The Unspoken
Revolution

in Software
Engineering

Bertrand Meyer, ETH Zurich

‘**‘H! Software professionals
‘._.. must adapt to the

he 2006 International Con-
ference on Software Engine-
ering’s call for papers lists more
than 70 topics that excite
everyone in the field, including
me. Just as conspicuous—and ironic
given that this ICSE will be held in, of
all places, Shanghai—is the absence of
any reference to what may be the most
important event affecting software
today: the massive transfer of develop-
ment activities from the US and Europe
to developing countries.

There’s little analysis of offshore
development in the technical com-
puter science or software engineering
literature, but this phenomenon is
bound to have a profound effect on
the field: not only the obvious human
effect, but also a long-lasting influence
on the technology itself.

A look at the numbers provides clear
evidence of the offshoring phenome-
non’s size. According to Global Out-
sourcing Report (www.horasis.org/
press_releases_all_4.php), three quar-

m Computer

ters of US companies outsourced at
least some of their IT business. IT out-
sourcing grew to a $100 billion indus-
try in 2003, representing close to a third
of IT budgets.

Although statistics differ on how
much of this business goes to off-
shore locations, it appears from var-
ious estimates (www.rttsweb.com/
services/outsourcing/stats.cfm) that
it’s a fourth to a third of that amount
and will reach $150 billion in five to
10 years.

India has, in just a few years, built
an entire industry of offshore soft-
ware development: $17 billion last
year, up from $4 billion five years
ago. To cite two of the main players
there, this past September Tata
Consultancy Services had 53,000 IT
workers and Infosys had 46,000, up
12 percent and 15 percent, respec-
tively, from July. Several other coun-
tries—Russia, China, and many
Eastern European nations—are fol-
lowing quickly, with many more hop-

ing to join the club. At professional
events, booths promoting Vietnam,
the Philippines, and even Ghana have
become common.

DECLINE OF THE WEST?

The effect on the software engi-
neering professions in the West is vis-
ible everywhere. In Silicon Valley and
other software hubs, many jobs have
disappeared. One category has almost
vanished: basic programming on a
large scale.

For programmers without any spe-
cial skills, this is the end of an era.
Confronted with a project requiring
many developers for fairly routine
applications, any large company
today, and many small ones, will out-
source to a cheaper country.

There are still a few protected pock-
ets: If the job includes an extensive
human interface component, you
won’t find too many developers
knowing Swiss German in India, and
this language issue explains in part
why the English-speaking world is
most visibly affected. But such pock-
ets are increasingly rare.

No wonder anxiety runs high. The
statistics that tend to attract the most
attention track job losses, often only
projected, like the Forrester study
(www.informationweek.com/story/
showArticle.jhtml?articleID=20900333)
that asserts offshoring by US compa-
nies will cause a loss of 3.4 million ser-
vice jobs by 2015. Such estimates must
be viewed with some suspicion, not
just because 2015 is a long way off, but
also because the results do not include
any effects in the reverse direction. In
any industrial revolution, some jobs
disappear while some are created.
What’s undeniable is that offshoring
has become a key software develop-
ment technique and that its share will
continue to increase.

Is offshoring something to be
feared, or is there something inher-
ently good in it? Obviously, for the
folks in Bangalore and Bucharest it’s
a great development, and, at least
abstractly, we should be glad they
can join the fun. For some compa-

Continued on page 121

Continued from page 124

nies, it’s clearly productive too. But
there are also resounding catastro-
phes. Various studies suggest that
something like 40 percent of offshore
projects fail to deliver the expected
benefits.

REVELATIONS

I find outsourcing so fascinating
partly because it serves as a magnifier
and revelator of just about everything
in software engineering.

For years, software methodologists
like me have told the world about soft-
ware engineering principles, sometimes
with effect, sometimes with—let’s be
euphemistic—less effect. Now comes a
project that splits the team across three
continents, and suddenly software
engineering advice ceases to sound like
preaching, becoming instead a matter
of success or abject failure.

Traditionally, we’ve told people to
do requirements engineering, and
they’ve often skimped on it. Now,
with the implementation team half a
world away, the team won’t produce
anything decent without a strict
process and requirements standards.

We’ve exhorted programmers to
care about documentation, configura-
tion management, quality assurance,
contracts, project management prac-
tices. These are no longer just good
ideas, but techniques that can each, if
not done right, become project killers.

When the design is done on the 12th
floor and the implementation on the
11th, you may think it’s all right to cut
corners on good software engineering
practice and renounce choosing the
tools you know are really best. When
the rest of the team is half a world
away, forget it.

It’s not just the time differences—it
doesn’t help when one team is asleep
while the other works—but also the
cultural differences: East may get a
dose of West and West may fancy a bit
of the Orient, but not always the
twain shall meet. More profoundly,
it’s software engineering: The annals
of outsourcing already include heaps
of project failures caused by nothing
more than neglect of our discipline’s
principles and tools.

OPPORTUNITY LOST

Reflecting further on the fear of good
programming jobs disappearing for-
ever, I can’t help thinking that the soft-
ware world has missed a great
opportunity. It’s no secret that, for the
most part, it sees itself as a service
industry. I have heard this view pro-
claimed proudly and repeatedly. For
my part, I have always thought that the
phrase “software engineering” should
be taken for what it implies: a system-
atic discipline based on quality tools.

Having for many years been in the
business of selling better software
technology through development
tools and languages, I have noted

Successful outsourcing
companies like to say that
customers come for the

price and stay for the
TELTTA

again and again how much easier sell-
ing manpower seems to be. During the
boom years, hiring one more pro-
grammer was more attractive than
investing in a tool. Now such deci-
sions are come back to haunt us: If
programming is a service, there will
always be someone ready to sell pro-
grammers’ services at a cheaper price.

The other approach would have
been to leverage tools to increase pro-
ductivity and let companies rely on a
smaller number of highly qualified
programmers, the ones hardly ever in
danger of losing their jobs.

Quality is indeed the central issue.
Successful outsourcing companies like
to say that customers come for the
price and stay for the quality.

The key to India’s success in out-
sourcing has been the Capability
Maturity Model and its successor, the
CMM]I, the process and organization
assessment schemes set up by the US
Department of Defense for evaluating
suppliers.

I remember being surprised, a
decade ago, when the first reports

about CMM qualification came in.
When the SEI introduced the five-level
CMM, conventional wisdom held that
no one in the foreseeable future would
qualify at Level 3 or above. Very
quickly, however, news of such quali-
fications appeared, with more than
half coming from India. Why India?
We have the answer now. For new-
comers eager to establish their reputa-
tion with initially suspicious Western
customers, such an independent out-
side certification proved a lifesaver.

I still hear comments that only low-
level jobs can be outsourced and that
all design will remain in the West.
That’s delusional.

The top Indian outsourcing compa-
nies operate at the same level as their
Western counterparts, while certain
countries like Russia specialize in
advanced, high-level developments at
or beyond the hardest in the West.

Observing that Intel was investing
more than $1 billion in R&D in
Bangalore and that J.P. Morgan would
hire 4,500 new employees by 2007, the
New York Times (5 December 2005)
cited an analyst who stated that “This
is way beyond mere cost savings; unless
global banks are comfortable with the
quality of work, they would not risk
taking the work offshore.”

In addition, an increasing portion of
outsourcing in large companies, but
also in some small ones, is internal:
Companies establish their own
branches or laboratories in places like
Bangalore (ABB), Saint Petersburg
(Sun), Beijing (Microsoft), and so on.
The people there are as much a part
of the company as those in the origi-
nal locations. Everyone must compete
on merit and results.

The frontier is moving. Eastern
Europe and Ireland no longer have dirt-
cheap prices; I talked recently to an out-
sourcing company in the Czech
Republic whose developers—paid
$5,000 a month—are becoming picky
about the jobs they accept. In the ever-
moving world of globalization, existing
competitors will lose their advantages
and new entrants will try their luck.

Not every country that wants to
duplicate the Indian success will pull it

January 2006 m

off. The recipe includes several ingre-
dients:

® Low salaries. Success requires a
university system that is both
highly advanced and produces
a large number of graduates in
software—the two don’t always
go together as the case of Japan
indicates.

e Stable political system. This
ensures that customers needn’t
worry about tanks rolling in the
streets next week or about paying
bribes to corrupt officials.

e Democracy. Repressive regimes
just don’t foster the kind of inde-
pendent, critical thinking that
makes good software developers.

® Open economy. The social and
business climate must encourage
and reward entrepreneurship.

e Expatriate network. It also helps
if, as in the Indian and Chinese
cases, a sizable diaspora exists in
the customer countries to provide
the indispensable human contacts.

Not all the new contenders meet this
full combination of criteria.

MAKING OFFSHORING WORK

What should programmers and other
software professionals from the indus-
trialized world do? While there is no
need to panic, ignoring the offshoring
phenomenon would be suicidal.

First, understand its impact on the
software engineering process. For the
past two years, Peter Kolb and I have
been giving a course at ETH Zurich on
software engineering for offshore
development.

Designed for students and also held
as an industry seminar, this course is
apparently the first of its kind. Others
surely will follow, and I hope that
software engineering research too will
start addressing the special circum-
stances of outsourced and offshore
development.

To help in this process—and because
the acronym was impossible to resist—
we are organizing with Joseph Mathai,
R&D head of Tata Consulting, the first
international conference on Software

m Computer

Engineering Approaches for Offshore
and Outsourced Development at ETH
Zurich on 16-19 October 2006
(SEAFOOD); the purpose is to conduct
an in-depth discussion of the technical
issues raised by the offshoring phe-
nomenon, as sketched in this article.
The submission deadline is 15 April
2006 and the Call for Papers is at
seafood.ethz.ch.

The development of offshoring also
raises a new challenge for those of us
entrusted with educating future soft-
ware professionals in the industrialized
world. If ever there was a justification
for focusing computer science pro-
grams on teaching high-level system
skills and analytical as well as synthetic
reasoning, rather than just the tech-
nology du jour, this phenomenon pro-
vides it.

Not every country
that wants to
duplicate the

Indian success
will pull it off.

I have argued for such an approach
before (“Software Engineering in the
Academy,” Computer, May 2001,
pp. 28-35; and “The Inverted
Curriculum in Practice,” http://se.
ethz.ch/~meyer/publications/teaching/
sigcse2006.pdf). Now, more than ever,
we have a duty to provide our students
with solid long-term skills. It’s not
enough to give them the tools and lan-
guages that will get them a job on grad-
uation day when legions of program-
mers, paid a fraction of Western
salaries, have also mastered them.

Programming is, and will likely
remain, a creative activity. The educa-
tional systems of democratic countries
have a key advantage here: People
who want to succeed in software
development must possess—along
with an ability to plan, schedule, and
organize—the kind of inquisitive, crit-
ical mind that such systems encourage.

I don’t think it’s a coincidence that

among the major Third World pow-
ers, the one that has succeeded so far in
establishing a massive software off-
shore operation—India—also has the
closest to a functioning democracy. To
bolster their competitive advantage on
the global software scene, Western uni-
versities must continue to provide a
broadly based education that includes
a strong scientific basis but does not
exclude the humanities.

Along with education, software
engineering research should take out-
sourcing into account. Existing soft-
ware engineering principles and tools
can help offshore projects, but there’s
far more to do. Most project manage-
ment tools, for example, do not pro-
vide sophisticated enough support for
distributed development. The same
applies to configuration management.

In the area of process models, T hope
we see significant improvement.
CMMI and ISO 9000-series standards
have obviously helped the industry
organize itself, but their zeal to avoid
technology commitments has limited
their benefits. To put it less politely, a
bit of substance wouldn’t hurt. For
example, am I the only one who,
when teaching CMMI, has trouble
hiding from the students that, how-
ever hard I try to look excited, T am
hopelessly, desperately bored? What
about a process model that wouldn’t
shy away from suggesting precise
technology choices for, say, an object-
oriented approach?

Another research area that should
get a boost from offshore develop-
ment’s growth is requirements engi-
neering. Maybe formal methods will
get a second hearing from an industry
that has often viewed them with out-
right hostility.

Unlike an English text that offers
endless possibilities for subtle inter-
pretive differences, a mathematical
formula leaves no room for national
or cultural nuances. Whether read in
Palo Alto, Moscow, Krakow, or Sao
Paulo, a given function is either total
or partial, a given formula of predi-
cate calculus either satisfiable or not,
a given number either positive, nega-
tive, or zero.

he world of software construc-
T tion will never be the same: We’re
just not in Kansas, or California,
any more. If you are a software pro-
fessional, you must adapt to the new

reality and become the best at what
you do by using the right tools and

methods. Anything else is futile.
Security by obscurity—the practice of
producing code that no one else will
understand, in the hope that the com-
pany will retain you out of despera-
tion—won’t protect you for long now.

What will make you truly irreplace-
able is to show exceptional productiv-
ity and to deliver stable code—
bug-free, extensible, reusable—that

establishes your reputation as a truly
irreplaceable resource. Also, make
sure you know the business as well as
the technology; that will set you apart
from mere techies.

Cultivate system thinking and
whole-life-cycle skills—there will
always be a demand for people who
master these, even at Western prices.
Don’t forget that tool investment, and
using the top software technologies
available, offers your best bet in this
tough new world.

Finally, look for technical publica-
tions and professional events—includ-
ing, I am sure, future ICSEs—that
specifically address the impact of out-

sourcing and offshoring on the
software engineering discipline.

Bertrand Meyer is professor of software
engineering at ETH Zurich and the chief
architect of Eiffel Software in California.
Contact him at Bertrand.Meyer@inf.
ethz.ch.

Editor: Neville Holmes, School of
Computing, University of Tasmania;
neville.holmes@utas.edu.au. Links to
further material are at www.comp.utas.
edu.au/users/nholmes/prisn.

THE IEEE’S 1ST ONLINE-ONLY MAGAZINE

distributed syste msl;E

Expert-authored articles and resources O N

IEEE Distributed Systems Online brings you
peer-reviewed articles, detailed tutorials, expert-managed topic
areas, and diverse departments covering the latest news and developments in this fast-growing field.

Log on for free access to such topic areas as

Grid Computing * Middleware Cluster

Computing * Security ¢ Peer-to-Peer and More!

To receive monthly updates,email

dsonline@computer.org

| N

http://dsonline.computer.org

January 2006 m

