Object Technology

Editor: Bertrand Meyer, Interactive Software Engineering, 270 Storke Road,
Suite 7, Goleta, CA 93117; phone (805) 655 1006; fax (805) 685-6869; Internet

ot-column@eiffel.com

The reusability challenge

Bertrand Meyer, Interactive Software Engineering

Onward and forward

As I write this, the first installment of the Object
Technology department is barely out, so it is too early to
include any reader reaction. Suffice it to say that everyone
I have talked to is excited about this new department. As
a result, I will probably have more columns by guest con-
tributors (and fewer by me) than originally planned: So
many people have interesting things to say! To begin with,
it occurred to me that the next column—still “Design by
Contract,” as announced—could just as
well be written by Jim McKim of the
Hartford Graduate Center, who is currently
writing a book on that very topic.

Another new contributor signed up for
sometime in the next few months is Mary
Loomis of Hewlett-Packard, whose topic
will be object databases. Also scheduled are
Brian Henderson-Sellers of the University
of Technology, Sydney, and Ian Graham of
Swissbank, who will tell about the effort
they lead, in concert with many other OO
methodologists, to come up with a broadly
acceptable object method called Open.

As a reminder, you are welcome to post
comments on this department in the Usenet object tech-
nology newsgroup, comp.object; letters to the editor can
be e-mailed to ot-column@eiffel.com.

Reusability and object technology

Now for this month’s technical topic. The argument we
examine—that object technology promotes reusability—
hasbeen one of the central claims of OO proponents since
the field’s emergence in the mid-1980s.

What indeed makes OO ideas so special in the quest for
reusable software?

The right level of abstraction. Earlier approaches
to reusability, ever since Mcllroy’s seminal paper,! assumed
that the routine would be the unit of reuse. With object
technology, we have a coarser grain of decomposition: a
class, the description of a set of objects characterized by
applicable operations. For example, instead of reusing the
routine to invert matrices of a certain kind, say “band
matrices,” we move one level higher: We put into our
library the class BAND_MATRIX, complete with all applic-
able operations—inversion, but also transposition, deter-
minant, column and row extraction, and so on.

Computer

This gives us components at the right level, describing
whole abstractions rather than‘scattered pieces, and hence
more coherent, robust, and easy to use.

Most of the other OO mechanisms, reviewed last month,
help further. Let me mention two. Thanks to one, inheri-
tance, we can organize the many variants that often exist
for certain reusable concepts. The other is our ability to
specify precisely, through assertions, the properties of
reusable components. Be it in electronics or construction,
no reuse is possible without abstract spec1ﬁcat10n soft—
ware is o exception. ‘

Programs with holes. One interesting aspect of
classes is that their designers get to choose the exact level
of refinement that suits the needs of the moment. A class
can be fully abstract, or deferred; it can be fully imple-
mented, or effective; but it can also be somewhere in
between, the designer having chosen to spell out certain
aspects and leave others to be filled in later.

Why is this important for reusability? The answer lies in
the peculiar nature of software. If the common needs of
our programs were fixed, the reusability problem would
have been solved a long time ago; someone would have
programmed all these useful patterns in the form of mod-
ules similar to the reusable VLSI chips of our hardware col-
leagues. But software’s reuse requirements are more
subtle. Only in some limited cases can we benefit from
frozen implementations (as offered by subroutine
libraries). Most of the time, even’in application areas
where we sense much repetitiveness, what recurs is a gen-
eral scheme, with room for variable elements that each
application may replace with its own variants.

In other words, reusability il software is inseparable
from adaptability. The traditional “reuse or redo” dilemma
is unacceptable; we need to reuse what is applicable to our
current need and redo the rest. This is where object tech-
nology helps.

A typical example is an “iterator,” as offered by the
classes of several object-oriented libraries. An iterator
applies a certain operation to all elements of a certain

.data structure (or file, or database) in a specified order.

Much of the iteration is reusable; developers should not
need to reprogram the control structure and the iteration
scheme. Of course, the details of what you do at each
stage vary with each application. In the list iterator
classes of EiffelBase,? for example, you will find proce-
dures such as ‘

until_dois
— Apply action to every item of target up to
— but excluding first one satisfying test.
— (Apply to full list if no item satisfies test.)
do
from
start
invariant
invariant_value
until
exhausted or else test
loop
action
forth
end
end
ensure
finished: not exhausted implies not test
end

Thanks to inheritance, an application reusing this
mechanism will provide its own test and action routines
and optionally an invariant_value; everything else is pre-
programmed. (Note that start is the procedure that posi-
tions the cursor at the beginning of the structure, forth
advances it by one position, and exhausted tells whether
we have examined all items.)

This example addresses a general data structure
scheme, but it is not difficult to think of many application-
specific variants. Business applications, for example, fre-
quently follow a common model—process all the day’s
invoices, validate a payment request, enter new customers,
and so on—with individual components that may vary.

OO0 techniques offer an ideal vehicle for such reuse-redo
combinations. Particularly interesting is the ability to write
deferred classes (such as LIST_ITERATOR) where some of
the routines, such as until_do above, are effective (imple-
mented) but call deferred routines such as test and action.
Descendant classes can then effect these routines (provide
effective versions) according to the application’s needs.

This idea is not new with object technology. The gen-
eral “don’t call us, we’ll call you” approach, where prede-
fined elements call user-supplied mechanisms, is also
common in graphics systems, often under the name of call-
back. Atvarious stages in its execution the system calls cer-
tain functions, for which application developers “plant”
their own variants at specified places. Even IBM’s venera-
ble database system, IMS, used a similar scheme. What
the OO method offers is systematic, safe support for this
technique, through classes, inheritance, type checking,
deferred classes and features, as well as assertions thatlet
the developer specify what properties the variable replace-
ments must satisfy.

These observations help put into perspective the “Lego
block” image often used to discuss reusability. In a Lego
set, the components are fixed; the child’s creativity goes
toward arranging them into an interesting structure. This
exists in software, but it seems more like the traditional
idea of subroutines. Often, software development needs to
do exactly the reverse: keep the structure, but change the
components. In fact, the components may not yet be there;
in their place, you may find placeholders (deferred fea-

tures), useful only when you plug in your own variants. In
the analogy with children’s games, we should go back in
age and summon the image of those playboards where
toddlers have to match shapes of blocks with shapes of
holes.

One can also think of a partially deferred class (or set
of classes, called a “library” or a “framework”) as having a
few electrical outlets—the deferred features—into which
the application developer will plug compatible devices.

The expression “programs with holes” comes to mind
to describe such components, reusable but open.

From patterns to reusable components.
Considerable attention has been devoted in the past two
years to a neighboring notion, design patterns. An excel-
lent book on the topic® has identified common program-
ming schemes, each associated with a certain problem,
and described them in detail.

The book, Design Patterns: Elements of Reusable Object-
Oriented Software, is an impressive effort. But it is only a

February 1996

first step. Describing patterns is not enough; we must take
each pattern to its conclusion and provide a number of
directly reusable classes that encapsulate the pattern.
Without such software components, patterns serve a ped-
agogical need (like the fundamental algorithms and data
structures taught in computing science courses), but they
do not provide reusability. True software reusability—that
is, reusability that can provide the needed breakthrough
from current practices—is not reusability of personnel, of
ideas, or even of design: Itis reuse of actual software com-
ponents, that is, of code.

What is the main problem? Underlying the previ-
ous discussion—which, of course, covers only part of the
connection between reusability and object technology—is
aview of reusability, developed in detail elsewhere,*as pri-
marily a technical problem and primarily on the producer
side. But this view is not universal. In particular:

s A number of organizations, including some well-
known computer vendors, have established reuse pro-
grams that focus on consumers and encourage reuse
by application developers. This is, I think, the wrong
priority. As the software field evolves, competent
developers will reuse components if they are good,
but the difficult issues of reusability today are on the
producer side: building the thousands of quality
reusable components that the industry needs.

¢ A number of authors view reusability as primarily a
management problem. The argument is eloquently

. made, for example, in a recent book® by Will Tracz
(well known to readers of Computer’s Open Channel),
which is recommended reading for everyone inter-
ested in the topic. Both management and technical
issues are important, of course, but we do need to
know where to put our strongest efforts.

Much as I appreciate the difficulty of inoculating devel-
opers and managers with the Culture of Reusability, I.can
only reaffirm, after almost 20 years of promoting reuse
and building reusable (and reused) components, that the
major difficulties lie in technical areas.

Here is a deal: Build the libraries for me, and I will take
on your management problems any time.

References

- 1. Doug Mcllroy, “Mass-Produced Software Components,” in
Software Engineering Concepts and Techniques (Proc. 1968
NATO Conf. on Software Engineering), John Buxton, Peter
Naur, and Brian Randell, eds., Van Nostrand Reinhold, 1976,
pp. 88-98. :

2. Bertrand Meyer, Reusable Software, Prentice Hall, Englewood
Cliffs, N.J., 1994. '

3. Erich Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Menlo Park, Calif.,
1995.

4. Bertrand Meyer, Object Success: A Manager’s Guide to Object
Technology, Prentice Hall, Englewood Cliffs, N.J., 1995.

5. Will Tracz, Software Reuse, Addison—Wesley, Menlo Park,
Calif., 1995.

