
January 1999 139

Co
m

po
ne

nt
 a

nd
Ob

je
ct

 T
ec

hn
ol

og
y

W
ith this issue, the Object
Technology department
becomes Component and
Object Technology. Al-
though component tech-

nology has figured prominently in earlier
columns, we felt we had to go further.
Excitement about components runs high
in the computing community. In a recent
survey of the Computer readership, com-
ponents placed at the very top of the top-
ics of interest. Note, by the way, that
Computer will devote its July issue’s
theme to component-based development.

All the buzz about components results
from the general realization that

• software development is in trouble,
and 

• the kind of breakthrough we need
can only be achieved through the
economies of scale that result from
reusing other people’s creations.

It is not utterly negative to emphasize the
first point. Software developers have con-
tributed much to society. By and large,
most software works much of the time.
But there is a general feeling that we can’t
continue using our current techniques.
The year 2000 mess is only one result of
poor software engineering. The industry
has largely ignored the lessons of Y2K
(“The Opportunity of a Millennium,”
Nov. 1997, pp. 137-138). In cases like
these, components appear to be part of
the solution.

OBJECT TECHNOLOGY, 
COMPONENT TECHNOLOGY

The change of this department’s name
indicates a broadening of its scope, not a
reversal of its course. The phrase “objects
are dead, long live components,”
although a good attention-getter, does not
make much sense technically. All the evi-
dence suggests that successful component
technology must build on object orienta-
tion. For one thing, no one knows how to
build complex, mission-critical software
today without the help of OO techniques.
But even more importantly, most of the
fundamental ideas that define object tech-
nology are just as fundamental to any suc-
cessful component development:

• Information hiding and data
abstraction—to separate compo-
nent implementation from compo-
nent interfaces.

• Polymorphism and dynamic bind-
ing—to allow for dynamic adapta-

tion of components to actual client
needs.

• Design by Contract—to make sure
that components are properly spec-
ified and validated.

• Inheritance—to organize compo-
nents in rational hierarchies. 

More generally, I have found that many
of the techniques developed in connec-
tion with reusable class libraries and
frameworks are of great interest to devel-
opers of coarser grained components
such as COM and CORBA. Examples
from my book Reusable Software
(Prentice Hall, 1994) include the open-
closed principle; the option-operand sep-
aration principle; the command-query
separation principle; systematic compo-
nent naming conventions; and systematic
use of carefully crafted assertions (in par-
ticular, invariants).

It’s instructive to see these techniques
being rediscovered independently in the
context of component development.

WHAT IS A COMPONENT?
There is no generally accepted defini-

tion of components. Here is a possible
one. A software component is a program
element with the following properties:

• The element may be used by other
program elements (clients).

• The clients and their authors do not
need to be known to the element’s
authors.

The first property excludes programs
meant only for use by humans or, as with
embedded software, by nonsoftware sys-
tems. The second property excludes the
simple case of a module that is used by
other modules—a subroutine in a tradi-
tional program, an Ada package, a class
in an OO system—but without the fun-
damental requirement of general reusa-
bility. A true component must be usable
by software developers who build new
systems not foreseen by the component’s
author and who are not personally
known to that author.

With respect to the first property of my
definition, there is no requirement for the
software to be usable only by other pro-
gram elements. It is perfectly possible for

On To
Components

Bertrand Meyer, EiffelSoft

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; ot-column@
eiffel.com

Excitement about 
components is gratifying
to those of us who have

been advocating
component-based

development for years.

.



140 Computer

Component and Object Technology

guidelines (such as data abstrac-
tion), can be used to gather arbi-
trarily related elements.

• A data abstraction, as with classes
in OO languages, each of which
covers a type of object.

• A cluster abstraction (or frame-
work), which covers a set of related
data abstractions intended to work
together according to preset schemes:
examples include EiffelBase, the C++
Standard Template Library, and
some Smalltalk libraries.

• A system abstraction, which is the
case of coarse-grained binary com-
ponents such as some COM and
CORBA components. Microsoft
Word, used as a component, falls
into this category.

Level of execution
The level of execution derives from the

time when the component is integrated
into a software system. Components may
be static (integrated at compile time or
link time and not changeable without a
recompile); replaceable (like static com-
ponents, but with variants substitutable
dynamically); or dynamic (integrated at
execution time).

Level of accessibility
The level of accessibility characterizes

components by the form in which they
are available to client authors:

• Interface description only, no
source available. Many commercial
components are distributed in this
form.

• Source only, little or no informa-
tion hiding. To use the component,
at least for advanced uses, you
must read its source text; this is
sometimes the case with some of
the free software available on the
Internet.

• Information hiding, with reuse
through the interface and source
available for inspection, discussion,
and correction.

THE TROUBLE WITH COMPONENTS
The industry is fascinated with com-

ponents. You must go back ten years, to
the time when most people first came

a program to be usable both by humans
and by client software. An example is
Microsoft Word, which is certainly
meant to be used by humans, but is also
available as a COM component for use
by other software.

The definition immediately evokes an
analogy with engineering components, in
particular, electronics components. Like
all analogies, it can lead to confusion if
we forget that it is only an analogy. But
we can indeed learn a lot from the expe-
rience accumulated by our hardware col-
leagues with electronic components.

VARIETIES OF COMPONENTS
There are many ways to classify com-

ponents. Here is a review of components
from four orthogonal viewpoints: level
of software process task, level of abstrac-
tion, level of execution, and level of
accessibility.

Level of software process task
The first classification addresses the

software process activity to which the
component applies. We may have an
analysis component, which takes advan-
tage of reusability for system modeling,
a design component, or an implementa-
tion component that is an actual exe-
cutable piece of software ready to be
integrated in a working software system.
Design components are also known as
patterns. 

I am using the term “software process
task” rather than “process step” because
in the seamless, reversible process pro-
moted by object technology, tasks such
as analysis and design are not really sep-
arate steps but activities that may inter-
vene at different times.

Level of abstraction
The level of abstraction describes the

nature of components in terms of the
abstraction level they encapsulate. A
component may cover:

• A functional abstraction, as with
subroutines and functions in tradi-
tional libraries, each of which covers
one particular function.

• A casual grouping, as with Ada
packages or C files, which, unless
used with precise methodological

across OO ideas, to find a comparable
level of excitement. This excitement is
largely justified and is gratifying to those
of us who have been advocating compo-
nent-based development for years.

But all the buzz shouldn’t make us for-
get that even if components—I would
say object-oriented components—are
part of the answer, they are not the entire
answer. Instead, they raise new ques-
tions, the foremost of which can be
focused on a single topic: quality. Once
the fascination with components sub-
sides, every CIO and project leader will
realize that the quality of a component-
based application is defined by the qual-
ity of its worst component. This
realization may be painful. If a project is
a mess, it’s the project leader or the CIO
who will be blamed; “It’s the fault of
those COM controls we use” will not be
a useful excuse.

So the two-step reasoning cited at the
beginning of this column omitted a cru-
cial third step: Components are worth-
less, and quite possibly harmful, without
an impeccable guarantee of quality.

Only recently has the problem of com-
ponent quality come to the fore, with the
appearance of such articles as Elaine
Weyuker’s discussion of testing compo-
nents (IEEE Software, Sept./Oct. 1998,
pp. 54-59). And this department has, of
course, repeatedly engaged the issue with
articles on the Ariane disaster (Jan.
1997), the Trusted Components project
(May 1998), and many others empha-
sizing Design by Contract and compo-
nent-specification techniques.

T he success of component-based
technology in hardware has only
been possible thanks to precise tech-

niques for specifying components and,
most importantly, to exacting techniques
for quality assurance and quality control.
But the realization that we are far behind
in our efforts to extend this success to
software components has yet to reach the
software community at large. When it
does it will be sobering.

It would be a pity if the move to com-
ponents were to falter because of our
insufficient attention to quality. We
shouldn’t let that happen. ❖

.


