<; if and o'n ly if there i<; (at
leasl) one elemenlY in }'such tha i
both r (x. y) and, (x. y) hold.

Thus, ;, the example illu~-

trated . w holds for the pairs <XI'

Zl>' <xl.Z2>.and <X,.Zl>
(and for these pairs on ly).

X Y Z
r--. "......, /'

XI Y, " ~ Xl Yl "
xJ)'J 'J

V X,

V~
x,

y I I , ,
I I

w= I. r

21

followed to the letter, the specification
would lead to a program that (as illus
trated in Figure 4) would first generate
all possible distributions of the input
over lines of length less tha n or equal
to MAXPOS and then search the re
sulting list for solutions with minimum
number of new_line characters-not a
very efficient implementation!

An clement that does seem [0 point
toward a particular implementation
technique is the composition of rela
tionsshorcbreaksand limitecl length,
which seems 10 imply a two-step pro
cess (first remove break characters.
then CUI inlo lines). A first design
could indeed use a two-slep solution.
The Sleps could then be merged using
coroutine-like concepts. such as the
Unix notion of pipe or the "program
inversion" idea of Jackson's program
design method. 5

We chose 10 model the problem's
object and operations with very simple
mathematical notions (sets. relations.
functions, sequences). Because of the
specific nature of this problem, an
other approach would have been to re
lyon a more advanced theory. such as
the theory of regular languages. As
emphasized below, a realistic specifi
cation system shou ld permit reuse of
existing theories. 6

Starting from the above definition,
the specificat ion should of cou rse be
refined, taking into account the physi
cal form of the data structurc (in
duding. for example, the cnd-of-file
marker) and tht; particular response
that should be given by the program in
case of erroneous input.

22

Formalism

conclusion
Although natural language is lhe

ideal notation for most aspects of
human communication, from love let
ters to introductory programming lan
guage manuals, there arc cases 7 where
it is nO! appropriatc. Software specifi
cations, for exam pic, require more rig
orous formalism.

The use of formal notation docs
nOl, however, preclude that of natural
language. In fact, mathematical speci
fication of a problem usually leads to a
bener natural-language description.
This is because formal notations
naturally lead Ihe specifier to raise
some questions thaI might have re
mained una sked. and Ihu s unan
swered, in an informal approach.

Mathematical ddinition. Formal
specificat ions help cxpose ambiguities
and contradictions because they force
the specifier [0 describe fealUres of the
problem precisely and rigorously. The
problem studied in thisanicle contains
many examples of this. For example,
let us try 10 redefine the function
fIIa.cline_lengrh using Ihe definition
of "line" taken from Goodenough
and Gerhart's specification (line 24:
"between successive NL characters").
Writing this definition mathematical
ly. we oblain somcthing like

max fine lenglh (s) •
mal:" (I/imdength (s. i) I

I sisfengrh (s) and
s(i) = new line I)

where line_length (s, i). the length of
the linc beginning after the new_line at

position i in sequence s. may be de
fined as a minimum:

line_length (s, i) IE

min<lk I
Osk<lenglh (s-i) Dnd
s(i+ k + I) ::0 new_'ine I)

Howevcr, as mentioned above, the
maximum or minimum of a sct of
natural numbers is defincd if and only
if this sct is noncmpty and. in the maxi
mum case, finite; so using malhemati
cal notation prompts us to check for
these conditions. Finiteness presents
no problem, but we see immediately
that thc sel whose ma'(imum is sought
in the definition of max_lint!_lenglll
will be empty ifthesequencesdoes not
conlain any new_line charactcr. Even
if it contains one, line_lengllt (s, i),
itselfa minimum, will not be defined if
therc is no othcr new_fine further in
the sequcnee. This prompts us to look
for a beller definition.

A fairly natural reaction at this
paim is to sec that we rcally don't need
to define the concept of "line." only
that of maximum line length. Once we
have noticed this, it's easy to come up
with a correct definition: Ihe max
imum /lumber of cOllseculivf' char
aclers, nOlle of which is a lIew /iI/e.
This is the dcfinition that was given
abovc:

max_line_length (5) -
fIIax (Ij-i I

Osi:5.j:5. lenglh(s) a nd
(vke i+1. .j,

s(k) "# ne"'-'ine) I)

Note that we have been carefu l to
apply maxto a set that always contains
at least one value (zcro, obtained for

IEEE SOFTWARE

• •

i =) = 0), even if s is an empty se
quence (see box).

Natural language definilion. Once
such a mathematical definition has
been produced, it may in return in
nuence the natural language defini
tion. In this exam ple, the formal
definition suggests that we shou ld
Terrain from trying to define the con
cepe of "a line in the text" which ,
although intuitively clear, is slightly
tricky when one altempts to specify it
precisely, as Goodenough and Ger
han's text shows. Instead, we should
focus on the not ion of "maximum line
length," which is always defined. even
for a text consisting of new_line
c~aracters only. Once we have ob
tained the specification of 111ax-/ine_
length, wecan build on it and include it
in the English problem definit ion a
sentence such as

The maximum number of con<;ecmive
characters. none of which is a new_line,
should nOI exceed MAXPOS.

This sentence, a direct translat ion
from the formal definition, is nOl, ad
mittedly. of the most gracious sytle;
but it is easy to remove the double
negat ion, yielding

Any consecutive MAXPOS + I charac
ters should include a new_line.

The main advantage of natural
language texts is their understandabili
ty. One shou ld concentrate on this
asset rather than trying to use natural
language for precision and rigor,
qualities for which it is hopelessly in
adequate. Understandability is seri-

January 1985

TIle reasoning behind fOnnaI specificationS:
tile exalllple of RIU_ _ length

How does one obtain a formal expression such as the one defining
max_line_length'! let's analyze the different steps involved.

We want to express the fact that max line length (s) isthemaximum
length ofa line ins. A definition that avoids thepitfa\ls mentioned in the
analysis of Goodenough and Gerhart's text is. informally, "the max
imum number of consecuti ve characters. none of which is a new line."

To translate this definition into a formal description, we have to ex
press the notion of a contiguous subseq uence of s that does not contain
a new_line. A contiguous subsequence can be given by its end indices,
say, iand). The seq uence comprisi ng the elements bctween indices iand
) will have length) - i+ I; if it is to yield a line length. then s(k) should
be a character other than new line for any k between iandj, inclusive.
Thus, a first try might yield

max line_ length (s) _ max (LINE. LENGTHS)

where the set LlNE_ LENGTHS is defined as

LINE_LENGTHS -I) -;+ I I I sisjslenglh (s) lind
(vk E i .. j, s (k) 'F new line) I

But beware! One should only apply max to nonempty sels. With the
above convention , wc can cnd up with LINE. LENGTIIS being empty
if sisan empty sequence or a ll its characters are new line; in either case.
no i, j pair satisfies the conditio n. Now. if we write a program for the
Naur-Goodenough/ Gerhart problem and put in in to a library. sooner
or later someone wilt apply it to a sequence that is empty or entirely
made of new /inecharacters, so we had better deal with these cases in a
clean fashion.

The culprit is the condition is), which prevents us from fi nding a
satisfactory i and) in the borderline cases mentioned. The problem
disappears, however, if we replace this condition by i - Is). Then, for
a sequence having only new_line characters or no character at all, the
set LINE_LENGTHS will contain one element, 0, obtained for i= I
and) = O. For these values, the interval i .. j is empty; thus, the v ...
clause is true. (Remember that a property of the form Vx E E. P (x) is
always true when the set E is empty, regardless of what property Pis.)
Thus, we obtain the following replacement:

LINE_LENGTHS -I)-i+ I IOsi-1 s)slength (s) lind
(Vk E i .. j. s(k) ;t new_line) I

(The first condition has been written Osi-I instead of l s i .)
We have chosen to simplify slightly the writing of this condition by a

change of variable (use i for i - I. thus eliminating + I and - I terms):

LINE_LENGTHS _ 1) -i 'Osisjslenglh (s) and
(vk E i+ I..), s(k) ;t new_line) I

This new version is defined in all cases.
It should be noted that this kind of analysis, which at first sigh t might

seem quite remote from programmers' concerns, is in fact closely con
nected to typical pallerns of reasoning about programs. Anyone who
has tried to debug a loop that sometimes goes one iteration too few or
laO many, or works improperly for empty input s or other borderline
cases, will recogniL.e the line followed in the above discussion. It is our
contention, however, that such analysis is beller performed at the
specification level, dealing with simple and well-defined mathematical
concepts, than at program debugging time , when the issues are ob
scured by many irrelevant detail s, implementation-dependent features,
and idiosyncrasies of programming languages.

23

•

ously hindered when nut ural language
requirements become ridiculously long
in a vain attempt 10 chase away silence,
ambiguity, contradiction. elc. Such at
tempts. as shown by the text studied
here, only make matters worse. The
length of many requirements docu
ment s found in actual industrial prac
tice, often extending over hundreds or
even thousands of pages, is due to sllch
misuse of natural language. Natural
language descriptions should remain
reasonably short; Iheexacl description
of fine points, special cases, precise
details, etc., should be Icftlo a formal
speci fication.

The advantages of brevity cannol be
overemphasized. It CQuld even be ar
gued that Naur's slX'Cificalion, once
the problems of termination and con
secutive break characters are tackled
properly, is preferable to Goodenough
and Gerhart's because it is shorter and
doesn' t fuss unnecessarily.

New specification. It would be fair
game for the reader at this point to ask
what natural-language specification
we have to offer in lieu of both Naur's
and Goodenough and Gerhart's texts.
To answer such as request, we'd try to
capitalize on the lessons gained from
writing the mathematical definition.
We'd propose something like the text
in Figure 5, which is directly deduced
from that definition (see in particular
its relation to Figure 4).

No doubt Ihis text deserves some
criticism of ils own. In particular, it
still needs to be refined. For example,
the implememor mUSt know how 10
"report the error" before embarking

24

Formalism

upon detailed design and coding; he
must know what the allowablecharac
ters are apart from blank and new_
line, etc. Also nOte that this text avoids
defining specific concepts (e.g., line
length , word) explicitly; rather, il
substitut es the definition for the con
cept when needed. Although this de
vice can lead to interesting literary ex
periments,8 it is certainly not recom
mended for large requirements docu
ments where one must repeatedly refer
10 the same basic concepts.

It seems to us. however. that the
above statement of the requiremenlS
embodies the essential elements of the
problem and achieves a reasonable
tradeoff between the imprecision of
Naur's and the verbosity of Good
enough and Gerhan's specifications.
(Its length is in facl slight ly more than
double the former's and half the
latter's.) lis mOSt important feature is
that it draws heavily from the lessons
gained in writing the formal specifica
tion, while retaining (we hope) clarity
and simplicity.

End-users. An objcction that is
often voiced against formal specifica
tions relates to the needs of end-users.
who request easily understandable
documents. Such an objection, we
Ihink. is based on an incorrc(:1 assess
ment of what specification is about.
There is a need for requirements docu
ments that must be read, checked, and
discussed by noncomputer scientists,
but there is also a need for technical
documents used by computer profes
sionals. The difference is the same as
thai between user requirements and

engineering specifications in other
engineering disciplines. Of course,
there must be a way to communicate
back the contents of technical specifi
cations (for example, in the case of
changes). As we have seen. the exist
ence of a good mathematical specifica
tion is a great asset for improving a
natural-language description.

Other ways can be found for
translating formal clements into forms
lhat are more easily understood. Many
people like graphical descriptions.
which playa basic role in such (non
formal) specification methods as
SADT'iI or SREM. 10 A picture may be
worth a thousand words al times, but
it can also be dangerously misleading.
On the other hand. a pictorial explana
tion ora well-defined concept certainly
does no harm. If the picture

A B
--Q]-----+

is considered more understandable
than Ihe function definition

j-A-B

then why not have graphics tools
generate the picture from the formula
for the benefit of those who want il?
There is certainJy a great need for soft
ware tools of this kind in specificalion
systems.

Techniques. The last point we want
to emphasize is that formal specifica
tion is lIor lIecessarily difficult. The
reader who is familiar with specifica
tion techniques will have noted that the

IEEE SOFTWARE

Minuet at dress ball given by Uluis XV,
~bruary 24, 1745, In tile armory ot the

Royal Sta~es at Versallles: from an engraving
by C·N Coch in , "l'ancienne France, " in book

by the Duke Of La Valliere, Louis ~sar de fa
Baurne'!e ~anc (1708-1780), Ballets, Opera,

and Drller Musical Works, Ch. J. Baptiste
Bauche, Paris, 1760.

From the Ii of Christena l.
iI

example did nOl rely (at least explicitly)
on such notions as abstract data types,
finite-state machines, and attribute
grammars. In fact, it used only very
simple notions from elementary set
theory and logic. These notions are no
morc difficult than the basic core of
college calculus, even if most of today's
university students are regrettably less
at case dealing with such concepts as
sets. relations, partial functions, com
position . and predicate calculus than
with other mathematical objects and
operations that are better established
in the traditional curriculum.

Of course, the example studied here
is a small problem. Experience with the
Z language I 1.12 and subsequent work
prompted by this experiencel1.15 shows,
however, that the same basic concepts
can be carried through to the descrip
tion of much more complex systems.
The main limitation of the problem
studied here is that it is defined by a
simple input-to-output relation, where
as most significant programs can be
characterized, in our view, as syslems
that offer various services in response
to possible user requests. We are cur
rentlyworking on methods, notations,
and tools for the modular specification
of such systems. 16

Reust. An essential requirement of
a good specification formalism is that
it should favor reuse of previously
written elements of specifications. For
example, the notion of sequence and
the associated operations should be
available as predefined specification
elements. Languages Z and Affirm,

January 1985

Given are a nonnegatlve Integer MAXPOS and a character set in·
cluding two "break characters" blank and new.-llne.

The program shall accept as Input a finite sequence of characters
and produce as output a sequence of characters satisfying the follow·
Ing conditions:

• It only differs from tha Input by having a single break character
wherever the input has one or more break characters;

• any MAXPOS + 1 consecutive characters include a new.-llne;

• the number of new....Jlne characters Is minimal.

If (any only If) an Input sequence contains a group of MAXPQS + 1
consecutive nonbreak characters, there exists no such output. In this
case, the program shall produce the output associated with the initial
part of the sequence, up to and Including the MAXPOS·th character of
the first such group, and report the error.

Figure 5. Yet another statement of the requirements.

among others, provide for such li
braries of basic specifications. More
work is needed to share and reuse the
work of formal specifiers. Along with
the availability of simple and efficient

software tools, this is one of the condi
tions that must be met before fonnal
specifications become for software en
gineers what, say , differential equa
tions are for engineers in other fields. 0

25

•

References
I. Benrand Mcyer, "Sur lc Formalismc

dans les Specifications," Globu/e,
NewS/l!ller of Ihe AFCET (French
Computer Society) Working Group
on So/l'KYJreEnginl!l!ring, No. I , 1979,
pp.81-122.

2. Edsger W. Dijkstra, "TIle Humble
Programmer," COIIIIII. ACM. Vol.
IS, No. 10, Oct. 1972, pp. 859-866.

3. Bertrand Meyer. "A Basis for the
Constructive Approach to Program.
ming," in Injormulioll Processing 80
(Proc. IFIP World Compurer Con
gress. Tokyo, Japan, Oct. 6-9, 1980),
S. H. Lavington, ed .• Nonh-Holland.
Amsterdam, 1980. pp. 293·298.

4. flaviu Cristian, "00 Exttptions, Fail
ures and Errors," Technology and
Science of Injonna/ics, Vol. 4, No. I,
Jan. 1985.

5. Michael O. Jackson, Principles of
Program Design, Academic Press,
London, 1975.

6. Rod M. Burstall and Joe A. Goguen,
"PUlling Theories Together to Make
Specifications." Prrx. Fiflh Int'lJoint
Con/. Artificial Imelfigenct!. Cam·
bridge, Mass., 1977, pp. 1045-1058.

7. I. D. Hilt, "Wouldn't It Be Nice IrWe
Could Write Computer Programs In
Ordinary English-Or Would [[?"

BCS Computer Bulletin, Vot. 16, No.
6, June 1972, pp. 3Q6..312.

8. Oulipo, Ouuroir de Lillero/llre Po/en
/ielfe, Gallimard. Paris, 1967.

9. Douglas T. Ross and Kenneth E.
Schoman , Jr., "Structured Analysis
for Requirements Definitions." IEEE
TrollS. Sof/ware Engineering, Vot.
SE-), No. I, Jan. 1977, pp. 6-15.

10. Mack W. Alford, "A Requirements
Engineering Methodology for Real
Time Processing Requirement s,"
IEEE Trans. Sof/wore Engineering,
Vol. SE-3, No. I, Jan . 1977, pp. 60-69.

26

\1. Jean-Raymond Abrial, Stephen A.
Schuman, and lknrand Meyer, "A
SpecifICation Language," in On /he
Consfme/iQn of Programs. R. Mc·
Naughlen and R.C. McKeag, cds.,
Cambridge Uni\'crsi[y Press, 1980.

12. Jean.Raymond Abrial, "The Specifi·
cation Language Z: Syntax and
Semantics," Oxford University Com
puting LaboralOry, Programming
Research Group, Oxford, Apr. 1980.

13. Jean-Raymond Abrial and Stephen A.
Schuman, "Specification of Parallel
Processes," in Semal1lics of Concur·
ren/ ComplllUrion (Proc. In[') Symp.,
Evian, France, July 2-4,1979), Gilles
Kahn, ed .. Springer-Verlag. Berlin
New York, 1979.

14. Carroll Morgan and Bernard Sufrin,
"Specification of the Unix File Sys
lem," IEEE TrailS. Sof/ware Engi.
neering. Vol. SE-IO. No.2, Mar. 1984,
pp. 128-142.

15. Bernard Sufrin, "Formal Specifica
tion of a Display-Oriented Text Edi
tor," Science of Complller Program
ming, Vol. I , No.2, May 1982.

16. Bcnrand Meyer. "A SYSlem Descrip
tion Method," in /1/1 'I Workshop on
Models and umgllages for Sofr'KYJre
SpecUICO/ion and Design. Roben G.
Babb II and Ali Mili, eds. , Orlando,
Aa., Mar. 1984, pp. 42-46.

Acknowledgments
I learned most of what I know about

specification from Jean-Raymond Abrial.
Much of the malerial was contained in an
earlier arlide, wrillen in French and
published in 1979 in a ne-.o.·slener. I I am
grateful to Axel van Lamsweerde for
reminding me of the existence of that ani
de and suggesting that it might be of in
lerest to a wider audience (and to him and
Jean-Pierre Finance for some healed dis-

Ben rand Meyer is a visiting associate pro
fessor at [he University of California, San
ta Barbara, on leave from Electricite de
France, where he was division head in Ihe
research and development branch. He is
interested both in doing research and in
making the resullS of researeh useful 10
practitioners. He has published papers on
programming methodology, software
tools and environments, specification, in
teractive systems and user interfaces, algo
rithms, programming languages, and su·
percomputer programming, as well as a
compendium on programming methodol
ogy and tcchniques, Methodes de Pro
gramma/ion (Eyrolles, Paris, 1978, with
Claude Baudoin). He is theeditor-in--chief
of Ihe French computer science journal
Technology and Science of Informa/ics, a
member of ACM, AFCET and the IEEE.
and a former member of the AFCET
council.

Meyer's address is Dcpanment of Com
puter Science, University of California,
Santa Ilarbara, CA 93106.

eussions on specification). I also [hank
flaviu Crist ian for imponan[comments on
a previous version. The referees' comments
were also useful.

This aniele also benefited from the in
voluntary contributions made by the au
thors of all [he system requirements and
other software documentation I have had
to struggle with ovcr a number of years.

IEEE SOFTWARE

