
"Neither ever
quite the same,

nor ever
quite another"

Simply being more
organized will not

make the reuse problem
go away. The issues

are technical, not
managerial. The

answers lie in object­
oriented design.

50

A
Reusability: The Case for
Object-Oriented Design

Bertrand Meyer, Interactive Software Engineering

"Why isn't software more like hardware? Why must every new development start
from scratch? There should be catalogs of software modules, as there are cata­
logs of VLSI devices: When we build a new system, we should be ordering com­
ponents from these catalogs and combining them, rather that reinventing the
wheel every time. We would write less software, and perhaps do a better job at
that which we do develop. Then wouldn't the problems everyone laments - the
high costs, the overruns, the lack of reliability - just go away? Why isn't it so?"

I f you are a software developer or
manager you have probably heard
such remarks before. Perhaps you

have uttered them yourself.
The repetitive nature of computer pro­

gramming is indeed striking. Over and over
again, programmers weave a number of
basic patterns: sorting, searching, reading,
writing, comparing, traversing, allocating,
synchronizing ... Experienced program­
mers know well the feeling of dejiJ vu that
is so characteristic of their trade.

Attempts have been made to measure
this phenomenon; one estimate is that less

0740· 7459/87 /0300/0050/$01.00 © 1987 IEEE

than 15 percent of new code serves an origi­
nal purpose. 1

A way to assess this situation less quan­
titatively but perhaps closer to home is to
answer the following question honestly,
again assuming you develop software or
direct people who do. Consider the prob­
lem of table searching: An element of some
kind, say x, is given with a set of similar ele­
ments, t; the program is to determine if x
appears in t. The question is: How many
times in the last six months did you or peo­
ple working for you write some program
fragment for table searching?

IEEE SOFTWARE

Chances are the answer will be one or
more. But what is really remarkable is that,
most likely, the fragment or fragments will
have been written at the lowest reasonable
level of abstraction - as code instead of by
calling existing routines.

Yet table searching is one of the best
researched areas of computer science.
Excellent books describe the fundamental
algorithms - it would seem nobody
should need to code a searching algorithm
in standard cases anymore. After all, elec­
tronic engineers don't design standard
inverters, they buy them.

This article addresses this fundamental
goal of software engineering, reusability,
and a companion requirement, extendibil­
ity (the ease with which software can be
modified to reflect changes in specifica­
tions). Progress in one of these areas
usually advances the aims of the other as
well, so when we discuss reusability, we will
be adding in petto, " ... and extendibility. "

Our main thesis is that object-oriented
design is the most promising technique
now known for attaining the goals of
extendability and reusability.

Ni ,.tout a fait la
meme . ..

Why isn't reuse more common? Some of
the reasons are nontechnical:

• Economic incentives tend to work
against reusability. If you, as a contractor,
deliver software that is too general and too
reusable, you won't get the next job - your
client won't need a next job!

• The famous not-invented-here com­
plex also works against reusability.

• Reusable software must be retrievable,
which means we need libraries of reusable
modules and good database searching
tools so client programmers can find
appropriate modules easily. (Some termi­
nology: A client of a module Mis any mod­
ule relying on M; a client programmer is a
person who writes a client module; an
implementer of Mis the programmer who
writes M.)

In the US, the STARS project is an effort
that aims, among other things, to over­
come such obstacles.

March 1987

Tip of the iceberg. In my opinion, these
issues are only the tip of the iceberg; the
main roadblocks are technical. Reuse is
limited because designing reusable soft­
ware is hard. This article elaborates on
what makes it so hard and should dispel
any naive hope that software problems
would just go away if we were more
organized in filing program units.

Let's take a closer look at the repetitive
nature of software development. Program·
mers do tend to do the same kinds of things
time and time again, but they are not
exactly the same things. If they were, the
solution would be easy, at least on paper;
but in practice, so many details may change
as to render moot any simple-minded
attempt at capturing commonality.

Such is the software engineer's plight:
time and time again composing a new var­
iation that elaborates on the same basic
themes: "neither ever quite the same, nor
ever quite another ... " *

Take table searching again. True, the
general form of the code is going to look
the same each time: Start at some position
in the table t; explore the table from that
position, checking if the element found at
the current position is the one being
sought; if not, move to another position.
The process terminates either when the ele­
ment has been found or when all positions
of interest in the table have been unsucess­
fully probed.

This paradigm applies to all standard
cases of data representation (unsorted or
sorted array, unsorted or sorted linked list,
sequential file, binary tree, B-tree, hash
table, etc.). It may be expressed more pre­
cisely as a program schema:

Search(x : ELEMENT, t :
TABLE_OF ..ELEMENT)
return boolean is

--Look for element x in table t
pos: POSITION

begin
pos:= INITlALPOSITlON (x,t);
while not EXHAUSTED (pos,t)
and then not FOUND (pos,x,t) do

pos:= NEXT (pos,x,t);
end;

• Et qui n 'est chaquejois ni tout ajait la meme. Ni tout
ajait uneautre . .. : And [she] whojrom one [dream]
to the next is neither ever quite the same, nor ever quite
another. . . - Gerard de Nerval.

return not EXHAUSTED (pos,t)
end -- Search

Too many variants. The difficulty in
coming up with a general software element
for searching is apparent: Even though the
pattern is fixed, the amount of variable
information is considerable. Details that
may change include the type of table ele­
ments (ELEMENT), how the initial position
is selected (INITIALPOSITION), how the
algorithm proceeds from one position to
the next (NEXT), and all the types and rou­
tines in uppercase, which will admit a
different refinement for each variant of the
algorithm.

Not only is it hard to implement a
general-purpose searching module, it is
almost as hard to specify such a module so
that client modules could rely on it with­
out knowing the implementation.

Beyond the basic problem of factoring
out the parts that are common to all
implementations of table searching, an
even tougher challenge is to capture the
commonality within some conceptual sub­
set. For example, an implementation using
sequential search in arrays is very similar
to one based on sequential linked lists; the
code will differ only by small (yet crucial)
details, shown in Table 1.

Within each group of implementations
(all sequential tables, for example), there
are similarities. If we really want to write
carefully organized libraries of reusable
software elements, we must be able to use
commonalities at all levels of abstraction.

All these issues are purely technical;
solving all the managerial and economical
obstacles to reusability that one hears
about in executives' meetings will not help
a bit here.

Routines
Work on reusability has followed several

approaches (see the box on p. 54). The
classical technique is to build libraries of
routines (we use the word "routine" to
cover what is variously called procedure,
function, subroutine, or subprogram).
Each routine in the library implements a
well-defined operation. This approach has
been quite successful in scientific compu­
tation - excellent libraries exist for numer­
ical applications.

51

Table 1.
Implementation variants for sequential searcb.

Sequential
array

Start search
at first position i :=1

Move to
next position i:= 1+

Test for
table exhausted i> size

Indeed, the routine-library approach
seems to work well in areas where a set of
individual problems can be identified,
provided the following limitations hold:

• Every instance of each problem should
be identifiable with a small set of
parameters.

• The individual problems should be
clearly distinct. Any significant commo,
nality that might exist cannot be put to
good use, except by reusing some of the
design.

• No complex dat;t structures should be
involved because they would have to be dis­
tributed among the routines and the con­
ceptual autonomy of modules would be
lost.

The table-searching example may be
used to show the limitations of this
approach. We can either write a single rou­
tine or a set of routines, each correspond­
ing to a specific case.

A single routine will have many
parameters and will probably be structured
like a gigantic set of case instructions. Its
complexity and inefficiency will make it
unusable. Worse, the addition of any new
case will mean modification and recompi­
lation of the whole routine.

A set of routines will be large and con­
tain many routines that look very similar
(like the searching routines for sequential
arr;tys and sequential linked lists). But
there is no simple way for the implementers
to use this similarity. Client programmers
will have to find their way through a maze
of routines.

Modular languages
Languages like Modula-2 and Ada offer

a first step toward a solution. These lan­
guages use the notion of module (the Ada
term is package), providing a higher level
structuring facility than the routine. A
module may contain more than one rou­
tine, together with declarations of types,
constants, and variables. A module may
thus be devoted to an entire data structure
and its associated operations.

52

Linked Sequential
list file

1:= firsl rewind

1:= I.nexl read

I = null encLoLfile

This approach is rooted in the theory of
data abstraction, but its basic concepts
may be illustrated si!Dply with our table­
searching example.

A table-searching routin~ isn't worth
very much by itself; it must be com­
plemented by routines that create and
delete tables and insert and delete elements,
all governed by a certain representation of
the table, given by a type declaration. These
routines and the type declaration are
closely connected logically, so they might
as well be part of the same syntactic unit.
Such units are basically what modular lan­
guages offer.

This is a significant improvement: We
can now keep under one roof a set of
related routines that pertain to a specific
implementation of a data abstraction. For
example, the module for a binary search
tree of integers (INLBINARY.TREE) will con­
tain the declaration of a type intbintree and
routines Create, Search, Insert, and so on.
The client code might look like;

x : integer; b : boolean; p :
INT -BINARY _ TREE.intbintree;
INLBINARY_TREE.Create (1);
INLBINARY_TREE.Insert (x,b);
b:= INLBINARY_TREE.Search(x,p)

(Here I use the Ada dot notation: A.f
means "featuref, such as a type or routine,
from module A. " In Ada and other lan­
gUages, simpler notations are available
when a client repeatedly uses features from
a given module.)

For reusability, these techniques are use­
ful but limited. They are useful because
encapsulating groups of related features
helps implementers (in gathering features)
as well as clients (in retrieving features),
and all of this favors reusability. But they

are limited because they do not reduce sig­
nificantly the amount of software that
needs to be written. Specifically, they don't
offer any new clue as to how to capture
common features.

Overloading and
genericity .

A further improvement is overloading,
as provided in Algol 68 and Ada. Over­
loading means attaching more than one
meaning to a name, such as the name of an
operation.

For example, when different representa­
tions of tables are each defined by a sepa­
rate type declaration, you would use
overloading to give the same name, say
Search, to all associated search procedures.
In this way, a search operation will always
be invoked as b:= Search (x, I), regardless
of the implementation chosen for I and the
type of table elements.

Overloading works well in a strictly
typed language where the compiler has
enough type information about x and I to
choose the right version of search.

A companion technique is genericity,
provided in Ada and Clu. Genericityallows
a module to be defined with generic
parameters that represent types. Instances
of the module are then produced by sup­
plying different types as actual parameters.
This is a definite aid to reusability because
just one generic module is defined, instead
of a group of modules that differ only in
the types of objects they manipulate.

For example, instead of having an
INT..BINARY.TREE module, a REAL..BINARY.

TREE module, and so on, you could define
a single generic BINARY.TREE [11 module.
Any actual type (iNTEGER, REAL, etc.) could
correspond to the formal generic parame­
ter T. The search routine can be defined in
the generic module to act 011 an argument
x of type T. Then every instance of the
module automatically has its own version
of search.

In summary, overloading and genericity
each offer something toward reuse:

• with overloading, the client program­
mer may write the same code when using
different implementations of the same data

IEEE SOFTWARE

abstraction, as provided by different
modules;

• with genericity, the implementer may
write a single module for all instances of
the same implementation of a data abstrac­
tion, applied to various types of objects.

These techniques are interesting
advancements in reusability. But they do
not go far enough. Roughly speaking, they
do not provide enough flexibility and they
force programmers to decide too much too
soon.

Not enougb flexibility. They are not
flexible enough because they cannot cap­
ture fine grains of commonality between
groups of implementations of the same
general data abstraction. This is because
there are only two levels of modules:
~eneric modules, which are parameteriz~d
and thus open to variation, but not directly
usable; and fully instantiated modules,
which are directly usable but not open to
refinement. Thus we cannot describe a
complex hierarchy of representations that
have different levels of parameterizations.

Too much too soon. Neither technique
allows a client to use various implementa­
tions of a data abstraction (say the table)
without knowing which implementation is
used in each instance.

On one hand, each generic module refers
to a single, explicitly specified instance of
that module. Overloading, on the other
hand, is essentially a syntactic facility that
relieves the programmer of having to invent
names for different implementations; the
burden is placed on the compiler instead.
Nevertheless, each invocation of an over­
loaded operation name, Say Search(x, t),
refers to a specific version of the operation
- and both the client programmer and
compiler know which version that is.

Client programmers do not actually
need to know how each version is imple­
mented, since Ada and Modula-2 modules
are used by clients through an interface
that lists the available routines, indepen­
dent of their implementation. But they do
need to decide explicitly which version is
used. FOr example, if your modules use var­
ious kinds of tables, you don't have to
know how to implement hash tables,

March 1987

indexed sequential files, and the like - but
you must say which representation you
want each time you use a table operation.

1tue representation-independence only
happens when a client can write the invo­
cation Search(x,t) and mean, "look for x
in t using the appropriate algorithm for
whatever kind of table and element x and
t happen to be at the time the invocation is
executed. "

This degree of flexibility, essential for
the construction of reusable software ele­
ments, can only be achieved with object­
oriented design.

Object-oriented design
This fashionable term has been some­

what overused in recent years. The defini­
tion used here is fairly dogmatic. Object­
oriented design is viewed as a software
decomposition technique. An overview of
some object-oriented languages is given in
the box on p. 59.

Object-oriented design may be defined
as a technique which, unlike classical
(functional) design, bases the modular
decomposition of a software system on the
classes of objects the system manipulates,
not on the functions the system performs.
Classical approaches like functional top­
down design (even, to a large extent,
dataflow analysis methods) require
designers to first ask what the system does.
Object-oriented design avoids such ques­
tions as long as possible, in fact until the
system actually is run. Why?

The top-down functional approach is
probably adequate if the program you are
writing solves a fixed problem once and for
all. But the picture changes when you take
a long-term view, for what the system will
do in its first release is probably going to
be a little different from what you think it
will do at requirements time, and very
different from what it will do five years
later, if it survives that long.

However, the categories of objects on
which the system acts will probably be
more or less the same. An operating system
will always work on devices, memories,

processing units, communication chan­
nels, and so on; a document processing sys­
tem will always work on documents,
chapters, sections, paragraphs, and so on.

Thus it is wiser in the long term to rely
on categOries of objects as a basis for
decomposition, but (and this is an impor­
tant but) only if these categories are viewed
at a sufficiently high level of abstraction.
This is where abstract data types come in:"

Abstract data types
If we use the physical structure of objects

as the basis for decomposition, we won't
go very far toward protecting our soft­
ware's structure against requirement
changes. In fact, we will probably be worse
off than we would be with functional
design. A study by Lientz and Swanson,3
quoted by Boehm,4 shows that 17.5 per­
cent of the cost of software maintenance
stems from changes in programs that
reflect changes in data formats. This
emphasizes the need to separate the pro.
grams from the physical structure of the
objects they handle.

Abstract data types provide a remarka­
ble solution to this problem. An abstract
data type describes a class of objects
through the external properties of these
objects instead of their computer represen­
tation. More precisely, an abstract data
type is a class of objects characterized by
the operations available on them and the
abstract properties of these operations.

It turns out that abstract data types,
which provide an excellent basis for soft­
ware specification, are also useful at the
design and implementation stage. In fact,
they are essential to the object-oriented
approach, and enable us to refine the defi­
nition of object-oriented design: Object­
oriented design is the co~struction of soft­
ware systems as structured collections of
abstract data-type implementations.

An important aspect of the object­
oriented method is that it actually identi­
fies modules with implementations of

• One other design mefhod that does emphasize the
motto "look at the data before you look at the func­
tions" is Jackson's method.' However, a comparative
analysis of Jackson's method ami object-oriented
design falls beyond the scope of this article.

53

Reuse in practice
It would be unfair to suggest that reuse never occurs in software. Much research

has been published on the issue and various approaches to reusability have gained
some acceptance.

• Source·code reusability is common in academic environments. Unix, for exam­
ple, has spread through universities and r~search laboratories thanks to the on­
line availability of the source code that allowed users to study, imitate, and extend
the system. This is also true of many Lisp environments. It is unlikely that this form
of reusability is going to happen in traditional industrial environments, however.
Beyond the obvious economical and psychological obstacles to source-code dis·
semination, this technique does not support information hiding, an essential
requirement for large·scale reuse.

• Another form of reusability that is widely practiced in industry (some say the
only one) is reusing personnel. By transferring software engineers from project
to project, companies maintain know·how and ensure that previous experience
is applied to new developments. This nontechnical approach to reusability is obvi­
ously limited in scope, if only because of the high turnover in the data process­
ing professions.

• Japanese software factories rely on the approach that designs, not implemen·
tations, should be reused. This technique may be viewed as an extension of the
personnel approach, if you consider designs as formalized pieces of know-how.

But reuse of design does not appear to go much further than this idea. The very
notion of designs as independent software product;>, having lives separate from
those of the corresponding implementations, seems dubious. Perpetual con­
sistency between design and code, which software engineering textbooks (rightly)
promote as a desirable goal, is notoriously hard to maintain throughout the evo­
lution of a software system. Thus, if only the design is reused there is a strong risk
of reusing incorrect or obsolete elements.

Background reading. The first published discussion of reusability was most
likely the contribution of M.D. Mcilroy, "Mass·Produced Software Components,"
to the 1968 NATO conference on software engineering.

A particularly good source is the September 1984 issue of the IEEE Transac­
tions on Software Engineering, especially the articles by Horowitz and Munso,
Standish, Goguen, and Curry and Ayers. An important work not described in that
issue is the MIT Programmer's Apprentice project, which relies on the notion of
reusable plans and cliches (IEEE Trans. Software Eng., Jan. 1987).

The proceedings of the First DoD-Industry Symposium on the STARS program
(Nat'l Security Industry Assoc., 1985) contains several discussions of reusability
from an industrial, Ada·oriented perspective.

abstract data types. It is not only that mod­
ules comprise these implementations (as in
Ada and Modula-2, and in Fortran-77,
thanks to multiple-entry subroutines); a
single program structure is both a module
and a type. Such a dual-purpose structure
was dubbed a "class" by the creators of the
pioneer object-oriented language, Simula
67.

relations. The client relation is represented
by horizontal double arrows; inheritance
by a single, vertical arrow.

Class A is said to be a client of B if A
contains a declaration of the form bb: B.
(In this and all other object-oriented exam­
ples, I use the notations and terminology
of the object-oriented language Eiffel. See
the box on p. 60 for more about Eiffel.)

Two words should be emphasized in the
above definition. The first is "implemen­
tation": A module of an object-oriented
program is not an abstract data type, but
one implementation of an abstract data
type. However, the details of the implemen­
tation are not normally available to the rest
of the world, which only sees the official
specification of the abstract data type.

The second is "structured. " Collections
of classes may indeed be structured using
two different relations: client and
inheritance. Figure 1 illustrates these two

54

In this case, A may manipulate bb only
through the features defined in the speci­
fication of B. Features comprise both
attributes (data items associated with
objects of type B) and routines (operations
for accessing or changing these objects). In
Eiffel, features are applied through dot
notation, as in bb.x, bb.f(u, w,x).

As an example, consider a client class X
of class BINARY..5EARCH_TREE that imple­
ments a specific form of tables. Client X
may contain elements of the form:

bb:BINARY....sEARCH-TREE;
-- declare bb as binary search tree

bb.Create;
-- allocate table (routine call)

bb.insert (x);
-- insert x into bb (routine call)

y:=bb.size;
-- (attribute access)

The second relation between classes,
inheritance, is fundamental to true object­
oriented languages. For example, our
BINARY..5EARCH_ TREE class may be defined
as an heir (possibly indirect) to a class
TABLE that describes the general properties
of tables, independent of the represen­
tation.

A class C defined as an heir to a class A
has all the features of A, to which it may
add its own. Descendants of a class include
its heirs, the heirs of its heirs, and so on.
The relationship between C and A may be
defined from the viewpoint of both the
module and the type.

From the module perspective,
inheritance allows the programmer to take
an existing world (class A) and plunge it as
a whole into a new world, C, which will
inherit all its properties and add its own. In
multiple inheritance, as present in Eiffel,
more than one world may be used to define
a new one.

From the type perspective, C is consid­
ered a special case of A: Any object of type
C may also be interpreted as an object of
type A. In particular, a variable of type A
may be assigned an object of type C,
although the reverse is not true, at least in
a statically typed language like Eiffel. This

C TABLE ~

Figure 1. The client and inheritance rela­
tions in abstract data types. The client is
represented by a horizontal double arrow;
inheritance by a single, vertical arrow.

IEEE SOFTWARE

also holds in the case of multiple
inheritance, as Figure 2 shows. This prop­
erty is extremely important because it
allows program entities to take different
forms at runtime. The relation between C
and A is an instance of the so-called Is-a
relation (every lily is a flower; every binary
search tree is a table).

The powerful combination of object­
oriented design and these two relations -
client and inheritance - is a key element
in achieving extendibility and reusability.

An illustrative example
A new example, a full-screen entry sys­

tem, will help contrast the object-oriented
approach with classical functional decom­
position. The example, a common data
processing problem, should be interesting
on its own: The problem is to write an inter­
active application that guides the user with
full-screen panels at each stage.

The problem. Interactive sessions for
such systems go through a series of states,
each with a well-defined general pattern:
A panel is displayed with questions for the
user; the user supplies the required answer;
the answer is checked for consistency
(questions are asked until an acceptable
answer is supplied); and the answer is
processed somehow (a database is updated,
for example). Part of the user's answer is
a choice of the next steps; the system trans­
lates the user's choice into a transition to
another state, and the same process is
applied in the new state.

Figure 3 shows a panel for an imaginary
airline reservation system. The screen
shown is toward the end of a step; the user's
answers are in italics.

The process begins in some initial state
and ends whenever any among a set of final
states is reached. A transition graph, like
that in Figure 4, shows the overall structure
of a session - the possible states and the
transitions between them. The edges of the
graph are labeled by numbers that cor­
respond to the user's possible choices for
the next step.

Our mission is to come up with a design
and implementation for such applications
that have as much generality and flexibil­
ity as possible.

March 1987

An ARRAY object (instance of the class)

lower bound 1
size~

Features:
(attributes)

number of elements
(routines)

insert
search
delete

area 27

Features:
(attributes)

number of elements
size

Features:
(attributes)

size
lower bound
area (secret)

(routines)
change element
access element

lower bound (secret)
area (secret)

(routines)
change element (secret)
access element (secret)
insert, search, delete

Figure 2. Multiple inheritance. In Eiffel, more than one world can be used to define a
new world, which will inherit all the properies and add its own.

Enquiry on Flights

Flight sought from: Santa Barbara to: Paris
Departure on or after: Nov 21 on or before: Nov 21

Preferred airline(s):

Special requirements:

AVAILABLE FLIGHTS: 1
Flt# AA 42 Dep 8:25

Choose next action:

0- Exit
1 - Help
2 - Further enquiry
3 - Reserve a seat

Arr 7:45 Thru Chicago

Figure 3. A panel for an interactive airline reservation system. The screen shown is
toward the end of a step; the user's answers are in italics.

55

A simple-minded solution. We'll begin
with a straightforward, unsophisticated
program scheme. This version is made of
a number of blocks, one for each state of
the system: BEnquiry, BReservation, Beancellation,
and so on. A typical block looks like:

BEnquiry:

output "enquiry on flights" panel;
repeat

read user's answers and choice C for
next step;
if error in answer then
output appropriate message

end until not error in answer end;
process answer;

,if,

case C in
Co:goto Exit,
C} :goto Bhelp'
C2:goto BReservation,

end

(And similarly for each state.)
This structure will do the job, but of

course there is much to criticize. The
numerous goto instructions give it that
famous spaghetti bowl look. This may be
viewed as a cosmetic issue, solved by res­
tructuring the program to eliminate jumps.
But that would miss the point.

f:;:\
0V

3 ~
~.~ . .------------------------\

66
2

~ 1 ~t 1

Vv n exit

V
Figure 4. A state transition graph for an interactive application. The edges of the graph
are labeled by numbers that correspond to the user's possible choices for the next step.

56

The problem is deeper. This program is
bad not just because it has a lot of explicit
branch instructions, but because the phys­
ical form of the problem has been wired
into it. The branching structure of the pro­
gram reflects exactly the transition struc­
ture of the graph in Figure 4.

This it terrible from a reusability and
extendability standpoint. In real-world
data-entry systems, the graph of Figure 4
might be quite complex - one study men­
tions examples with 300 different states. S

It is highly unlikely that the transition
structure of such a system will be right the
first time it is designed. Even after the first
version is working, users will inevitably
request new transitions, shortcuts, or help
states. The prospect of modifying the
whole program structure (not just program
elements - the overall organization) for
anyone change is horrendous.

To improve on this solution we must sep­
arate the graph structure from the traver­
sal algorithm. This seems appropriate
because the structure depends on the par­
ticular interactive application (airline reser­
vation), while its traversal is generic. As a
side benefit, a functional decomposition
will also remove the heretical gotos.

A procedural, "top-down" solution.
We may encapsulate the graph structure in
a two-argument function, Transition, such
that Transition(s,c) is the state obtained
when the user chooses c on leaving state s.

We use the word "function" in a mathe­
matical sense: Transition may be repre­
sented either by a function in the
programming sense (a routine that returns
a value) or by a data structure, such as an
array. The first solution may be preferable
for readability because the transitions will
appear in the program code itself. The sec­
ond is better for flexibility because it is eas­
ier to change a data structure than a
program. We can afford to postpone this
decision.

The function transition is not sufficient
to describe the transition graph. We must
also define the state, initial, that begins the
traversal and a Boolean-valued function is­
final(s) that determines when a state is
final. Initial and final states are treated dis­
symmetrically; while it is reasonable to

IEEE SOFTWARE

expect the dialog to always begin in the
same state, we cannot expect it to always
end in the same state.

Figure 5 shows the orthodox, functional
architecture derived from this solution. As
the top-down method teaches, this system
has a "top," or main program. What else
could it be but the routine that describes
how to execute a complete interactive
session?

This routine may be written to empha­
size application-independence. Assume
that a suitable representation is found for
states (type STATE) and for the user's
choice after each state (CHOICE):

session is
-- execute a complete session of
-- the interactive system
current: STATE; next: CHOICE

begin
current := initial ;
repeat

do_one-state (current, next) ;
-- the value of next is returned by routine
-- do_one-State

current := transition (current, next)
until is_final (current) end

end -- session

This procedure does not show direct
dependency upon any interactive applica­
tion. To describe such an application, we
must provide three of the elements on level
two in Figure 5: a transition function (rou­
tine or data structure), an initial state, and
an isJinal predicate.

To complete the design, we refine the
do_one....state routine, which describes the
actions to be performed in each state. The
body of this routine is essentially an
abstracted form of the blocks in our
spaghetti version:
do_one-state (in s : STATE; out c : CHOICE) is

--execute the actions associated with
--state s,
--returning into c the user's choice
--for the next state

a: ANSWER; ok: BOOLEAN;
begin

repeat
display(s) ; read(s,a) ;
ok : = correct(s,a) ;
if not ok then message(s,a) end

until ok end;
process (s,a) ; c := nexLchoice (a)

end -- do_one-State

For the remaining routines, we can only
give a specification, because the implemen­
tations depend on the details ofthe appli-

March 1987

display read correct message process

Level
3

2

Figure 5. An ortbodox, functional arcbitecture for an interactive application. Tbe
"top," or main program, is tbe routine Session.

cation and its various states: display(s)
outputs the panel associated with state s;
read(s,a) reads the user's answer to state s
into a; correct(s,a) returns true if and only
if a is an acceptable answer; if it is, pro­
cess(s,a) processes answer a; if it isn't, mes­
sage(s,a) outputs the relevant error
message.

1Ype ANSWER is left unspecified. A value
of this type, say a, globally represents the
input entered by the user in a given state,
including the user's choice of the next step,
nexLchoice(a).

Data transmission. Is this solution
satisfactory? Not from the standpoint of
reusability.

True, we did separate what is generic and
what is specific to a particular application,
but this does not buy much flexibility. The
main problem is the system's data trans­
mission structure. Consider the function­
alities (types of arguments and results) of
the routines:

do_one-State: (in s: STATE; out c: CHOICE)
display: (in s: STATE)
read: (in s: STATE; out a: ANSWER)
correct: (in s: STATE; a: ANSWER):
BOOLEAN
message: (in s: STATE, a: ANSWER)
process: (in s: STATE, a: ANSWER)

All these routines share the state s as a
parameter, coming from the top module
Session (where it is known as Current). The
flow of data, illustrated in Figure 6, shows
that (as a conservative economist might
say) there's far too much state intervention.
As a result, all the above routines must per­
form some form of case discrimination
ons:

case s of
Statel:····,

Staten:····'
end

This implies long, complex code (a prob­
lem which could be solved with further
decomposition) and (more annoying) it
means that every routine must deal with,
and thus know about, all possible states of
the application. This makes it very difficult
to implement extensions. Adding a new
state, for example, entails modifications
throughout. Such a situation is all too
common in software development. System
evolution becomes a nightmare as simple
changes touch off a complex chain reaction
in the system.

The situation is even worse than it
appears. It would seem desirable to profit
from the similar aspects of these types of
interactive applications by storing the com­
mon parts in library routines. But this is
unrealistic in the solution above: On top of
the explicit parameters, all routines have an
implicit one - the application itself, air­
line reservations.

A general-purpose version of display, for
example, should know about all states of
all possible applications in a given environ­
ment! The function transition should con­
tain the transition graph for all
applications. This is clearly impossible.

The law 0/ inversion. What is wrong?
Figure 6 exposes the flaw: there is too much
data transmission in the software architec­
ture. The remedy, which leads directly to
object-oriented design, may be expressed
by the following law: If there is too much
data transmission in your routines, then
put your routines into your data.

Instead of building modules around
operations (session, do_one-.state) and dis­
tributing data structures between the
resulting routines, object-oriented design
does the reverse. It uses the most important
data structures as the basis for modulari­
zation and attaches each routine to the data
structure to which it applies most closely.

57

session -""!::;;:::::=-____ _

(\~
s (current) c (next) current current next

~ /) \)
do_one_state initial is-final transition

I\~
s sa s a sa sa

\ ~ '\ "\ '\\
display read correct message process

Figure 6. Data transmission in the architecture derived from with the top-down
approach.

This law of inversion is the key to turn­
ing a functional decomposition into an
object-oriented design: reverse the view­
point and attach the routines to the data
structures. To programmers trained in
functional approaches, this is as revolu­
tionary as making the Sun orbit Earth.

Of course, it's best to design in an object­
oriented fashion from the beginning. How­
ever, the process of moving from a func­
tional decomposition to an object-oriented
structure is itself interesting. How do. we
find the most important data structures,
around which modules are to be built?

Data transmission provides a clue. The
data structures that are constantly trans­
mitted between routines must be impor­
tant, mustn't they?

Here the first candidate is obvious, the
state (current, s). So our object-oriented
solution will include a class STATE to
implement the corresponding abstract data
type. Among the features of a state are the
five routines of level one in Figure 5 that
describe the operations performed in a
state (display, read, message, correct, and
process), and the routine do_one....state
without the state parameter.

In Eiffel notation, the class STATE may
be written:

58

class STATE export
next...choice, display, read, correct,
message, process, do_one.-State

feature
user...answer: ANSWER;
next...choice: INTEGER;
do_one_state is

do
... body of the routine ...

end;
display is ... ;
read is ... ;
correct: BOOLEAN is ... ;
message: is ... ;
process is... ;

end -- class STATE

The features of the class include two attrib­
utes, nexLchoice and user....answer, and six
routines. Routines are divided into func­
tions, which return a result (like correct,
which returns a Boolean value) and proce­
dures, which don't.

The export clause is used for informa­
tion hiding: In a client class containing a
declaration S: STATE, a feature application
s.jis only correct if/is one of the features
listed in the clause. Here all features are
exported, except for user....answer, which is
accessible by STATE routines but not by the
outside world. A nonexported feature is
said to be secret. As before, we assume that
type ANSWER is declared elsewhere, now as
a class. Values that represent exit choices
are coded as integers.

Unlike its counterpart in a functional
decomposition, each routine has no
explicit STATE parameter. The state to
which routines apply reappears in calls
made by clients:

s: STATE; b:BOOLEAN;
choicecode: INTEGER;
s.do_one.-State ; s.read ;
b := s.correct;
choicecode := s.nexLchoice;
etc.

We have also replaced the ANSWER param­
eter in level-one routines with the secret

attribute user....answer. Information hiding
is the motive - client code doesn't need to
look at answers except through the inter­
face provided by the exported features.

Inheritance and deferred features.
There's a problem, however. How can we
write the class STATE without knowing the
properties of a specific state? Routine
do_one-state and attribute nexLchoice are
the same for all states, but display is not.

Inheritance is the key to this problem. At
the STATE level we know (1) all details of
routine do_one_state, (2) the attribute
nexLchoice; (3) the fact that routines like
display must exist and (4) what their func­
tionalities are.

So we write the class and define these
partially known routines as de/erred. This
means that, while any actual state must
have them, their details are postponed to
descendant classes that describe specific
states. (The notion of deferred routines
come from Simula 67, where they-are called
"virtuaL") Thus the class is written:

class STATE export
nexLchoice, display, read, correct,
message, process, do_one.-State

feature
user....answer: ANSWER;

-- secret attribute
next-ehoice: INTEGER;

do_one.-State is
-- execute the actions associated
-- with the current state
-- and assign to next...choice the
-- user's choice for the next state

local
ok: BOOLEAN

do
from

ok:= false
until

ok
loop

display; read; ok := correct;
if not ok then

message
end

end; --loop
process

ensure
correct

end; -- do_one_state

display is
-- display the panel associated
-- with current state

IEEE SOFTWARE

deferred
end ; -- display
read is

-- return the user's answer
-- into user--llnswer
-- and the user's next choice
-- into next-choice
deferred
end; -- read

correct: BOOLEAN is
-- return true if and only if
-- user --lInswer is
-- a correct answer
deferred
end; -- correct

message is
-- output the error message
-- associated with user--llnswer
require

not correct
deferred
end; -- message

process is
-- process user--llnswer
require

correct
deferred
end -- process

end -- class STATE

Note the syntax of the Eiffelloop, with ini­
tialization in the from clause and the exit
test in the until clause. This is equivalent to
a while loop, with an exit test rather than
a continuation test.

Also note the require clauses that appear
at the beginning of routines message and
process. These clauses introduce precondi­
tions that must be obeyed whenever a rou­
tine is called. Similarly, a postcondition,
introduced by the keyword ensure, may be
associated with a routine. Preconditions
and postconditions express the precise
effect of a routine. They can also be moni­
tored at runtime for debugging and
control.

The class just described does not by
itself describe any actual states - it
expresses the pattern common to all states.
Specific states are defined by descendants
of STATE. It is incumbent on these descen­
dants to provide actual implementations of
the deferred routines, such as:

class ENQUIRY_ON...FLIGHTS export....
inherit

STATE

Object-oriented languages.
Other languages implement the concept of object-oriented programming with

inheritance and would allow solutions to our airline reservation system example,
in a manner similar to the one given here in Eiffel.

These include Simula, the father of all object-oriented language, object-oriented
expressions of C such as Objective C and C++, and an extension of Pascal, Object
Pascal. These four languages, however, support only single inheritance. Other
object-oriented languages include Smalltalk and extensions of Lisp such as Loops,
Flavors, and Ceyx. The Clu language shares some of the properties of these lan­
guages, but does not offer inheritance.

In recent years, many languages have been added to the above list, mostly for
exploratory programming and artificial intelligence purposes.

Bibliography
Birstwistle, G., et aI., Simula Begin, Studentliteratur and Auerbach Publishers, Berlin, 1973.
Bobrow, D.G, and M.J. Sefik, "Loops: An Object-Oriented Programming System for Inter­

lisp," Xerox PARC, Palo Alto, Calif., 1982.
Booch, G., "Object-Oriented Software Development," IEEE Trans. Software Eng., Feb. 1986,

pp.211-221.
Cannon, J.I., "Flavors," MIT Artificial Intelligence Lab, Cambridge, Mass., 1980.
Cox, B., Object-Oriented Programming: An Evolutionary Approach, Addison-Wesley, Read­

ing, Mass., 1986.
Goldberg, A., and D. Robson, Smalltalk-80: The Language and Its Implementation, Addison-

WeSley, Reading, Mass., 1983.
Hulot J.-H., "Ceyx, Version 15: 1 - Une Initiation," Tech. Report 44, INRIA, PariS, 1984.
Liskov, et aI., Clu Reference Manual, Springer Verlag, Berlin-New York, 1981.
Stroustrup, B., The C+ + Programming Language, Addison-Wesely, Menlo Park, Calif., 1986.
Tesler, L., "Object Pascal Report," Structured Language World, 1985.

March 1987

feature
display is

do
... specific display procedure ...

end;
... and similarly for read, correct,
message, and process ...

end -- class ENQUIRY_ON...FLIGHTS

Several important comments are in order:

• We have succeeded in separating - at
the exact grain of detail required - the ele­
ments common to all states from those spe­
cific to individual states. Common
elements are concentrated in STATE and
need not be redeclared in descendants of
STATE like ENQUIRy..oN.FLIGHTS.

• If s is an object of type STATE and dan
object of type DS, where DS is a descendant
of STATE, the assignment s := d is permit­
ted and d is acceptable whenever an ele­
ment of type STATE is required. For
example, the array Transition introduced
below to represent the transition graph of
an application may be declared of type
STATE and filled with elements of descen­
dant types.

• This goes beyond Ada-style separation
of interface and implementation. First, an
Ada interface may contain only bodiless
routines; it corresponds to a class where ail
routines are deferred. In Eiffel, however,
you may freely combine non deferred and
deferred routines in the same class. Even
more important, Eiffel allows any number
of descendant types of STATE to coexist in
the same application, whereas Ada allows
at most one implementation per interface.
This openness of classes (a class may
always be extended by new descendants) is
a fundamental advantage of object­
oriented languages over the closed modules
of such languages as Ada and Modula-2.

• The presence of preconditions and
postconditions in Eiffel maintains the con­
ceptual integrity of a system. Just as a
deferred routine must be defined in descen­
dant classes, so must we define the con­
straints such a definition must observe.
This is why a precondition and postcondi­
tion may be associated with a routine even
in a deferred declaration. These conditions
are then binding on any actual definition
of the routine in a descendant of the origi­
nal class. The technique is paramount in

59

More on Eiffel
The Eiffel language is part of an environment developed by the author and his

colleagues at Interactive Software Engineering. It is accompanied by a design method,
a library, and a set of supporting tools. It promotes reusability, extendibility, and soft·
ware construction by a combination of flexible modules.

The Eiffellibrary provides the basic building blocks: a set of classes implementing
some of the most important data structures and associated operations.

Inheritance plays a central role in this approach. The language supports multiple
inheritance, used heavily in the basic library; we have found single inheritance to be
insufficient. (Repeated inheritance, not described here, is also supported.) The use of
inheritance is made safe and practical with renaming and redefinition techniques. Type
parameterization (genericity) is also available.

Inheritance and genericity are powerful techniques for building reusable, extendable
software. Their very power entails a risk of misuse. To enhance correctness and reliability,
Eiffel includes primitives for systematiC software construction: class and loop invariants,
and routine preconditions and postconditions, all of which describe semantic
constraints imposed on classes and their features.

These constraints (which may be monitored at runtime to help in debugging) must
be obeyed by any redefinition of the features in descendant classes, thus preserving
the semantic consistency of descendants and helping to control the scope of the
inheriance mechanism.

Eiffel is a typed language, where all type checking may be done statically. The Ian·
guage and method are intended for the development of sizable software systems; thus
the implementation, which uses C as an intermediate language, emphasizes efficiency.
Access to any feature of an object (as in a.t) always takes constant time, despite
the possiblities for overloading provided by multiple inheritance, renaming, redefi·
nition and genericity (which imply that the version of f to be applied depends on
the runtime form of a). Also, the code for a routine is not duplicated in classes
which inherit the routine, even in the presence of multiple inheritance and
genericity.

Because the emphasis is on the incremental development of large systems, the Eiffel
translator supports separate compilation, class by class. Automatic configuration man·
agement is provided, so that each needed module is always used in an up-to-date
version (necessary recompilations, and these only, being automatically triggered by the
system). The implementation includes a set of supporting tools, in particular for auto­
matic memory management, execution tracing, symbolic debugging, and
documentation. The implementation is currently available on Unix systems.

The language and method are described in "Eiffel: A Language and Environ­
ment for Software Engineering," to appear in the Journal of Systems and Software,
and "Eiffel: Programming for Reusability and Extendibility," SIGPlan Notices,
1987.

using Eiffel as design language: A design
module will be written as a class with
deferred routines, whose effects are charac­
terized by pre- and postconditions.

It makes sense to associate with this con­
cept a full-fledged abstract data type that
will yield a class, say INTERACTIVlLAPPLlCA­

TION, at the design and implementation
stages. For, although INTERACTIVE.APPLI­

CATION will include as one of its features
the routine session describing the execution
of an applicaton, there are other things we
may want to do with an application, all of
which may be added incrementally to class
APPLICATION.

A complete system. The fmal step in our
example is to adapt the routine that was at
the top of the furtctional decomposition:
session. But We should be a little wiser by
now.

The top of the top-down method is
mythical. Most real systems have no such
thing, especially if the top is meant to be
a routine - the function of the system.
Large software systems perform many
functions, all equally important. Again,
the abstract data type approach is more
appropriate because it considers the system
as an abstract entity capable of rendering
many services.

In this case the obvious candidate is the
notion of application: a specific interactive
system like the airline reservation system.

60

By renouncing the notion of' 'main pro­
gram" and seeing session as just one fea­
ture of the class INTERACTIVlLAPPLICATION,

we have added considerable flexibility.
The class is given in Figure 7. Its ptin"

cipal features include the remaining ele­
ments at levels two and three in Figure 5.
The following implementations decisions
have been made:

• The transition function is represented
by a two-dimensional array, 1fansition, of
size n x m, where n is the number of states

and m the number of possible exit choices.

• States are numbered 1 to n. An aux­
iliary, one-dimensional array, associated­
state, yields the state corresponding to any
integer.

• The numbep of the initial state is set by
the routine Choose-.initial and kept in the
attribute InitiaLnumber. The convention
for final states is a transition to pseudo­
state 0; normal states have positive
numbers.

The class includes a Create procedure
that will be executed on object initializa­
tion. As in most object-oriented languages,
objects are created dynamically. If a is
declared of type C, the instruction a.Cre­
ate creates an object of type C and associ­
ates it with a.

The Create procedure and its parameters
makes it possible to execute specific initial­
ization actions on creation, instead of
initializing the new object with standard
default values.

The procedure Create of class
INTERACTIVE.APPLICATION itself uses the
Create procedures of library classes ARRAY

and ARRAY2, which allocate arrays dynam­
ically within the bounds given as
parameters. For example, a two­
dimensional array may be created by a. Cre­
ate (1,25, l,to).

Classes ARRAY and ARRAY2 also include
features Entry and Enter for array access
and modification. Other features of an
array are its bounds, upper and lower for
a one-dimensional array, and so on.

These classes are declared as ARRAY[T)

and ARRAY2[T], an example of Eiffel classes
with generic parameters, in this case the
type of array elements. Many fundamen­
tal classes in the Eiffellibrary Oists, trees,
stacks) are generic. With Eiffel a program­
mer can combine genericity with
inheritance in a type-safe manner. 6

Class INTERACTIVE.APPLICATION uses
Eiffel assertions, an aspect of the language
designed to emphasize correctness and
reliability. Assertions express formal
properties of program elements. They may
appear in preconditions and postcondi­
tions, the loop invariants, and the class
invariants.

IEEE SOFTWARE

Such constructs are used primarily to
ensure correct program designs and to
document the correctness of arguments,
but they may also be used as checks at run­
time. More profoundly, assertions (espe­
cially pre- and postconditions and class
invariants) bring the formal properties of
abstract data types back into classes.

An interactive application will be repre­
sented by an entity, aiLJeservation,
declared of type INTERACTIVEAPPLICATION

and initialized by

aiLreservation.Create (number-<>L.states,
number_oLpossible_choices)

The states of the application must be
defined separately as entities, declared of
descendants STATE, and created. Each state
s is assigned a number i:

aiLreservation.entec.state(s,i)

One state, io, is chosen as the initial:

aiLreservation.choose-.initial(io)

Each successive transition (from state
number sn to state number tn, with label
l) is entered by:

airJeservation.enter_transition(sn,tn,l)

This includes eXits, for which tn is O. The
application may now be executed by
air Jeservation.session.

The same routines can by used during
system evolution to add a new state, a new
transition, and so on. The class may be
extended, of course (either by itself or
through descendants).

Multiple inheritance. This example
exposes many of the principles in Eiffel,
except the concept of multiple inheritance.
A previous article on the same example7,8

relied on Simula 67, which supports only
single inheritance. Multiple inheritance is
another concept that is essential to a prac­
tical use of object-oriented design and pro­
gramming.

Multiple inheritance makes it possible to
define a class as heir to more than one
other class, thus combining the features of
several previously defined environments.
Multiple inheritance would be essential,
for example, to implement a satisfactory
solution to the table-management prob­
lem, detailed in the box on p. 62.

March 1987

classINTERACTIVKAPPLICATION export
session, firsLnumber, enter--.State,
choosejnitial, enteLtransition, ...

feature
transition: ARRAY2 [STATE] ; associatecLstate: ARRAY [STATE] ;
~- secret attributes
firstJIUmber; INTEGER;
Create (n,m:INTEGER) is
-- allocate application with n states and m possible choices

do
transition.Create (l,n,l,m) ;
associated--.State.Create (l,n)

end; -- Create

session is -- execute application
local

st: STATE; sLnumber: INTEGER;
do

from
sLnumber:=firsLnumber ;

invariant
o :5 next; next :5 n

until sLnumber = 0 loop
st: =associated_state.entry(sLnumber) ;
st.do_one_state ;
sLnumber:=transitioh.entry(sLnumber, st.nexLchoice)

end --loop
end; -- session

enter--.State (s: STATE; number: INTEGER) is
-- enter state s with index number

require
1 :5 number;
number :5 associateutate.upper

do
associateutate.enter (number,s)

end; -- enter--.State

choosejnitial (number: INTEGER) is
-- define state number number as the initial state

require
1 :5 number;
number :5 associateutate.upper

do
firsLnumber: =number

end; -- choosejnitial
enteLtransition (source: INTEGER; target:INTEGER ; label: INTEGER) is
-- enter transition labeled "label" from state number source
-- to state number target

require
1 :5 source; source :5 associated--.State.upper ;
o :5 target; target :5 associatecLstate upper ;
1 :5 label; label :5 transition.upper2 ;

do
transition.enter (source, label, target)

end -- enteLtransistion

. .. other features ...

invariant
0:5 sLnumber; SLnumber :5 n;
transition.upperl = associated--.State.upper ;

end -- class INTERACTIVE-APPLICATION

Figure 7. The class INTERACTIVLAPPLICATION.

61

62

A table-searching module
It is impossible to give, in one article, a satisfactory solution to the problem of

designing a general-purpose table-searching module. But we can outline how Eiffel
would be applied to that case.

First, it is obvious that we are talking not about a table-searching module, but
about a module for table management. In fact, we're talking just about the table
as an abstract data type with operations such as search, insert, delete, and so on.

As with STATE, the most general notion of table will be represented by a class
with deferred routines. The various kinds of tables are descendants of this class.
To obtain them, an in-depth analysis of the notion of table and its possible
implementations is required. Such an analysis and the associated design and
implementation effort are a considerable endeavor, especially as you realize that
there is not a single notion of table, but a network of related notions.

The inheritance mechanism can help express the structure of this network and
capture differences and similarities at the exact grain of detail required. For exam­
ple, we may have a descendant of TABLE, SEQUENTIALTABLE. that covers tables stored
sequentially in arrays, linked lists, or files, with a version of the function search (x):

from
restart

until
ofLlimits or else currenLvalue = x

invariant
- - x does not appear in the table before current postion

loop
move_forth

end;
if ofUimits ... (etc.)

The structure is similar to that of STATE, where the essential routine do_one_state
was not deferred, but was expressed in terms of other deferred routines. In this
case, search is not deferred but uses deferred routines for which the descendants
of TABLE must provide implementations.

What's remarkable is that an entity t declared of type TABLE may dynamically
refer to an object of any descendant type of TABLE; however the call t.search(x) may
be written without any knowledge of what kind of table implementation t will actu­
ally be at runtime.

This approach captures - at the exact grain of detail required - the commo­
nality within a family of implementations of the same data abstractions. A family
will consist of a header class (SEQUENTIALTABLE) and specific descendants
(ARRAY_TABLE).

The inheritance graph may span more than one level. Features common to all
members of the family (like Search for sequential tables) are concentrated at the
header level and shared; features unique to various members are deferred in the
header and expanded on in the individual members. The diagram below illustrates
this inheritance structure.

Both genericity and multiple inheritance are essential to this problem's solu­
tion: All table classes take the type of table elements as a generic parameter, and
several will combine two or more parent classes (BINARY-SEARCH_TREE from both
BINARY-TREE and TABLE).

Even in the previous example, multiple
inheritance is not far away - if we had
defined a data abstraction WINDOW to
describe screen panels, some descendants
of STATE might inherit from this class, too.

In lieu of conclusion
This article has promoted the view that,

if one accepts that reusability is essential
to better software quality, the object­
oriented approach - defined as the con­
struction of software systems as structured
collections of abstract data type implemen­
tations - provides a promising set of
solutions.

One epithet this approach certainly does
not deserve is "top-down." It is puzzling
to see this adjective used almost universally
as a synonym for "good." Top-down
design may be an effective method for
developing individual algorithms and rou­
tines. But applying it at the system level is
inappropriate unless the system can be
characterized by a single, frozen, top-level
function, a case that is rare in practice.

One epithet this
approach certainly does

not deserve is
"top-down. "

More importantly, top-down design
goes against the key factor of software
reusability because it promotes one-of-a­
kind developments, rather than general­
pupose, combinable software elements.

It is surprising to see top-down design
built in as an essential requirement in the
US Dept. of Defense directive MIL­
STD-2167, which by the sheer power of its
sponsor is bound to have a serious (and, we
fear, negative) influence for years to come.

Of course, the bottom-up method
promoted here does not mean that system
design should start at the lowest possible
level. What it implies is construction of sys­
tems by reusing and combining existing
software. This is a bootstrapping approach
in which software elements are progres­
sively combined into more and more ambi­
tious systems.

IEEE SOFTWARE

As a consequence of this approach,
there is no notion of main program in
Eiffel. Classes are meant to be developed
separately. Integrating those classes into an
Eiffel "system" is the last, and least bind­
ing, decision.

A system is a set of classes with one dis­
tinguishing element, the root. The only role
of the root is to initiate the execution of the
system (by creating an object of the root
type and executing its create procedure). A
system has no existence as Eiffel construct;
it is simply a particular assembly of classes.

Such an approach is viable only if there
are adequate facilities to produce flexible
software elements and combine them
effectively. The concepts of object-oriented
design with multiple inheritance and
genericity provide such facilities.

O bject-oriented design means
more than just putting data
types into modules; the

inheritance concept is essential. This
requires an object-oriented language. As
structured programming showed a few
years ago, you can attempt to implement
new methodological concepts without a
language that directly supports them -
but it will never be quite as good as the real
thing: using the right language to imple­
ment the right concepts.

Another aspect of the approach
promoted here is that it tends to blur the
distinction between design and implemen­
tation. While this distinction may be
unavoidable today, it is undesirable
because it tends to introduce an artificial
discontinuity in software construction.

March 1987

Design and implementation are essen­
tially the same activity: constructing soft­
ware to satisfy a certain specification. The
only difference is the level of abstraction -
during design certain details may be left
unspecified, but in an implementation
everything should be expressed in full.
However, the process of filling in the details
should be continuous, from system archi­
tecture to working program. Language
constructs such as deferred features are
particularly helpful in this process. Soft­
ware development is made much smoother
when you use a language that encompasses

database of components.
As evidence of the limitations of the

"managerial" approach to reusability,
consider the relations that exist between
these components, such as specialization
(a hash table is a specialized table, a B-tree
is a specialized tree). If an object-oriented
language is used, they can be expressed
directly by inheritance and recorded within
the components themselves. But if the lan­
guage does not provide direct support for
expressing this relation, the information
must be entered explicitly into the data­
base, separate from the components.

Give your poor, your huddled projects a decent
technical environment in the first place. Then worry

about whether you are managing them properly.

the tr~ditional area of design and imple­
mentation, but that is no more difficult to
master than conventional programming
languages. Such is the aim of Eiffel.

We do not propose, however, to remove
the boundary between design and imple­
mentation, on the one hand, and system
specification on the other. These activities
are of a different nature: specification
states problems, design and implementa­
tion solve them. (A companion effort, the
specification method M,9 applies similar
concepts to formal, nonexecutable speci­
fications.)

One more fundamental theme has been
guiding this discussion: the idea that today
the essential problems of software engi­
neering are technical problems.

Not everybody agrees. There is a large
and influential school of thought that sees
management, organization, and economic
issues as the biggest obstacles to progress
in software development. Programming
aspects, in this view, are less important.
This view is evidenced in many discussions
of reusability that consider technical issues,
such as the choice of programming lan­
guage, as less important for reusability
than such things as an easily accessible

This immediately raises some difficult
issues: how to provide an adequate user
interface, check the consistency of the rela­
tion information, and maintain the
integrity of this information as compo­
nents are updated. Advanced project­
management techniques are required to
solve these issues. This is a typical example
of an organizational solution to a techni­
cal problem, with the resulting complexity
and loss of effectiveness.

Overemphasis on management issues is
premature. While it is indeed true that
many software projects are plagued with
management problems, focusing on these
problems first confuses the symptom with
cause. It's like expecting better hospital
management to solve the public hygiene
problem 10 years before Pasteur came
along!

Give your poor, your huddled projects
a decent technical environment in the first
place. Then worry about whether you are
managing them properly. 0

Acknowledgments
The comments and suggestions made by the

referees, those who agreed with the article's the­
sis and those who didn't, were much
appreciated. The influence of Simula 67, thefirst
object-oriented language and still one of the
best, is gratefully acknowledged.

63

Computer Sciences
at Sandia Labs;
the Rewards are
as Great as
the Challenge!
Exciting
Assignments for
Imaginative
Software
Professionals:
In the Computer Sciences
Department at Sandia
National Laboratories, our
research is focused on
finding technologically
innovative answers to
support the Lab's mission in
national security and
advanced energy systems.
The Lab's multidisciplined
activities create diverse
software needs in a variety of
areas, such as embedded
real-time systems, CAD/CAM,
AI, multiprocessor computer
systems, command and
control, intelligent
machines, signal processing,
space-based systems,
graphics, security, and
scientific applications.

Software
Engineering:
The Computer Sciences
Department's software
engineering research is
being expanded to foster
new software ideologies and
develop state-of-the-art
software tools and assistants.
Active areas of interest
are formal software
specifications, software
development environments
(including knowledge-based
environments), and software
design methodologies.

Programming
Languages:
The Computer Sciences
Department's software
technology research is being
expanded in the areas of
compiler design and
generation, optimizing
compilers, language design
and validation, and
operating system software.

Challenge Yourself:
Join a multidisciplined
research group performing
software, hardware, and
applications research in a
creative and challenging
environment. We offer career
opportunities for innovative
professionals with a PhD in
Computer Science or
Computer Engineering.

The Lab's Computer Sciences
Department's location in
Albuquerque, New Mexico,
offers a complete range of
cultural and recreational
activities combined with the
informal living style of the
West. You can expect a
competitive salary and
excellent benefits.

Please send resumes to:
Robert H. Banks
PhD Recruiting Coordinator
Division 3531-59
Sandia National Laboratories
Albuquerque, NM 87185

An equal opportunity
employerM JFJV JR.
U.S. Citizenship is requlred.

(fa ij Sandia
r I , National

Laboratories

References
1. T.e. Jones, "Reusability in Programming:

A Survey of the State of the Art," IEEE
Trans. Software Eng. Sept. 1984, pp.
488-494.

2. M.A. Jackson, System Development,
Prentice-Hall, Englewood Cliffs, N.J., 1983.

3. B.P. Lientz and E.B. Swanson, "Software
Maintenance: A User/Management Tug of
War," Data Management, April 1979, pp.
26-30.

4. BW. Boehm, "Software Engineering - As
It Is," Proc. Fourth Int'l Con/. Software
Eng., CS Press, Los Alamitos, Calif., Sept.
1979, pp. 11-21.

5. B. Dwyer, "A User-Friendly Algorithm,"
Comm. ACM, Sept. 1981 , pp. 556-561.

6. B. Meyer, "Genericity versus Inheritance, "
Proc. ACM Con/. Object-Oriented Pro­
gramming Syst, Languages, and Applica­
tions, ACM, New York, pp. 391-405 (revised
version to appear in J. Pascal, Ada, and
Modula-2).

7. B. Meyer, "Vers un Environnement Conver­
sationnel a Deux Dimensions," Jourmies
BIGRE, Grenoble, France, Jan. 1982, pp.
27-39.

8. B. Meyer, "Towards a Two-Dimensional
Programming Environment," Proc. 1982
European Con/. Integrated Computer
Syst., P. Degano and R. Sandewall, eds.,
North Holland, Amsterdam, 1983, pp.
167-179.

9. B. Meyer, "M: A System Description
Method," Tech. Report TRCS 85-15, Com­
puter Science Dept., University of Califor­
nia, Santa Barbara, May 1985.

Bertrand Meyer is president of Interactive Soft­
ware Engineering, Inc. , a Santa Barbara,
California, company specializing in tools and
education for improving software quality. The
Eiffel environment is one of Interactive's
products.

From 1983 to 1986, he was a visiting associ­
ate professor at the University of California,
Santa Barbara. Previously, he was division head
at Electricite de France. He is a member of
AFCET, the Computer Society of the IEEE, and
ACM. He has engineering degrees from Poly­
technique and Suptelecom, an MS from Stan­
ford University, and the Dr. Sc. from the
University of Nancy, France.

IEEE SOFTWARE

