
"Neither ever 
quite the same, 

nor ever 
quite another" 

Simply being more 
organized will not 

make the reuse problem 
go away. The issues 

are technical, not 
managerial. The 

answers lie in object­
oriented design. 
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A 
Reusability: The Case for 
Object-Oriented Design 

Bertrand Meyer, Interactive Software Engineering 

"Why isn't software more like hardware? Why must every new development start 
from scratch? There should be catalogs of software modules, as there are cata­
logs of VLSI devices: When we build a new system, we should be ordering com­
ponents from these catalogs and combining them, rather that reinventing the 
wheel every time. We would write less software, and perhaps do a better job at 
that which we do develop. Then wouldn't the problems everyone laments - the 
high costs, the overruns, the lack of reliability - just go away? Why isn't it so?" 

I f you are a software developer or 
manager you have probably heard 
such remarks before. Perhaps you 

have uttered them yourself. 
The repetitive nature of computer pro­

gramming is indeed striking. Over and over 
again, programmers weave a number of 
basic patterns: sorting, searching, reading, 
writing, comparing, traversing, allocating, 
synchronizing ... Experienced program­
mers know well the feeling of dejiJ vu that 
is so characteristic of their trade. 

Attempts have been made to measure 
this phenomenon; one estimate is that less 
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than 15 percent of new code serves an origi­
nal purpose. 1 

A way to assess this situation less quan­
titatively but perhaps closer to home is to 
answer the following question honestly, 
again assuming you develop software or 
direct people who do. Consider the prob­
lem of table searching: An element of some 
kind, say x, is given with a set of similar ele­
ments, t; the program is to determine if x 
appears in t. The question is: How many 
times in the last six months did you or peo­
ple working for you write some program 
fragment for table searching? 
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Chances are the answer will be one or 
more. But what is really remarkable is that, 
most likely, the fragment or fragments will 
have been written at the lowest reasonable 
level of abstraction - as code instead of by 
calling existing routines. 

Yet table searching is one of the best 
researched areas of computer science. 
Excellent books describe the fundamental 
algorithms - it would seem nobody 
should need to code a searching algorithm 
in standard cases anymore. After all, elec­
tronic engineers don't design standard 
inverters, they buy them. 

This article addresses this fundamental 
goal of software engineering, reusability, 
and a companion requirement, extendibil­
ity (the ease with which software can be 
modified to reflect changes in specifica­
tions). Progress in one of these areas 
usually advances the aims of the other as 
well, so when we discuss reusability, we will 
be adding in petto, " ... and extendibility. " 

Our main thesis is that object-oriented 
design is the most promising technique 
now known for attaining the goals of 
extendability and reusability. 

Ni ,.tout a fait la 
meme . .. 

Why isn't reuse more common? Some of 
the reasons are nontechnical: 

• Economic incentives tend to work 
against reusability. If you, as a contractor, 
deliver software that is too general and too 
reusable, you won't get the next job - your 
client won't need a next job! 

• The famous not-invented-here com­
plex also works against reusability. 

• Reusable software must be retrievable, 
which means we need libraries of reusable 
modules and good database searching 
tools so client programmers can find 
appropriate modules easily. (Some termi­
nology: A client of a module Mis any mod­
ule relying on M; a client programmer is a 
person who writes a client module; an 
implementer of Mis the programmer who 
writes M.) 

In the US, the STARS project is an effort 
that aims, among other things, to over­
come such obstacles. 
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Tip of the iceberg. In my opinion, these 
issues are only the tip of the iceberg; the 
main roadblocks are technical. Reuse is 
limited because designing reusable soft­
ware is hard. This article elaborates on 
what makes it so hard and should dispel 
any naive hope that software problems 
would just go away if we were more 
organized in filing program units. 

Let's take a closer look at the repetitive 
nature of software development. Program· 
mers do tend to do the same kinds of things 
time and time again, but they are not 
exactly the same things. If they were, the 
solution would be easy, at least on paper; 
but in practice, so many details may change 
as to render moot any simple-minded 
attempt at capturing commonality. 

Such is the software engineer's plight: 
time and time again composing a new var­
iation that elaborates on the same basic 
themes: "neither ever quite the same, nor 
ever quite another ... " * 

Take table searching again. True, the 
general form of the code is going to look 
the same each time: Start at some position 
in the table t; explore the table from that 
position, checking if the element found at 
the current position is the one being 
sought; if not, move to another position. 
The process terminates either when the ele­
ment has been found or when all positions 
of interest in the table have been unsucess­
fully probed. 

This paradigm applies to all standard 
cases of data representation (unsorted or 
sorted array, unsorted or sorted linked list, 
sequential file, binary tree, B-tree, hash 
table, etc.). It may be expressed more pre­
cisely as a program schema: 

Search(x : ELEMENT, t : 
TABLE_OF ..ELEMENT) 
return boolean is 

--Look for element x in table t 
pos: POSITION 

begin 
pos:= INITlALPOSITlON (x,t); 
while not EXHAUSTED (pos,t) 
and then not FOUND (pos,x,t) do 

pos:= NEXT (pos,x,t); 
end; 

• Et qui n 'est chaquejois ni tout ajait la meme. Ni tout 
ajait uneautre . .. : And [she] whojrom one [dream] 
to the next is neither ever quite the same, nor ever quite 
another. . . - Gerard de Nerval. 

return not EXHAUSTED (pos,t) 
end -- Search 

Too many variants. The difficulty in 
coming up with a general software element 
for searching is apparent: Even though the 
pattern is fixed, the amount of variable 
information is considerable. Details that 
may change include the type of table ele­
ments (ELEMENT), how the initial position 
is selected (INITIALPOSITION), how the 
algorithm proceeds from one position to 
the next (NEXT), and all the types and rou­
tines in uppercase, which will admit a 
different refinement for each variant of the 
algorithm. 

Not only is it hard to implement a 
general-purpose searching module, it is 
almost as hard to specify such a module so 
that client modules could rely on it with­
out knowing the implementation. 

Beyond the basic problem of factoring 
out the parts that are common to all 
implementations of table searching, an 
even tougher challenge is to capture the 
commonality within some conceptual sub­
set. For example, an implementation using 
sequential search in arrays is very similar 
to one based on sequential linked lists; the 
code will differ only by small (yet crucial) 
details, shown in Table 1. 

Within each group of implementations 
(all sequential tables, for example), there 
are similarities. If we really want to write 
carefully organized libraries of reusable 
software elements, we must be able to use 
commonalities at all levels of abstraction. 

All these issues are purely technical; 
solving all the managerial and economical 
obstacles to reusability that one hears 
about in executives' meetings will not help 
a bit here. 

Routines 
Work on reusability has followed several 

approaches (see the box on p. 54). The 
classical technique is to build libraries of 
routines (we use the word "routine" to 
cover what is variously called procedure, 
function, subroutine, or subprogram). 
Each routine in the library implements a 
well-defined operation. This approach has 
been quite successful in scientific compu­
tation - excellent libraries exist for numer­
ical applications. 
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Table 1. 
Implementation variants for sequential searcb. 

Sequential 
array 

Start search 
at first position i :=1 

Move to 
next position i:= 1+ 

Test for 
table exhausted i> size 

Indeed, the routine-library approach 
seems to work well in areas where a set of 
individual problems can be identified, 
provided the following limitations hold: 

• Every instance of each problem should 
be identifiable with a small set of 
parameters. 

• The individual problems should be 
clearly distinct. Any significant commo, 
nality that might exist cannot be put to 
good use, except by reusing some of the 
design. 

• No complex dat;t structures should be 
involved because they would have to be dis­
tributed among the routines and the con­
ceptual autonomy of modules would be 
lost. 

The table-searching example may be 
used to show the limitations of this 
approach. We can either write a single rou­
tine or a set of routines, each correspond­
ing to a specific case. 

A single routine will have many 
parameters and will probably be structured 
like a gigantic set of case instructions. Its 
complexity and inefficiency will make it 
unusable. Worse, the addition of any new 
case will mean modification and recompi­
lation of the whole routine. 

A set of routines will be large and con­
tain many routines that look very similar 
(like the searching routines for sequential 
arr;tys and sequential linked lists). But 
there is no simple way for the implementers 
to use this similarity. Client programmers 
will have to find their way through a maze 
of routines. 

Modular languages 
Languages like Modula-2 and Ada offer 

a first step toward a solution. These lan­
guages use the notion of module (the Ada 
term is package), providing a higher level 
structuring facility than the routine. A 
module may contain more than one rou­
tine, together with declarations of types, 
constants, and variables. A module may 
thus be devoted to an entire data structure 
and its associated operations. 
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Linked Sequential 
list file 

1:= firsl rewind 

1:= I.nexl read 

I = null encLoLfile 

This approach is rooted in the theory of 
data abstraction, but its basic concepts 
may be illustrated si!Dply with our table­
searching example. 

A table-searching routin~ isn't worth 
very much by itself; it must be com­
plemented by routines that create and 
delete tables and insert and delete elements, 
all governed by a certain representation of 
the table, given by a type declaration. These 
routines and the type declaration are 
closely connected logically, so they might 
as well be part of the same syntactic unit. 
Such units are basically what modular lan­
guages offer. 

This is a significant improvement: We 
can now keep under one roof a set of 
related routines that pertain to a specific 
implementation of a data abstraction. For 
example, the module for a binary search 
tree of integers (INLBINARY.TREE) will con­
tain the declaration of a type intbintree and 
routines Create, Search, Insert, and so on. 
The client code might look like; 

x : integer; b : boolean; p : 
INT -BINARY _ TREE.intbintree; 
INLBINARY_TREE.Create (1); 
INLBINARY_TREE.Insert (x,b); 
b:= INLBINARY_TREE.Search(x,p) 

(Here I use the Ada dot notation: A.f 
means "featuref, such as a type or routine, 
from module A. " In Ada and other lan­
gUages, simpler notations are available 
when a client repeatedly uses features from 
a given module.) 

For reusability, these techniques are use­
ful but limited. They are useful because 
encapsulating groups of related features 
helps implementers (in gathering features) 
as well as clients (in retrieving features), 
and all of this favors reusability. But they 

are limited because they do not reduce sig­
nificantly the amount of software that 
needs to be written. Specifically, they don't 
offer any new clue as to how to capture 
common features. 

Overloading and 
genericity . 

A further improvement is overloading, 
as provided in Algol 68 and Ada. Over­
loading means attaching more than one 
meaning to a name, such as the name of an 
operation. 

For example, when different representa­
tions of tables are each defined by a sepa­
rate type declaration, you would use 
overloading to give the same name, say 
Search, to all associated search procedures. 
In this way, a search operation will always 
be invoked as b:= Search (x, I), regardless 
of the implementation chosen for I and the 
type of table elements. 

Overloading works well in a strictly 
typed language where the compiler has 
enough type information about x and I to 
choose the right version of search. 

A companion technique is genericity, 
provided in Ada and Clu. Genericityallows 
a module to be defined with generic 
parameters that represent types. Instances 
of the module are then produced by sup­
plying different types as actual parameters. 
This is a definite aid to reusability because 
just one generic module is defined, instead 
of a group of modules that differ only in 
the types of objects they manipulate. 

For example, instead of having an 
INT..BINARY.TREE module, a REAL..BINARY. 

TREE module, and so on, you could define 
a single generic BINARY.TREE [11 module. 
Any actual type (iNTEGER, REAL, etc.) could 
correspond to the formal generic parame­
ter T. The search routine can be defined in 
the generic module to act 011 an argument 
x of type T. Then every instance of the 
module automatically has its own version 
of search. 

In summary, overloading and genericity 
each offer something toward reuse: 

• with overloading, the client program­
mer may write the same code when using 
different implementations of the same data 
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abstraction, as provided by different 
modules; 

• with genericity, the implementer may 
write a single module for all instances of 
the same implementation of a data abstrac­
tion, applied to various types of objects. 

These techniques are interesting 
advancements in reusability. But they do 
not go far enough. Roughly speaking, they 
do not provide enough flexibility and they 
force programmers to decide too much too 
soon. 

Not enougb flexibility. They are not 
flexible enough because they cannot cap­
ture fine grains of commonality between 
groups of implementations of the same 
general data abstraction. This is because 
there are only two levels of modules: 
~eneric modules, which are parameteriz~d 
and thus open to variation, but not directly 
usable; and fully instantiated modules, 
which are directly usable but not open to 
refinement. Thus we cannot describe a 
complex hierarchy of representations that 
have different levels of parameterizations. 

Too much too soon. Neither technique 
allows a client to use various implementa­
tions of a data abstraction (say the table) 
without knowing which implementation is 
used in each instance. 

On one hand, each generic module refers 
to a single, explicitly specified instance of 
that module. Overloading, on the other 
hand, is essentially a syntactic facility that 
relieves the programmer of having to invent 
names for different implementations; the 
burden is placed on the compiler instead. 
Nevertheless, each invocation of an over­
loaded operation name, Say Search(x, t), 
refers to a specific version of the operation 
- and both the client programmer and 
compiler know which version that is. 

Client programmers do not actually 
need to know how each version is imple­
mented, since Ada and Modula-2 modules 
are used by clients through an interface 
that lists the available routines, indepen­
dent of their implementation. But they do 
need to decide explicitly which version is 
used. FOr example, if your modules use var­
ious kinds of tables, you don't have to 
know how to implement hash tables, 
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indexed sequential files, and the like - but 
you must say which representation you 
want each time you use a table operation. 

1tue representation-independence only 
happens when a client can write the invo­
cation Search(x,t) and mean, "look for x 
in t using the appropriate algorithm for 
whatever kind of table and element x and 
t happen to be at the time the invocation is 
executed. " 

This degree of flexibility, essential for 
the construction of reusable software ele­
ments, can only be achieved with object­
oriented design. 

Object-oriented design 
This fashionable term has been some­

what overused in recent years. The defini­
tion used here is fairly dogmatic. Object­
oriented design is viewed as a software 
decomposition technique. An overview of 
some object-oriented languages is given in 
the box on p. 59. 

Object-oriented design may be defined 
as a technique which, unlike classical 
(functional) design, bases the modular 
decomposition of a software system on the 
classes of objects the system manipulates, 
not on the functions the system performs. 
Classical approaches like functional top­
down design (even, to a large extent, 
dataflow analysis methods) require 
designers to first ask what the system does. 
Object-oriented design avoids such ques­
tions as long as possible, in fact until the 
system actually is run. Why? 

The top-down functional approach is 
probably adequate if the program you are 
writing solves a fixed problem once and for 
all. But the picture changes when you take 
a long-term view, for what the system will 
do in its first release is probably going to 
be a little different from what you think it 
will do at requirements time, and very 
different from what it will do five years 
later, if it survives that long. 

However, the categories of objects on 
which the system acts will probably be 
more or less the same. An operating system 
will always work on devices, memories, 

processing units, communication chan­
nels, and so on; a document processing sys­
tem will always work on documents, 
chapters, sections, paragraphs, and so on. 

Thus it is wiser in the long term to rely 
on categOries of objects as a basis for 
decomposition, but (and this is an impor­
tant but) only if these categories are viewed 
at a sufficiently high level of abstraction. 
This is where abstract data types come in:" 

Abstract data types 
If we use the physical structure of objects 

as the basis for decomposition, we won't 
go very far toward protecting our soft­
ware's structure against requirement 
changes. In fact, we will probably be worse 
off than we would be with functional 
design. A study by Lientz and Swanson,3 
quoted by Boehm,4 shows that 17.5 per­
cent of the cost of software maintenance 
stems from changes in programs that 
reflect changes in data formats. This 
emphasizes the need to separate the pro. 
grams from the physical structure of the 
objects they handle. 

Abstract data types provide a remarka­
ble solution to this problem. An abstract 
data type describes a class of objects 
through the external properties of these 
objects instead of their computer represen­
tation. More precisely, an abstract data 
type is a class of objects characterized by 
the operations available on them and the 
abstract properties of these operations. 

It turns out that abstract data types, 
which provide an excellent basis for soft­
ware specification, are also useful at the 
design and implementation stage. In fact, 
they are essential to the object-oriented 
approach, and enable us to refine the defi­
nition of object-oriented design: Object­
oriented design is the co~struction of soft­
ware systems as structured collections of 
abstract data-type implementations. 

An important aspect of the object­
oriented method is that it actually identi­
fies modules with implementations of 

• One other design mefhod that does emphasize the 
motto "look at the data before you look at the func­
tions" is Jackson's method.' However, a comparative 
analysis of Jackson's method ami object-oriented 
design falls beyond the scope of this article. 
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Reuse in practice 
It would be unfair to suggest that reuse never occurs in software. Much research 

has been published on the issue and various approaches to reusability have gained 
some acceptance. 

• Source·code reusability is common in academic environments. Unix, for exam­
ple, has spread through universities and r~search laboratories thanks to the on­
line availability of the source code that allowed users to study, imitate, and extend 
the system. This is also true of many Lisp environments. It is unlikely that this form 
of reusability is going to happen in traditional industrial environments, however. 
Beyond the obvious economical and psychological obstacles to source-code dis· 
semination, this technique does not support information hiding, an essential 
requirement for large·scale reuse. 

• Another form of reusability that is widely practiced in industry (some say the 
only one) is reusing personnel. By transferring software engineers from project 
to project, companies maintain know·how and ensure that previous experience 
is applied to new developments. This nontechnical approach to reusability is obvi­
ously limited in scope, if only because of the high turnover in the data process­
ing professions. 

• Japanese software factories rely on the approach that designs, not implemen· 
tations, should be reused. This technique may be viewed as an extension of the 
personnel approach, if you consider designs as formalized pieces of know-how. 

But reuse of design does not appear to go much further than this idea. The very 
notion of designs as independent software product;>, having lives separate from 
those of the corresponding implementations, seems dubious. Perpetual con­
sistency between design and code, which software engineering textbooks (rightly) 
promote as a desirable goal, is notoriously hard to maintain throughout the evo­
lution of a software system. Thus, if only the design is reused there is a strong risk 
of reusing incorrect or obsolete elements. 

Background reading. The first published discussion of reusability was most 
likely the contribution of M.D. Mcilroy, "Mass·Produced Software Components," 
to the 1968 NATO conference on software engineering. 

A particularly good source is the September 1984 issue of the IEEE Transac­
tions on Software Engineering, especially the articles by Horowitz and Munso, 
Standish, Goguen, and Curry and Ayers. An important work not described in that 
issue is the MIT Programmer's Apprentice project, which relies on the notion of 
reusable plans and cliches (IEEE Trans. Software Eng., Jan. 1987). 

The proceedings of the First DoD-Industry Symposium on the STARS program 
(Nat'l Security Industry Assoc., 1985) contains several discussions of reusability 
from an industrial, Ada·oriented perspective. 

abstract data types. It is not only that mod­
ules comprise these implementations (as in 
Ada and Modula-2, and in Fortran-77, 
thanks to multiple-entry subroutines); a 
single program structure is both a module 
and a type. Such a dual-purpose structure 
was dubbed a "class" by the creators of the 
pioneer object-oriented language, Simula 
67. 

relations. The client relation is represented 
by horizontal double arrows; inheritance 
by a single, vertical arrow. 

Class A is said to be a client of B if A 
contains a declaration of the form bb: B. 
(In this and all other object-oriented exam­
ples, I use the notations and terminology 
of the object-oriented language Eiffel. See 
the box on p. 60 for more about Eiffel.) 

Two words should be emphasized in the 
above definition. The first is "implemen­
tation": A module of an object-oriented 
program is not an abstract data type, but 
one implementation of an abstract data 
type. However, the details of the implemen­
tation are not normally available to the rest 
of the world, which only sees the official 
specification of the abstract data type. 

The second is "structured. " Collections 
of classes may indeed be structured using 
two different relations: client and 
inheritance. Figure 1 illustrates these two 
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In this case, A may manipulate bb only 
through the features defined in the speci­
fication of B. Features comprise both 
attributes (data items associated with 
objects of type B) and routines (operations 
for accessing or changing these objects). In 
Eiffel, features are applied through dot 
notation, as in bb.x, bb.f(u, w,x). 

As an example, consider a client class X 
of class BINARY..5EARCH_TREE that imple­
ments a specific form of tables. Client X 
may contain elements of the form: 

bb:BINARY....sEARCH-TREE; 
-- declare bb as binary search tree 

bb.Create; 
-- allocate table (routine call) 

bb.insert (x); 
-- insert x into bb (routine call) 

y:=bb.size; 
-- (attribute access) 

The second relation between classes, 
inheritance, is fundamental to true object­
oriented languages. For example, our 
BINARY..5EARCH_ TREE class may be defined 
as an heir (possibly indirect) to a class 
TABLE that describes the general properties 
of tables, independent of the represen­
tation. 

A class C defined as an heir to a class A 
has all the features of A, to which it may 
add its own. Descendants of a class include 
its heirs, the heirs of its heirs, and so on. 
The relationship between C and A may be 
defined from the viewpoint of both the 
module and the type. 

From the module perspective, 
inheritance allows the programmer to take 
an existing world (class A) and plunge it as 
a whole into a new world, C, which will 
inherit all its properties and add its own. In 
multiple inheritance, as present in Eiffel, 
more than one world may be used to define 
a new one. 

From the type perspective, C is consid­
ered a special case of A: Any object of type 
C may also be interpreted as an object of 
type A. In particular, a variable of type A 
may be assigned an object of type C, 
although the reverse is not true, at least in 
a statically typed language like Eiffel. This 

C TABLE ~ 

Figure 1. The client and inheritance rela­
tions in abstract data types. The client is 
represented by a horizontal double arrow; 
inheritance by a single, vertical arrow. 
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also holds in the case of multiple 
inheritance, as Figure 2 shows. This prop­
erty is extremely important because it 
allows program entities to take different 
forms at runtime. The relation between C 
and A is an instance of the so-called Is-a 
relation (every lily is a flower; every binary 
search tree is a table). 

The powerful combination of object­
oriented design and these two relations -
client and inheritance - is a key element 
in achieving extendibility and reusability. 

An illustrative example 
A new example, a full-screen entry sys­

tem, will help contrast the object-oriented 
approach with classical functional decom­
position. The example, a common data 
processing problem, should be interesting 
on its own: The problem is to write an inter­
active application that guides the user with 
full-screen panels at each stage. 

The problem. Interactive sessions for 
such systems go through a series of states, 
each with a well-defined general pattern: 
A panel is displayed with questions for the 
user; the user supplies the required answer; 
the answer is checked for consistency 
(questions are asked until an acceptable 
answer is supplied); and the answer is 
processed somehow (a database is updated, 
for example). Part of the user's answer is 
a choice of the next steps; the system trans­
lates the user's choice into a transition to 
another state, and the same process is 
applied in the new state. 

Figure 3 shows a panel for an imaginary 
airline reservation system. The screen 
shown is toward the end of a step; the user's 
answers are in italics. 

The process begins in some initial state 
and ends whenever any among a set of final 
states is reached. A transition graph, like 
that in Figure 4, shows the overall structure 
of a session - the possible states and the 
transitions between them. The edges of the 
graph are labeled by numbers that cor­
respond to the user's possible choices for 
the next step. 

Our mission is to come up with a design 
and implementation for such applications 
that have as much generality and flexibil­
ity as possible. 
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An ARRAY object (instance of the class) 

lower bound 1 
size~ 

Features: 
(attributes) 

number of elements 
(routines) 

insert 
search 
delete 

area 27 

Features: 
(attributes) 

number of elements 
size 

Features: 
(attributes) 

size 
lower bound 
area (secret) 

(routines) 
change element 
access element 

lower bound (secret) 
area (secret) 

(routines) 
change element (secret) 
access element (secret) 
insert, search, delete 

Figure 2. Multiple inheritance. In Eiffel, more than one world can be used to define a 
new world, which will inherit all the properies and add its own. 

Enquiry on Flights 

Flight sought from: Santa Barbara to: Paris 
Departure on or after: Nov 21 on or before: Nov 21 

Preferred airline(s): 

Special requirements: 

AVAILABLE FLIGHTS: 1 
Flt# AA 42 Dep 8:25 

Choose next action: 

0- Exit 
1 - Help 
2 - Further enquiry 
3 - Reserve a seat 

Arr 7:45 Thru Chicago 

Figure 3. A panel for an interactive airline reservation system. The screen shown is 
toward the end of a step; the user's answers are in italics. 
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A simple-minded solution. We'll begin 
with a straightforward, unsophisticated 
program scheme. This version is made of 
a number of blocks, one for each state of 
the system: BEnquiry, BReservation, Beancellation, 
and so on. A typical block looks like: 

BEnquiry: 

output "enquiry on flights" panel; 
repeat 

read user's answers and choice C for 
next step; 
if error in answer then 
output appropriate message 

end until not error in answer end; 
process answer; 

,if, 

case C in 
Co:goto Exit, 
C} :goto Bhelp' 
C2:goto BReservation, 

end 

(And similarly for each state.) 
This structure will do the job, but of 

course there is much to criticize. The 
numerous goto instructions give it that 
famous spaghetti bowl look. This may be 
viewed as a cosmetic issue, solved by res­
tructuring the program to eliminate jumps. 
But that would miss the point. 

f:;:\ 
0V 

3 ~ 
~.~ . .------------------------\ 

66 
2 

~ 1 ~t 1 

Vv n exit 

V 
Figure 4. A state transition graph for an interactive application. The edges of the graph 
are labeled by numbers that correspond to the user's possible choices for the next step. 
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The problem is deeper. This program is 
bad not just because it has a lot of explicit 
branch instructions, but because the phys­
ical form of the problem has been wired 
into it. The branching structure of the pro­
gram reflects exactly the transition struc­
ture of the graph in Figure 4. 

This it terrible from a reusability and 
extendability standpoint. In real-world 
data-entry systems, the graph of Figure 4 
might be quite complex - one study men­
tions examples with 300 different states. S 

It is highly unlikely that the transition 
structure of such a system will be right the 
first time it is designed. Even after the first 
version is working, users will inevitably 
request new transitions, shortcuts, or help 
states. The prospect of modifying the 
whole program structure (not just program 
elements - the overall organization) for 
anyone change is horrendous. 

To improve on this solution we must sep­
arate the graph structure from the traver­
sal algorithm. This seems appropriate 
because the structure depends on the par­
ticular interactive application (airline reser­
vation), while its traversal is generic. As a 
side benefit, a functional decomposition 
will also remove the heretical gotos. 

A procedural, "top-down" solution. 
We may encapsulate the graph structure in 
a two-argument function, Transition, such 
that Transition(s,c) is the state obtained 
when the user chooses c on leaving state s. 

We use the word "function" in a mathe­
matical sense: Transition may be repre­
sented either by a function in the 
programming sense (a routine that returns 
a value) or by a data structure, such as an 
array. The first solution may be preferable 
for readability because the transitions will 
appear in the program code itself. The sec­
ond is better for flexibility because it is eas­
ier to change a data structure than a 
program. We can afford to postpone this 
decision. 

The function transition is not sufficient 
to describe the transition graph. We must 
also define the state, initial, that begins the 
traversal and a Boolean-valued function is­
final(s) that determines when a state is 
final. Initial and final states are treated dis­
symmetrically; while it is reasonable to 
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expect the dialog to always begin in the 
same state, we cannot expect it to always 
end in the same state. 

Figure 5 shows the orthodox, functional 
architecture derived from this solution. As 
the top-down method teaches, this system 
has a "top," or main program. What else 
could it be but the routine that describes 
how to execute a complete interactive 
session? 

This routine may be written to empha­
size application-independence. Assume 
that a suitable representation is found for 
states (type STATE) and for the user's 
choice after each state (CHOICE): 

session is 
-- execute a complete session of 
-- the interactive system 
current: STATE; next: CHOICE 

begin 
current := initial ; 
repeat 

do_one-state (current, next) ; 
-- the value of next is returned by routine 
-- do_one-State 

current := transition (current, next) 
until is_final (current) end 

end -- session 

This procedure does not show direct 
dependency upon any interactive applica­
tion. To describe such an application, we 
must provide three of the elements on level 
two in Figure 5: a transition function (rou­
tine or data structure), an initial state, and 
an isJinal predicate. 

To complete the design, we refine the 
do_one....state routine, which describes the 
actions to be performed in each state. The 
body of this routine is essentially an 
abstracted form of the blocks in our 
spaghetti version: 
do_one-state (in s : STATE; out c : CHOICE) is 

--execute the actions associated with 
--state s, 
--returning into c the user's choice 
--for the next state 

a: ANSWER; ok: BOOLEAN; 
begin 

repeat 
display(s) ; read(s,a) ; 
ok : = correct(s,a) ; 
if not ok then message(s,a) end 

until ok end; 
process (s,a) ; c := nexLchoice (a) 

end -- do_one-State 

For the remaining routines, we can only 
give a specification, because the implemen­
tations depend on the details ofthe appli-
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Figure 5. An ortbodox, functional arcbitecture for an interactive application. Tbe 
"top," or main program, is tbe routine Session. 

cation and its various states: display(s) 
outputs the panel associated with state s; 
read(s,a) reads the user's answer to state s 
into a; correct(s,a) returns true if and only 
if a is an acceptable answer; if it is, pro­
cess(s,a) processes answer a; if it isn't, mes­
sage(s,a) outputs the relevant error 
message. 

1Ype ANSWER is left unspecified. A value 
of this type, say a, globally represents the 
input entered by the user in a given state, 
including the user's choice of the next step, 
nexLchoice(a). 

Data transmission. Is this solution 
satisfactory? Not from the standpoint of 
reusability. 

True, we did separate what is generic and 
what is specific to a particular application, 
but this does not buy much flexibility. The 
main problem is the system's data trans­
mission structure. Consider the function­
alities (types of arguments and results) of 
the routines: 

do_one-State: (in s: STATE; out c: CHOICE) 
display: (in s: STATE) 
read: (in s: STATE; out a: ANSWER) 
correct: (in s: STATE; a: ANSWER): 
BOOLEAN 
message: (in s: STATE, a: ANSWER) 
process: (in s: STATE, a: ANSWER) 

All these routines share the state s as a 
parameter, coming from the top module 
Session (where it is known as Current). The 
flow of data, illustrated in Figure 6, shows 
that (as a conservative economist might 
say) there's far too much state intervention. 
As a result, all the above routines must per­
form some form of case discrimination 
ons: 

case s of 
Statel:····, 

Staten:····' 
end 

This implies long, complex code (a prob­
lem which could be solved with further 
decomposition) and (more annoying) it 
means that every routine must deal with, 
and thus know about, all possible states of 
the application. This makes it very difficult 
to implement extensions. Adding a new 
state, for example, entails modifications 
throughout. Such a situation is all too 
common in software development. System 
evolution becomes a nightmare as simple 
changes touch off a complex chain reaction 
in the system. 

The situation is even worse than it 
appears. It would seem desirable to profit 
from the similar aspects of these types of 
interactive applications by storing the com­
mon parts in library routines. But this is 
unrealistic in the solution above: On top of 
the explicit parameters, all routines have an 
implicit one - the application itself, air­
line reservations. 

A general-purpose version of display, for 
example, should know about all states of 
all possible applications in a given environ­
ment! The function transition should con­
tain the transition graph for all 
applications. This is clearly impossible. 

The law 0/ inversion. What is wrong? 
Figure 6 exposes the flaw: there is too much 
data transmission in the software architec­
ture. The remedy, which leads directly to 
object-oriented design, may be expressed 
by the following law: If there is too much 
data transmission in your routines, then 
put your routines into your data. 

Instead of building modules around 
operations (session, do_one-.state) and dis­
tributing data structures between the 
resulting routines, object-oriented design 
does the reverse. It uses the most important 
data structures as the basis for modulari­
zation and attaches each routine to the data 
structure to which it applies most closely. 
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Figure 6. Data transmission in the architecture derived from with the top-down 
approach. 

This law of inversion is the key to turn­
ing a functional decomposition into an 
object-oriented design: reverse the view­
point and attach the routines to the data 
structures. To programmers trained in 
functional approaches, this is as revolu­
tionary as making the Sun orbit Earth. 

Of course, it's best to design in an object­
oriented fashion from the beginning. How­
ever, the process of moving from a func­
tional decomposition to an object-oriented 
structure is itself interesting. How do. we 
find the most important data structures, 
around which modules are to be built? 

Data transmission provides a clue. The 
data structures that are constantly trans­
mitted between routines must be impor­
tant, mustn't they? 

Here the first candidate is obvious, the 
state (current, s). So our object-oriented 
solution will include a class STATE to 
implement the corresponding abstract data 
type. Among the features of a state are the 
five routines of level one in Figure 5 that 
describe the operations performed in a 
state (display, read, message, correct, and 
process), and the routine do_one....state 
without the state parameter. 

In Eiffel notation, the class STATE may 
be written: 
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class STATE export 
next...choice, display, read, correct, 
message, process, do_one.-State 

feature 
user...answer: ANSWER; 
next...choice: INTEGER; 
do_one_state is 

do 
... body of the routine ... 

end; 
display is ... ; 
read is ... ; 
correct: BOOLEAN is ... ; 
message: is ... ; 
process is... ; 

end -- class STATE 

The features of the class include two attrib­
utes, nexLchoice and user....answer, and six 
routines. Routines are divided into func­
tions, which return a result (like correct, 
which returns a Boolean value) and proce­
dures, which don't. 

The export clause is used for informa­
tion hiding: In a client class containing a 
declaration S: STATE, a feature application 
s.jis only correct if/is one of the features 
listed in the clause. Here all features are 
exported, except for user....answer, which is 
accessible by STATE routines but not by the 
outside world. A nonexported feature is 
said to be secret. As before, we assume that 
type ANSWER is declared elsewhere, now as 
a class. Values that represent exit choices 
are coded as integers. 

Unlike its counterpart in a functional 
decomposition, each routine has no 
explicit STATE parameter. The state to 
which routines apply reappears in calls 
made by clients: 

s: STATE; b:BOOLEAN; 
choicecode: INTEGER; 
s.do_one.-State ; s.read ; 
b := s.correct; 
choicecode := s.nexLchoice; 
etc. 

We have also replaced the ANSWER param­
eter in level-one routines with the secret 

attribute user....answer. Information hiding 
is the motive - client code doesn't need to 
look at answers except through the inter­
face provided by the exported features. 

Inheritance and deferred features. 
There's a problem, however. How can we 
write the class STATE without knowing the 
properties of a specific state? Routine 
do_one-state and attribute nexLchoice are 
the same for all states, but display is not. 

Inheritance is the key to this problem. At 
the STATE level we know (1) all details of 
routine do_one_state, (2) the attribute 
nexLchoice; (3) the fact that routines like 
display must exist and (4) what their func­
tionalities are. 

So we write the class and define these 
partially known routines as de/erred. This 
means that, while any actual state must 
have them, their details are postponed to 
descendant classes that describe specific 
states. (The notion of deferred routines 
come from Simula 67, where they-are called 
"virtuaL") Thus the class is written: 

class STATE export 
nexLchoice, display, read, correct, 
message, process, do_one.-State 

feature 
user....answer: ANSWER; 

-- secret attribute 
next-ehoice: INTEGER; 

do_one.-State is 
-- execute the actions associated 
-- with the current state 
-- and assign to next...choice the 
-- user's choice for the next state 

local 
ok: BOOLEAN 

do 
from 

ok:= false 
until 

ok 
loop 

display; read; ok := correct; 
if not ok then 

message 
end 

end; --loop 
process 

ensure 
correct 

end; -- do_one_state 

display is 
-- display the panel associated 
-- with current state 
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deferred 
end ; -- display 
read is 

-- return the user's answer 
-- into user--llnswer 
-- and the user's next choice 
-- into next-choice 
deferred 
end; -- read 

correct: BOOLEAN is 
-- return true if and only if 
-- user --lInswer is 
-- a correct answer 
deferred 
end; -- correct 

message is 
-- output the error message 
-- associated with user--llnswer 
require 

not correct 
deferred 
end; -- message 

process is 
-- process user--llnswer 
require 

correct 
deferred 
end -- process 

end -- class STATE 

Note the syntax of the Eiffelloop, with ini­
tialization in the from clause and the exit 
test in the until clause. This is equivalent to 
a while loop, with an exit test rather than 
a continuation test. 

Also note the require clauses that appear 
at the beginning of routines message and 
process. These clauses introduce precondi­
tions that must be obeyed whenever a rou­
tine is called. Similarly, a postcondition, 
introduced by the keyword ensure, may be 
associated with a routine. Preconditions 
and postconditions express the precise 
effect of a routine. They can also be moni­
tored at runtime for debugging and 
control. 

The class just described does not by 
itself describe any actual states - it 
expresses the pattern common to all states. 
Specific states are defined by descendants 
of STATE. It is incumbent on these descen­
dants to provide actual implementations of 
the deferred routines, such as: 

class ENQUIRY_ON...FLIGHTS export.... 
inherit 

STATE 

Object-oriented languages. 
Other languages implement the concept of object-oriented programming with 

inheritance and would allow solutions to our airline reservation system example, 
in a manner similar to the one given here in Eiffel. 

These include Simula, the father of all object-oriented language, object-oriented 
expressions of C such as Objective C and C++, and an extension of Pascal, Object 
Pascal. These four languages, however, support only single inheritance. Other 
object-oriented languages include Smalltalk and extensions of Lisp such as Loops, 
Flavors, and Ceyx. The Clu language shares some of the properties of these lan­
guages, but does not offer inheritance. 

In recent years, many languages have been added to the above list, mostly for 
exploratory programming and artificial intelligence purposes. 
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feature 
display is 

do 
... specific display procedure ... 

end; 
... and similarly for read, correct, 
message, and process ... 

end -- class ENQUIRY_ON...FLIGHTS 

Several important comments are in order: 

• We have succeeded in separating - at 
the exact grain of detail required - the ele­
ments common to all states from those spe­
cific to individual states. Common 
elements are concentrated in STATE and 
need not be redeclared in descendants of 
STATE like ENQUIRy..oN.FLIGHTS. 

• If s is an object of type STATE and dan 
object of type DS, where DS is a descendant 
of STATE, the assignment s := d is permit­
ted and d is acceptable whenever an ele­
ment of type STATE is required. For 
example, the array Transition introduced 
below to represent the transition graph of 
an application may be declared of type 
STATE and filled with elements of descen­
dant types. 

• This goes beyond Ada-style separation 
of interface and implementation. First, an 
Ada interface may contain only bodiless 
routines; it corresponds to a class where ail 
routines are deferred. In Eiffel, however, 
you may freely combine non deferred and 
deferred routines in the same class. Even 
more important, Eiffel allows any number 
of descendant types of STATE to coexist in 
the same application, whereas Ada allows 
at most one implementation per interface. 
This openness of classes (a class may 
always be extended by new descendants) is 
a fundamental advantage of object­
oriented languages over the closed modules 
of such languages as Ada and Modula-2. 

• The presence of preconditions and 
postconditions in Eiffel maintains the con­
ceptual integrity of a system. Just as a 
deferred routine must be defined in descen­
dant classes, so must we define the con­
straints such a definition must observe. 
This is why a precondition and postcondi­
tion may be associated with a routine even 
in a deferred declaration. These conditions 
are then binding on any actual definition 
of the routine in a descendant of the origi­
nal class. The technique is paramount in 
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More on Eiffel 
The Eiffel language is part of an environment developed by the author and his 

colleagues at Interactive Software Engineering. It is accompanied by a design method, 
a library, and a set of supporting tools. It promotes reusability, extendibility, and soft· 
ware construction by a combination of flexible modules. 

The Eiffellibrary provides the basic building blocks: a set of classes implementing 
some of the most important data structures and associated operations. 

Inheritance plays a central role in this approach. The language supports multiple 
inheritance, used heavily in the basic library; we have found single inheritance to be 
insufficient. (Repeated inheritance, not described here, is also supported.) The use of 
inheritance is made safe and practical with renaming and redefinition techniques. Type 
parameterization (genericity) is also available. 

Inheritance and genericity are powerful techniques for building reusable, extendable 
software. Their very power entails a risk of misuse. To enhance correctness and reliability, 
Eiffel includes primitives for systematiC software construction: class and loop invariants, 
and routine preconditions and postconditions, all of which describe semantic 
constraints imposed on classes and their features. 

These constraints (which may be monitored at runtime to help in debugging) must 
be obeyed by any redefinition of the features in descendant classes, thus preserving 
the semantic consistency of descendants and helping to control the scope of the 
inheriance mechanism. 

Eiffel is a typed language, where all type checking may be done statically. The Ian· 
guage and method are intended for the development of sizable software systems; thus 
the implementation, which uses C as an intermediate language, emphasizes efficiency. 
Access to any feature of an object (as in a.t) always takes constant time, despite 
the possiblities for overloading provided by multiple inheritance, renaming, redefi· 
nition and genericity (which imply that the version of f to be applied depends on 
the runtime form of a). Also, the code for a routine is not duplicated in classes 
which inherit the routine, even in the presence of multiple inheritance and 
genericity. 

Because the emphasis is on the incremental development of large systems, the Eiffel 
translator supports separate compilation, class by class. Automatic configuration man· 
agement is provided, so that each needed module is always used in an up-to-date 
version (necessary recompilations, and these only, being automatically triggered by the 
system). The implementation includes a set of supporting tools, in particular for auto­
matic memory management, execution tracing, symbolic debugging, and 
documentation. The implementation is currently available on Unix systems. 

The language and method are described in "Eiffel: A Language and Environ­
ment for Software Engineering," to appear in the Journal of Systems and Software, 
and "Eiffel: Programming for Reusability and Extendibility," SIGPlan Notices, 
1987. 

using Eiffel as design language: A design 
module will be written as a class with 
deferred routines, whose effects are charac­
terized by pre- and postconditions. 

It makes sense to associate with this con­
cept a full-fledged abstract data type that 
will yield a class, say INTERACTIVlLAPPLlCA­

TION, at the design and implementation 
stages. For, although INTERACTIVE.APPLI­

CATION will include as one of its features 
the routine session describing the execution 
of an applicaton, there are other things we 
may want to do with an application, all of 
which may be added incrementally to class 
APPLICATION. 

A complete system. The fmal step in our 
example is to adapt the routine that was at 
the top of the furtctional decomposition: 
session. But We should be a little wiser by 
now. 

The top of the top-down method is 
mythical. Most real systems have no such 
thing, especially if the top is meant to be 
a routine - the function of the system. 
Large software systems perform many 
functions, all equally important. Again, 
the abstract data type approach is more 
appropriate because it considers the system 
as an abstract entity capable of rendering 
many services. 

In this case the obvious candidate is the 
notion of application: a specific interactive 
system like the airline reservation system. 
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By renouncing the notion of' 'main pro­
gram" and seeing session as just one fea­
ture of the class INTERACTIVlLAPPLICATION, 

we have added considerable flexibility. 
The class is given in Figure 7. Its ptin" 

cipal features include the remaining ele­
ments at levels two and three in Figure 5. 
The following implementations decisions 
have been made: 

• The transition function is represented 
by a two-dimensional array, 1fansition, of 
size n x m, where n is the number of states 

and m the number of possible exit choices. 

• States are numbered 1 to n. An aux­
iliary, one-dimensional array, associated­
state, yields the state corresponding to any 
integer. 

• The numbep of the initial state is set by 
the routine Choose-.initial and kept in the 
attribute InitiaLnumber. The convention 
for final states is a transition to pseudo­
state 0; normal states have positive 
numbers. 

The class includes a Create procedure 
that will be executed on object initializa­
tion. As in most object-oriented languages, 
objects are created dynamically. If a is 
declared of type C, the instruction a.Cre­
ate creates an object of type C and associ­
ates it with a. 

The Create procedure and its parameters 
makes it possible to execute specific initial­
ization actions on creation, instead of 
initializing the new object with standard 
default values. 

The procedure Create of class 
INTERACTIVE.APPLICATION itself uses the 
Create procedures of library classes ARRAY 

and ARRAY2, which allocate arrays dynam­
ically within the bounds given as 
parameters. For example, a two­
dimensional array may be created by a. Cre­
ate (1,25, l,to). 

Classes ARRAY and ARRAY2 also include 
features Entry and Enter for array access 
and modification. Other features of an 
array are its bounds, upper and lower for 
a one-dimensional array, and so on. 

These classes are declared as ARRAY[T) 

and ARRAY2[T], an example of Eiffel classes 
with generic parameters, in this case the 
type of array elements. Many fundamen­
tal classes in the Eiffellibrary Oists, trees, 
stacks) are generic. With Eiffel a program­
mer can combine genericity with 
inheritance in a type-safe manner. 6 

Class INTERACTIVE.APPLICATION uses 
Eiffel assertions, an aspect of the language 
designed to emphasize correctness and 
reliability. Assertions express formal 
properties of program elements. They may 
appear in preconditions and postcondi­
tions, the loop invariants, and the class 
invariants. 
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Such constructs are used primarily to 
ensure correct program designs and to 
document the correctness of arguments, 
but they may also be used as checks at run­
time. More profoundly, assertions (espe­
cially pre- and postconditions and class 
invariants) bring the formal properties of 
abstract data types back into classes. 

An interactive application will be repre­
sented by an entity, aiLJeservation, 
declared of type INTERACTIVEAPPLICATION 

and initialized by 

aiLreservation.Create (number-<>L.states, 
number_oLpossible_choices) 

The states of the application must be 
defined separately as entities, declared of 
descendants STATE, and created. Each state 
s is assigned a number i: 

aiLreservation.entec.state(s,i) 

One state, io, is chosen as the initial: 

aiLreservation.choose-.initial(io) 

Each successive transition (from state 
number sn to state number tn, with label 
l) is entered by: 

airJeservation.enter_transition(sn,tn,l) 

This includes eXits, for which tn is O. The 
application may now be executed by 
air Jeservation.session. 

The same routines can by used during 
system evolution to add a new state, a new 
transition, and so on. The class may be 
extended, of course (either by itself or 
through descendants). 

Multiple inheritance. This example 
exposes many of the principles in Eiffel, 
except the concept of multiple inheritance. 
A previous article on the same example7,8 

relied on Simula 67, which supports only 
single inheritance. Multiple inheritance is 
another concept that is essential to a prac­
tical use of object-oriented design and pro­
gramming. 

Multiple inheritance makes it possible to 
define a class as heir to more than one 
other class, thus combining the features of 
several previously defined environments. 
Multiple inheritance would be essential, 
for example, to implement a satisfactory 
solution to the table-management prob­
lem, detailed in the box on p. 62. 
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classINTERACTIVKAPPLICATION export 
session, firsLnumber, enter--.State, 
choosejnitial, enteLtransition, ... 

feature 
transition: ARRAY2 [STATE] ; associatecLstate: ARRAY [STATE] ; 
~- secret attributes 
firstJIUmber; INTEGER; 
Create (n,m:INTEGER) is 
-- allocate application with n states and m possible choices 

do 
transition.Create (l,n,l,m) ; 
associated--.State.Create (l,n) 

end; -- Create 

session is -- execute application 
local 

st: STATE; sLnumber: INTEGER; 
do 

from 
sLnumber:=firsLnumber ; 

invariant 
o :5 next; next :5 n 

until sLnumber = 0 loop 
st: =associated_state.entry( sLnumber) ; 
st.do_one_state ; 
sLnumber:=transitioh.entry(sLnumber, st.nexLchoice) 

end --loop 
end; -- session 

enter--.State (s: STATE; number: INTEGER) is 
-- enter state s with index number 

require 
1 :5 number; 
number :5 associateutate.upper 

do 
associateutate.enter (number,s) 

end; -- enter--.State 

choosejnitial (number: INTEGER) is 
-- define state number number as the initial state 

require 
1 :5 number; 
number :5 associateutate.upper 

do 
firsLnumber: =number 

end; -- choosejnitial 
enteLtransition (source: INTEGER; target:INTEGER ; label: INTEGER) is 
-- enter transition labeled "label" from state number source 
-- to state number target 

require 
1 :5 source; source :5 associated--.State.upper ; 
o :5 target; target :5 associatecLstate upper ; 
1 :5 label; label :5 transition.upper2 ; 

do 
transition.enter (source, label, target) 

end -- enteLtransistion 

. .. other features ... 

invariant 
0:5 sLnumber; SLnumber :5 n; 
transition.upperl = associated--.State.upper ; 

end -- class INTERACTIVE-APPLICATION 

Figure 7. The class INTERACTIVLAPPLICATION. 
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A table-searching module 
It is impossible to give, in one article, a satisfactory solution to the problem of 

designing a general-purpose table-searching module. But we can outline how Eiffel 
would be applied to that case. 

First, it is obvious that we are talking not about a table-searching module, but 
about a module for table management. In fact, we're talking just about the table 
as an abstract data type with operations such as search, insert, delete, and so on. 

As with STATE, the most general notion of table will be represented by a class 
with deferred routines. The various kinds of tables are descendants of this class. 
To obtain them, an in-depth analysis of the notion of table and its possible 
implementations is required. Such an analysis and the associated design and 
implementation effort are a considerable endeavor, especially as you realize that 
there is not a single notion of table, but a network of related notions. 

The inheritance mechanism can help express the structure of this network and 
capture differences and similarities at the exact grain of detail required. For exam­
ple, we may have a descendant of TABLE, SEQUENTIALTABLE. that covers tables stored 
sequentially in arrays, linked lists, or files, with a version of the function search (x): 

from 
restart 

until 
ofLlimits or else currenLvalue = x 

invariant 
- - x does not appear in the table before current postion 

loop 
move_forth 

end; 
if ofUimits ... (etc.) 

The structure is similar to that of STATE, where the essential routine do_one_state 
was not deferred, but was expressed in terms of other deferred routines. In this 
case, search is not deferred but uses deferred routines for which the descendants 
of TABLE must provide implementations. 

What's remarkable is that an entity t declared of type TABLE may dynamically 
refer to an object of any descendant type of TABLE; however the call t.search(x) may 
be written without any knowledge of what kind of table implementation t will actu­
ally be at runtime. 

This approach captures - at the exact grain of detail required - the commo­
nality within a family of implementations of the same data abstractions. A family 
will consist of a header class (SEQUENTIALTABLE) and specific descendants 
(ARRAY_TABLE). 

The inheritance graph may span more than one level. Features common to all 
members of the family (like Search for sequential tables) are concentrated at the 
header level and shared; features unique to various members are deferred in the 
header and expanded on in the individual members. The diagram below illustrates 
this inheritance structure. 

Both genericity and multiple inheritance are essential to this problem's solu­
tion: All table classes take the type of table elements as a generic parameter, and 
several will combine two or more parent classes (BINARY-SEARCH_TREE from both 
BINARY-TREE and TABLE). 

Even in the previous example, multiple 
inheritance is not far away - if we had 
defined a data abstraction WINDOW to 
describe screen panels, some descendants 
of STATE might inherit from this class, too. 

In lieu of conclusion 
This article has promoted the view that, 

if one accepts that reusability is essential 
to better software quality, the object­
oriented approach - defined as the con­
struction of software systems as structured 
collections of abstract data type implemen­
tations - provides a promising set of 
solutions. 

One epithet this approach certainly does 
not deserve is "top-down." It is puzzling 
to see this adjective used almost universally 
as a synonym for "good." Top-down 
design may be an effective method for 
developing individual algorithms and rou­
tines. But applying it at the system level is 
inappropriate unless the system can be 
characterized by a single, frozen, top-level 
function, a case that is rare in practice. 

One epithet this 
approach certainly does 

not deserve is 
"top-down. " 

More importantly, top-down design 
goes against the key factor of software 
reusability because it promotes one-of-a­
kind developments, rather than general­
pupose, combinable software elements. 

It is surprising to see top-down design 
built in as an essential requirement in the 
US Dept. of Defense directive MIL­
STD-2167, which by the sheer power of its 
sponsor is bound to have a serious (and, we 
fear, negative) influence for years to come. 

Of course, the bottom-up method 
promoted here does not mean that system 
design should start at the lowest possible 
level. What it implies is construction of sys­
tems by reusing and combining existing 
software. This is a bootstrapping approach 
in which software elements are progres­
sively combined into more and more ambi­
tious systems. 
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As a consequence of this approach, 
there is no notion of main program in 
Eiffel. Classes are meant to be developed 
separately. Integrating those classes into an 
Eiffel "system" is the last, and least bind­
ing, decision. 

A system is a set of classes with one dis­
tinguishing element, the root. The only role 
of the root is to initiate the execution of the 
system (by creating an object of the root 
type and executing its create procedure). A 
system has no existence as Eiffel construct; 
it is simply a particular assembly of classes. 

Such an approach is viable only if there 
are adequate facilities to produce flexible 
software elements and combine them 
effectively. The concepts of object-oriented 
design with multiple inheritance and 
genericity provide such facilities. 

O bject-oriented design means 
more than just putting data 
types into modules; the 

inheritance concept is essential. This 
requires an object-oriented language. As 
structured programming showed a few 
years ago, you can attempt to implement 
new methodological concepts without a 
language that directly supports them -
but it will never be quite as good as the real 
thing: using the right language to imple­
ment the right concepts. 

Another aspect of the approach 
promoted here is that it tends to blur the 
distinction between design and implemen­
tation. While this distinction may be 
unavoidable today, it is undesirable 
because it tends to introduce an artificial 
discontinuity in software construction. 
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Design and implementation are essen­
tially the same activity: constructing soft­
ware to satisfy a certain specification. The 
only difference is the level of abstraction -
during design certain details may be left 
unspecified, but in an implementation 
everything should be expressed in full. 
However, the process of filling in the details 
should be continuous, from system archi­
tecture to working program. Language 
constructs such as deferred features are 
particularly helpful in this process. Soft­
ware development is made much smoother 
when you use a language that encompasses 

database of components. 
As evidence of the limitations of the 

"managerial" approach to reusability, 
consider the relations that exist between 
these components, such as specialization 
(a hash table is a specialized table, a B-tree 
is a specialized tree). If an object-oriented 
language is used, they can be expressed 
directly by inheritance and recorded within 
the components themselves. But if the lan­
guage does not provide direct support for 
expressing this relation, the information 
must be entered explicitly into the data­
base, separate from the components. 

Give your poor, your huddled projects a decent 
technical environment in the first place. Then worry 

about whether you are managing them properly. 

the tr~ditional area of design and imple­
mentation, but that is no more difficult to 
master than conventional programming 
languages. Such is the aim of Eiffel. 

We do not propose, however, to remove 
the boundary between design and imple­
mentation, on the one hand, and system 
specification on the other. These activities 
are of a different nature: specification 
states problems, design and implementa­
tion solve them. (A companion effort, the 
specification method M,9 applies similar 
concepts to formal, nonexecutable speci­
fications.) 

One more fundamental theme has been 
guiding this discussion: the idea that today 
the essential problems of software engi­
neering are technical problems. 

Not everybody agrees. There is a large 
and influential school of thought that sees 
management, organization, and economic 
issues as the biggest obstacles to progress 
in software development. Programming 
aspects, in this view, are less important. 
This view is evidenced in many discussions 
of reusability that consider technical issues, 
such as the choice of programming lan­
guage, as less important for reusability 
than such things as an easily accessible 

This immediately raises some difficult 
issues: how to provide an adequate user 
interface, check the consistency of the rela­
tion information, and maintain the 
integrity of this information as compo­
nents are updated. Advanced project­
management techniques are required to 
solve these issues. This is a typical example 
of an organizational solution to a techni­
cal problem, with the resulting complexity 
and loss of effectiveness. 

Overemphasis on management issues is 
premature. While it is indeed true that 
many software projects are plagued with 
management problems, focusing on these 
problems first confuses the symptom with 
cause. It's like expecting better hospital 
management to solve the public hygiene 
problem 10 years before Pasteur came 
along! 

Give your poor, your huddled projects 
a decent technical environment in the first 
place. Then worry about whether you are 
managing them properly. 0 
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