104

Providing Trusted
Components to

the Industry

he software industry stands on :
feet of clay. However carefully :
we may strive to build correct :
and reliable software, we have
no way of guaranteeing the :
quality of the result. Building correctand :
reliable software depends on the quality :
of so much else, from the hardware and :
the operating system to the compiler and :
the runtime libraries. And any significant
software system has so many details and :
components of its own that we can :
hardly expect to get everything right if :

we do it all by ourselves.

None of the commonly suggested :
approaches suffices to quell these wor-
ries: “Test, test, and retest,” the implicit :
motto of much of the industry, is expen- :
sive and wasteful. Yet as any user of PC
software knows all too well, the result of :
all this sweat is far from ideal. Software :
companies systematically and openly
ship software that has a large number of :

known bugs.

On the academic side, much progress

has been made toward formal methods,

through which it is possible (in principle) :
to prove the correctness of program ele-
ments using mathematical techniques. :
But results from this important field have :
had only limited effect on the practice of :

the industry for several reasons:

Editor: Bertrand Meyer, EiffelSoft, ISE
Bldg., 2nd FI., 270 Storke Rd., Goleta, CA
93117; voice (805) 685-6869; ot-column@
eiffel.com

Computer

Bertrand Meyer, EiffelSoft :

o o ) - k . (Possible exceptions are the mission-
Christine Mingins and Heinz Schmidt, Monash University
¢ s0 high that money is not the issue.)

The goal of this project is
to provide the entire
software industry with
a powerful set of
components deserving
a high degree of trust.

e |t is too difficult to build mathemati-

point computation to pointers.

e There are few powerful tools to

assist this effort.

« Even more fundamentally, it is just
too expensive and difficult to apply :

formal techniques thoroughly.

The recent push for reuse and compo-
nentware has raised the hope that by
¢ relying on reusable components we can :
. gain quality and reliability. But without :
. excellent techniques to build the compo- :
. nents themselves, this nirvana is a
© mirage. In fact, the spread of less-than- :
. optimal components could lead to a
. worsening of the situation.
At least one major industrial disas- :

ter—to the tune of half a billion US dol-
lars—has already been ascribed to the
reuse of an improperly specified compo-
 nent. With the progress of incompletely
designed approaches to reuse, more cat-
astrophes are likely to happen, leading to
a broad rejection of the very idea of
. reusability, unless the industry takes mea-
sures to guarantee component quality.
Formal methods, because of their cost,
only make sense when applied to widely
reused components, which can recoup
© the investment through effects of scale.

critical systems for which the stakes are

Widespread reuse is only attractive if

: we can be formal enough to guarantee
© that the components will be correct,
. aiding rather than harming the systems
. that will rely on them. (See “The Next
Software Breakthrough,” Computer,
: July 1997.)

In this column, we describe an ambi-

tious but realistic project that combines
¢ the ideas of reuse and formality with other
: more pragmatic techniques. The goal is to
provide the entire software industry with
. a powerful set of reusable components
. deserving a high degree of trust.

HOW TO ENSURE TRUST
No single technique can produce com-

pletely trusted components. Trust is in
. fact a social phenomenon. Even in math-
¢ ematics, the most formal of all disci-
plines, professionals only believe in a
: theorem based on a mix of formal crite-
cal models of the most delicate aspects :
of “real”” programs, from floating- :

ria, such as published proofs, and social
ones, such as

* who produced the theorem and its
proof,

= where it was published,

= who reviewed the publication,

« who else already believes it,

* how much the result has already
been applied,

« whether it is consistent with other
results in the same area or others,

« whether it gives the “right feeling,”
and

« whether the theorem and proof are
“elegant.”

© Part of the reason is that almost all pub-

lished proofs omit intermediate steps to



avoid overwhelming the reader with use- :
less complexity. The complexity in this :
case is not unlike the complexity of a :
software system, except that many :
industrial systems are far more complex :

than the average mathematical proof.

As a result, trust—especially in soft-
ware—will not be a binary proposition: :
“blindly trusted” versus “untrusted.” :
We may trust Microsoft Word enough
to use it for our next paper, but we :
would not bet a year’s salary on the :
assumption that it will not crash while

we are writing the paper.

A striking example of the power of
social processes exists in software: the :
success of free source code, notably the :
tools developed for GNU and Linux. :
These tools, some quite ambitious, have '
been developed by volunteers under the :
international scrutiny of a network of :
enthusiasts who, relying on all the tools
of the Internet, scrutinize the source :
code of every new version, test it, report :
defects, and suggest improvements. This
process leads to collective work of :
unprecedented scope outside of any for- :
mal organization or commercial frame-

work.

of free, global quality assurance.

BUILDING TRUST

The Trusted Component Project pro-
poses to apply a mix of formal and infor- :
mal approaches. It rests on six principal :

techniques:

Design by contract. This approach to :
software construction is meant to ensure :
software is reliable from the start, by :
building it as a collection of elements that :
cooperate on the basis of precise defini-

tions of mutual obligations—contracts.

Formal validation. Use modern tech- :
niques and tools such as B or Object-Z :
in connection with the principles of :

design by contract.

Some of the results are of astounding :
quality, leading many commercial com- :
panies to select, for example, the free :
GCC compiler over commercial C/C++
compilers, or Linux—initially the work
of a student—over commercial versions :
of Unix, which are the result of tens of :
thousands of collective years of develop- :
ment in industry hotbeds. Such examples :
illustrate the power of this recent phe- :
nomenon: volunteer scrutiny as a form :

00 and reuse techniques. Thoroughly :
apply object-oriented techniques and the

strict principles of reusable library design.

Global public scrutiny. Make the com-

ponents freely available in source form;
seek contributions as well as criticism
from the worldwide Internet community.

Extensive testing. Take advantage of
design by contract and focus on compo- :

nent reuse.

Metrics efforts. Track component

properties in a controlled fashion.

None of these ideas by itself will do the

job. But by combining technical and
social processes, we can hope to build
a set of components the industry can
really trust.

TASKS

its initial home—in collaboration with

tion and can only succeed as a long-term

collaborative project between many :
. versities as well as product development
The results will be of many kinds—
publications and standards as well as :
trusted software components. The :
. truly cooperative endeavor in the tradi-
¢ tion of the Internet.
= Choosing areas for component :
development. Starting with the
most humble areas, we can replace :

organizations in academia and industry.

major areas of effort include:

the feet of clay with more solid
material.

starting point.

- Adapting language-specific com- :
ponents. Versions of the compo- :
nents will be needed by other :

¢ Christine Mingins is a senior lecturer and

C++, and Java. Interface versions

will have to be produced in IDL :

¢ at cmingins@insect.sd.monash.edu.au.

widely used languages, such as C,

and Microsoft COM.
« Adapting verification technology.

Existing tools (such as those for B)
may be appropriate, but both the :
tools and the techniques will need
to be adapted to the proof of :

reusable components.

The Trusted Components Project has :
. (A Web page is forthcoming at http://
Interactive Software Engineering (Eiffel-
Soft)—at Monash University. But it is :
beyond the scope of any single institu-

< Developing testing technology for
reusable components, including
standards describing the test cases
and test procedures.

« Developing assertion language and
other conceptual tools for proving
practical components.

« Developing and applying effort
metrics.

« Developing reuse-based teaching
curricula and applying them to
actual courses.

< Identifying interesting application
areas and developing application-
specific libraries on the same princi-
ples as the general-purpose libraries.

« Identifying further techniques and
tools for building quality compo-
nentware.

There are many ways to get involved.

www.trusted-components.org; you can
subscribe to a mailing list by writing to
trusted-request@eiffel.com.) This list
includes practical tools as well as theo-
retical themes; research projects for uni-

by companies; possible contributions by
institutions as well as dedicated individ-
uals. We hope that it will operate as a

the prospect of a joint effort that

T he Trusted Objects Project offers
may have a major impact on the

© evolution of the software industry. We
< Developing base components. The :
base versions will be developed in
Eiffel, which has the proper sup- |
port for design by contract. The :
Eiffel Kernel Library can serve as a

view it as a collective, international effort
and hope that many people will be inter-
ested in joining it. The aim—providing
a solid foundation for the software
industry—is worth it. [J

Bertrand Meyer is editor of the Object
Technology department.

associate head of school at Monash Uni-
versity, Melbourne, Australia. Contact her

Heinz Schmidt is associate dean of re-
search of the Faculty of Information Tech-
nology and head of software engineering
at Monash University. Contact him at
heinz.schmidt@fcit.monash.edu.au.

May 1998

105




