>
@)
s
o)
e
583
(oo
(@) "
£3
.

oo
QD

On To

ith this issue, the Object :

Technology department

becomes Component and :

Object Technology. Al- :

though component tech-

nology has figured prominently in earlier
columns, we felt we had to go further. :
Excitement about components runs high
in the computing community. In a recent :
survey of the Computer readership, com- :
ponents placed at the very top of the top-
ics of interest. Note, by the way, that :
Computer will devote its July issue’s :
theme to component-based development.
All the buzz about components results :

from the general realization that

- software development is in trouble,

and

» the kind of breakthrough we need
can only be achieved through the :
economies of scale that result from :

reusing other people’s creations.

It is not utterly negative to emphasize the :
first point. Software developers have con-
tributed much to society. By and large, :
. dence suggests that successful component
But there is a general feeling that we can't :
continue using our current techniques. :
The year 2000 mess is only one result of :
poor software engineering. The industry
has largely ignored the lessons of Y2K :
(“The Opportunity of a Millennium,” :
Nov. 1997, pp. 137-138). In cases like :
these, components appear to be part of :

most software works much of the time.

the solution.

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd Fl., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; ot-column@
eiffel.com

Bertrand Meyer, EiffelSoft

Excitement about
components is gratifying
to those of us who have

been advocating
component-based
development for years.

OBJECT TECHNOLOGY,
COMPONENT TECHNOLOGY

The change of this department’s name
indicates a broadening of its scope, nota :
¢ reversal of its course. The phrase “objects
live components,”

are dead, long
although a good attention-getter, does not
make much sense technically. All the evi-

technology must build on object orienta-
tion. For one thing, no one knows how to
build complex, mission-critical software
today without the help of OO techniques.

But even more importantly, most of the :

fundamental ideas that define object tech-
nology are just as fundamental to any suc-
cessful component development:

« Information hiding and data
abstraction—to separate compo-

nent implementation from compo- !

nent interfaces.
* Polymorphism and dynamic bind-
ing—to allow for dynamic adapta-

tion of components to actual client
needs.

* Design by Contract—to make sure
that components are properly spec-
ified and validated.

* Inheritance—to organize compo-
nents in rational hierarchies.

More generally, | have found that many
. of the techniques developed in connec-
. tion with reusable class libraries and
© frameworks are of great interest to devel-
. opers of coarser grained components
. such as COM and CORBA. Examples
. from my book Reusable Software
. (Prentice Hall, 1994) include the open-
- closed principle; the option-operand sep-
aration principle; the command-query
¢ separation principle; systematic compo-
: nent naming conventions; and systematic
use of carefully crafted assertions (in par-
¢ ticular, invariants).

. It’sinstructive to see these techniques
- being rediscovered independently in the
i context of component development.

{ WHAT IS A COMPONENT?

: There is no generally accepted defini-
. tion of components. Here is a possible
one. A software component is a program
¢ element with the following properties:

* The element may be used by other
program elements (clients).

* The clients and their authors do not
need to be known to the element’s
authors.

i The first property excludes programs
: meant only for use by humans or, as with
embedded software, by nonsoftware sys-
i tems. The second property excludes the
¢ simple case of a module that is used by
. other modules—a subroutine in a tradi-
tional program, an Ada package, a class
in an OO system—but without the fun-
damental requirement of general reusa-
¢ bility. A true component must be usable
. by software developers who build new
: systems not foreseen by the component’s
author and who are not personally
¢ known to that author.

With respect to the first property of my
i definition, there is no requirement for the
. software to be usable only by other pro-
© gram elements. It is perfectly possible for

January 1999

139



140

Component and Object Technology

a program to be usable both by humans :
and by client software. An example is :
Microsoft Word, which is certainly :
meant to be used by humans, but is also :
available as a COM component for use :

by other software.

The definition immediately evokes an :
analogy with engineering components, in
particular, electronics components. Like
all analogies, it can lead to confusion if :
we forget that it is only an analogy. But :
we can indeed learn a lot from the expe- :
rience accumulated by our hardware col- :

leagues with electronic components.

VARIETIES OF COMPONENTS

There are many ways to classify com- :
ponents. Here is a review of components
from four orthogonal viewpoints: level :
of software process task, level of abstrac-
tion, level of execution, and level of

accessibility.

Level of software process task

The first classification addresses the :
software process activity to which the
component applies. We may have an
analysis component, which takes advan- :
tage of reusability for system modeling, :
a design component, or an implementa-
tion component that is an actual exe- :
cutable piece of software ready to be :
integrated in a working software system.
Design components are also known as :

patterns.

vene at different times.

Level of abstraction

The level of abstraction describes the :
nature of components in terms of the :
abstraction level they encapsulate. A :

component may cover:

* A functional abstraction, as with
subroutines and functions in tradi- :
tional libraries, each of which covers :

one particular function.

- A casual grouping, as with Ada

packages or C files, which, unless

used with precise methodological :

Computer

guidelines (such as data abstrac-
tion), can be used to gather arbi- :
¢ largely justified and is gratifying to those
- of us who have been advocating compo-
in OO languages, each of which :

trarily related elements.
e A data abstraction, as with classes

covers a type of object.

« A cluster abstraction (or frame-

work), which covers a set of related :
: part of the answer, they are not the entire
together according to preset schemes: :
i tions, the foremost of which can be
¢ focused on a single topic: quality. Once
. the fascination with components sub-
= A system abstraction, which is the :

case of coarse-grained binary com- :

ponents such as some COM and :

CORBA components. Microsoft :

Word, used as a component, falls :
a mess, it’s the project leader or the C1O
- who will be blamed; “It’s the fault of
: those COM controls we use” will not be
: The level of execution derives from the :
- time when the component is integrated :
into a software system. Components may :
be static (integrated at compile time or
link time and not changeable without a :
recompile); replaceable (like static com- :
ponents, but with variants substitutable
dynamically); or dynamic (integrated at :
. appearance of such articles as Elaine
Weyuker’s discussion of testing compo-
. nents (IEEE Software, Sept./Oct. 1998,

data abstractions intended to work
examples include EiffelBase, the C++

Standard Template Library, and
some Smalltalk libraries.

into this category.

Level of execution

execution time).

Level of accessibility

The level of accessibility characterizes :
components by the form in which they :
. are available to client authors:

| am using the term ““software process
task’ rather than “process step” because :
in the seamless, reversible process pro- :
moted by object technology, tasks such
as analysis and design are not really sep- :
arate steps but activities that may inter-

source available. Many commercial

components are distributed in this

form.

- Source only, little or no informa-
: The success of component-based

tion hiding. To use the component,

at least for advanced uses, you
must read its source text; this is :
sometimes the case with some of :
the free software available on the :

Internet.

available for inspection, discussion,
and correction.

THE TROUBLE WITH COMPONENTS

The industry is fascinated with com-
ponents. You must go back ten years, to :
the time when most people first came

across OO ideas, to find a comparable
level of excitement. This excitement is

nent-based development for years.

But all the buzz shouldn’t make us for-
get that even if components—I would
say object-oriented components—are

answer. Instead, they raise new ques-

sides, every CIO and project leader will
realize that the quality of a component-
based application is defined by the qual-
ity of its worst component. This
realization may be painful. If a project is

a useful excuse.

So the two-step reasoning cited at the
beginning of this column omitted a cru-
cial third step: Components are worth-
less, and quite possibly harmful, without
an impeccable guarantee of quality.

Only recently has the problem of com-
ponent quality come to the fore, with the

pp. 54-59). And this department has, of
course, repeatedly engaged the issue with

. articles on the Ariane disaster (Jan.
: 1997), the Trusted Components project
- Interface description only, no
. sizing Design by Contract and compo-

(May 1998), and many others empha-

nent-specification techniques.

technology in hardware has only
been possible thanks to precise tech-
niques for specifying components and,
most importantly, to exacting techniques

for quality assurance and quality control.
= Information hiding, with reuse :

through the interface and source :
i software components has yet to reach the
. software community at large. When it
- does it will be sobering.

But the realization that we are far behind
in our efforts to extend this success to

It would be a pity if the move to com-
ponents were to falter because of our
insufficient attention to quality. We
shouldn’t let that happen. [J



