 Technology

Editor: Bertrand Meyer, Interactive Software Engineering, 270 Storke Rd.,
Ste. 7, Goleta, CA 93117; voice (805) 685-1006; fax (805) 685-6869;

ot-column@eiffel.com

Reality: A cousin twice removed

Bertrand Meyer
Interactive Software Engineering

ne of the most common misconceptions about

the object style of software construction is that

itlets developers model the real world. This idea
has even found its way into the Object Management
Group’s definition of object: “An object models a real world
entity.”

This assertion is too general because it ignores the many
classes that represent purely internal objects, such as lists,
buffers, arrays, semaphores, and binary trees, which usu-
ally account for the majority of object classes in an actual
object-oriented system.

Many people who would not endorse the OMG’s defin-
ition still like to think of some classes as representing
objects from the real world. Indeed, a commonly adver-
tised benefit of the object-oriented approach is its ability to
yield software systems based in part on modules (classes)
that embody concepts closely related to the outside reality.
An elevator control system has CABIN and BUTTON
classes; an accounting system has EMPLOYEE and PAY-
CHECK classes.

This immediate connection to objects in everyday life is
part of the attraction of object technology, but it should
not confuse us: We developers are not talking directly
about the real world. (A cynic might take this to be good
news: Wasn’t getting away from the real world one of the
reasons for becoming a programmer in the first place?)

In this column, part of which is extracted from my
upcoming book (Object-Oriented Software Construction,
Prentice Hall, 1996), I explore some of the many reasons
developers should be careful whenever they are tempted
to say that their objects come from the real world.

The eye of the beholder

Reality is in the eye of the beholder. Consider a program
that performs mathematical computations—proving the
four-color conjecture in graph theory, integrating some
differential equations, or solving geometrical problems in
afour-dimensional Riemann surface. Do we want to quar-
rel with our mathematician friends over which artifact is
more real, a piece of software or a complete subspace with
negative curvature?

The notion of the real world collapses anyway in the not
infrequent case of software that solves software prob-
lems—reflexive applications, as they are sometimes called.
For example, the “real” objects that a C+ + compiler writ-
ten in Eiffel processes are C+ + programs. Why should we
consider these programs to be more real than the compiler
itself? This would be absurd. The same observation applies
to any software that primarily manipulates objects that
only exist in a computer: operating systems, interpreters,
editors, CASE tools, even document-processing systems
(which essentially manipulates digital objects; the printed

text being only a particular form of output).

ORBJECTS AROUND THE WORLD

Computer

Severalimportant object technology conferences are coming

(EL Conference on Object-Oriented
ing), July 8-12, Johann Kepler University, Linz,

g 2, Santa Barbara, California;

voice (8

Computers in reality

While it may have been legitimate in the
early days of computers to think of software
as being superimposed on an existing, inde-
pendent reality, today software is more and
more a part of that reality. This is especially
evident in the MIS domain. It may have
been true 40 years ago that software sim-
ply automated existing procedures, but
today many existing procedures already
involve software. To describe the opera-
tions of a modern bank is to describe mech-
anisms that have software as a funda-
mental component. The same is true in
most other domains. For example, many of
the activities of physicists and other natural
scientists rely on software, not as an auxil-
iary tool but as a fundamental part of the
operational process.

It is tempting here to think of modern
physics and its recognition that the world




and the study of the world are not inde-
pendent. Quantum mechanics recognizes
that observation is part of the experiment;
unobtrusive though the observer may try
to be, the measurement always affects the
measure, however minutely. In software
construction, the epistemological signifi-
cance of the corresponding properties is
perhaps less portentous, but the practical
consequences are just as important: We
can seldom separate the software from the
external reality. Consider the notion of vir-
tual reality and its implication that what
software produces is no less real than the
outside world. In all such cases, the soft-
ware is not disjoint from the reality; it is as
if we had a feedback loop in which operat-
ing the software injects some new and
important inputs into the model.

Objects and concepts

Even classes that do represent external concepts (“real
world” concepts, if you insist) do not represent objects in
the physical sense. As Kim Waldén and Jean-Marc Nerson
put it in Seamless Object-Oriented Software Architecture:
Analysis and Design of Reliable Systems (Prentice Hall, 1995):

Aclass representing a car is no more tangible than one that
models the job satisfaction of employees. What counts is
how important the concepts are to the enterprise, and
what you can do with them.

Keep this in mind as you look for external classes. They
can be quite abstract. A class SENIORITY _RULE for a par-
liamentary voting system and a class MARKET TENDENCY
for a trading system may be just as real as SENATOR and
STOCK_EXCHANGE.

A model of a model

Yet another—and perhaps the most fundamental—rea-
son to avoid talking about the real world when dealing
with software is that software is at best only a model of a
model of some part of some reality. A patient-monitoring
system is not a model of a hospital; it is the implementa-
tion of someone’s view of how certain aspects of hospital
management should be handled. In other words, itis a
model of a model of a subset of the hospital’s reality. An
astronomy program is not a model of the universe; itis a
software model of someone’s model of some properties of
some part of the universe. A financial information system
is not a model of the stock exchange; it is a software trans-
position of a model devised by a certain company to
describe those aspects of the stock exchange that it finds
relevant.

The central OO notion of abstract data types helps
explain why we are dealing with the real world. As
expressed by the ADT theory, the first step to object ori-
entation is to discard reality in favor of something less
grandiose but more palatable: A set of abstractions char-
acterized by externally applicable operations (features).
Never is there any pretense that these operations are the
only ones possible; we choose the ones that serve our pur-

poses of the moment and reject the others. To model is to
discard.

The reality that a software model addresses is, at best,
a cousin twice removed.

Abstraction

Reasoning too much in terms of the real world can actu-
ally be detrimental to software quality. What matters is
not how closely we model today’s reality but how extensi-
ble and reusable our software is, so it can be adapted to a
new or changed reality. Reusability and extensibility are
object technology’s central goals, and we should never lose
sight of them. Adhering to a posited “real world” will not
always help us achieve them.

Like the people in Plato’s cave, we know reality only
through our perception of it. When we base software on
reality, what counts is the quality of our perception.
Software will model! only part of the reality. (Otherwise,
we would not need software at all. We could let reality
stand for itself, like the Academicians of Laputa in
Gulliver’s Travels who decided that “since words are only
names for things, it would be more convenient for all men
to carry about them such things as were necessary to
express the particular business they are to discourse on.”)

Modeling the real world too closely is dangerous if we
choose aspects that are too low-level, circumstantial, or
very subject to change. One example that grows more omi-
nous every day is the subject of a flood of conferences, the
so-called “millennium problem.” How can we upgrade the
myriad date-sensitive programs written by developers
who did not consider dates beyond the twentieth century?
Thus we now have conferences, conference series, even
an entire industry devoted to a single decimal digit. But the
people who wrote the two-digit-date programs were faith-
fully modeling the real world! In 1965, the real world of a
55-year-old programmer involved only two-digit dates.

Object technology is not about modeling the real world.
Object technology is about producing quality software,
and the way to obtain this is to devise the right abstrac-
tions, whether or not they model what someone sees as
the reality.

July 1996




