
SCOOP – A contract-based concurrent
object-oriented programming model

Benjamin Morandi1, Sebastian S. Bauer2, and Bertrand Meyer1

1 Chair of Software Engineering, Swiss Federal Institute of Technology Zurich,
Switzerland,

firstname.lastname@inf.ethz.ch,
http://se.inf.ethz.ch/

2 Institut für Informatik, Ludwig-Maximilians-Universität München, Germany,
sebastian.bauer@pst.ifi.lmu.de,

http://www.pst.ifi.lmu.de/

Abstract. SCOOP is a concurrent object-oriented programming model
based on contracts. The model introduces processors as a new concept
and it generalizes existing object-oriented concepts for the concurrent
context. Simplicity is the main objective of SCOOP. The model guaran-
tees the absence of data races in any execution of a SCOOP program.
This article is a technical description of SCOOP as defined by Nienal-
towski [11] and Meyer [7, 9, 10].

1 Introduction

In a semaphore based concurrent programming model it is the responsibility of
developers to ensure proper synchronization between threads. With respect to
safety, no undesirable interference between threads must occur. In general, this
is a global property of a program that requires global analysis. With respect to
liveness, every thread should progress eventually. Again, this is a global prop-
erty. Another issue comes from the limited reusability of classes. A class whose
instances should be accessed by multiple threads must be annotated with correct
synchronization code. In general, a class that is not annotated accordingly can
only be used sequentially.

SCOOP stands for Simple Concurrent Object-Oriented Programming. This name
captures what SCOOP is all about – a simple object-oriented programming
model for concurrency. SCOOP is simple because it introduces only few new
concepts on top of an object-oriented programming model. This makes SCOOP
simple to understand. SCOOP is simple because it helps to avoid common cor-
rectness and liveness issues due to improper synchronization. SCOOP is also
simple because a class does not need to be annotated with synchronization code
before it can be used in a concurrent program. This fosters reusability. SCOOP is
simple because it supports sequential reasoning on concurrent programs. There
are many reasons why SCOOP is simple and the following sections will explain
in more details where the simplicity is coming from. The risk of simplicity is

2

the loss of expressiveness on account of too many restrictions. SCOOP preserves
object-oriented expressivity because it generalizes existing object-oriented con-
cepts in the concurrent context. Sequential programs are treated as a subset of
a concurrent programs. As presented here, SCOOP builds on Eiffel [4]; however,
it is possible to extend other object-oriented programming models with SCOOP.
The key requirements of such an programming model are the presence of con-
tracts and a static type system.

SCOOP has gone through several iterations of refinement. The initial model
was proposed by Meyer [7, 9, 10]. Nienaltowski worked on consistency and us-
ability of the model. The following sections provide a concise description of the
SCOOP model as presented by Nienaltowski in his PhD dissertation [11]. The
next section shows an introductory example to give a brief overview on SCOOP.
The remaining sections cover the details. Sections 3, 5 and 6 describe the essence
of the computational model. Sections 4, 8, 9, and 10 define the type system. Sec-
tion 7 describes the impact of SCOOP on contracts and sections 11, 12, and 13
discuss advanced object-oriented mechanisms. We conclude with section 14 on
limitations and future work.

2 Example

This section introduces an implementation of a producer-consumer scenario writ-
ten in SCOOP. The concepts introduced in this example will be explained in
depth in the following sections.

A producer-consumer application consists of a number of producers and a num-
ber of consumers. Both producers and consumers have access to a shared fixed-
size buffer. Producers store elements in the buffer and consumers retrieve ele-
ments from the buffer. A producer must not be allowed to add elements to the
buffer if it is full. A consumer must not be allowed to remove elements from an
empty buffer. The access to the buffer must be restricted to one actor at a time.

Listing 1.1. producer class

1 class PRODUCER[G]

3 inherit
PROCESS

5
create

7 make

9 feature {NONE} −− Initialization
make (a buffer: separate BOUNDED QUEUE[G])

11 −− Create a producer with ’a buffer’.

3

do
13 buffer := a buffer

ensure
15 buffer = a buffer

end
17

feature −− Basic operations
19 step

−− Produce an element and store it in ’buffer’.
21 local

l element: G
23 do

l element := ...
25 store (buffer, l element)

end
27

feature {NONE} −− Implementation
29 buffer: separate BOUNDED QUEUE[G]

−− The buffer.
31

store (a buffer: separate BOUNDED QUEUE[G]; a element: G)
33 −− Store ’a element’ in ’a buffer’.

require
35 a buffer is not full: not a buffer.is full

do
37 a buffer.put (a element)

ensure
39 a element is added: a buffer.count = old a buffer.count + 1

end
41 end

Listing 1.2. consumer class

1 class CONSUMER[G]

3 inherit
PROCESS

5
create

7 make

9 feature {NONE} −− Initialization
make (a buffer: separate BOUNDED QUEUE[G])

11 −− Create a consumer with ’a buffer’.
do

4

13 buffer := a buffer
ensure

15 buffer = a buffer
end

17
feature −− Basic operations

19 step
−− Consume an element from ’buffer’.

21 local
l element: G

23 do
retrieve (buffer)

25 l element := last element
...

27 end

29 feature {NONE} −− Implementation
buffer: separate BOUNDED QUEUE[G]

31 −− The buffer.

33 retrieve (a buffer: separate BOUNDED QUEUE[G])
−− Retrieve an element from ’a buffer’ and store it in ’last element’.

35 require
a buffer is not empty: not a buffer.is empty

37 do
last element := a buffer.item

39 a buffer.remove
ensure

41 last element is set: last element = old a buffer.item
a buffer is decreased: a buffer.count = old a buffer.count − 1

43 end

45 last element: G
end

Producers and consumers repeatedly perform a sequence of actions. Pro-
ducers store elements into the buffer and consumers retrieve elements from the
buffer. Producers and consumers can therefore be modeled as processes. Both of
the classes inherit from a class PROCESS, which is not shown here. The class
PROCESS offers a deferred feature step, which gets called over and over again
as soon as the feature live is called. Therefore the main activities of producers
and consumers are enclosed by their respective implementations of step.

Both producers and consumers operate on a shared buffer attached to buffer
. The type separate BOUNDED QUEUE[G] of these two features is of interest.

5

The class type BOUNDED QUEUE[G] specifies the nature of the buffer: It is a
bounded queue with elements of a type G. The keyword separate is a SCOOP
specific addition to the type system. In SCOOP every object is associated to a
processor that is responsible for the sequential execution of instructions on that
object. One object can only be associated to one processor, but one processor
can be responsible for multiple objects. The separate keyword defines that the
object attached to the entity of such a type can potentially be handled by a dif-
ferent processor than the processor of the current object. In the absence of this
keyword the object must be handled by same processor as the current object.
If two objects are on different processors then the two processors can execute
features on these objects in parallel. In this example, we want to achieve this for
the buffer. Features on the buffer should be executed in parallel to the features
on producers and consumers. Thus the buffer needs to be on its own processor.
This is reflected in the type of the buffer.

The problem description asks for mutual exclusion on the buffer. In SCOOP
locks are granted on the granularity level of processors. Locking a processor
means exclusive access to all the objects handled by the processor. Prior to its
execution, every feature automatically requests the locks on all the processors
of the attached formal arguments. The feature cannot be executed until all the
requested locks got granted. In the producer and consumer classes it is therefore
necessary to enclose the calls to the buffer in features taking the buffer as an
attached formal argument in order to satisfy the exclusivity requirement. For
this purpose, the producer class has a feature store that takes the buffer and
the element as formal arguments. A call to store gets delayed until the producer
acquired the lock on the buffer. Note that the lock on the element is already
given because the missing separate keyword in the type of the element implies
that the element and the producer are on the same processor. Next to the locks
there is another constraint that must be satisfied before store can be executed.
The feature has a precondition asking for the buffer not to be full, as specified.
As the buffer is shared among different producers and consumers, the respon-
sibility to satisfy the precondition is also shared among the different producers
and consumers. The precondition therefore turns into a wait condition as store
needs to wait for the precondition to be satisfied. In summary, store can only be
executed when the precondition is satisfied and the necessary locks are acquired.
A similar argument is true for the feature retrieve of the consumer. In the next
section, we start with an elaboration on the computational model of SCOOP.

3 Processors, objects, and the scheduler

Processors and objects are the basic computational units in SCOOP. A processor
is an autonomous thread of control capable of executing features on objects.
Every processor is responsible for a set of objects. In this context, a processor is
called the handler of the associated objects. Every object is assigned to exactly
one processor that is the authority of feature executions on this object. If a

6

processor q wants to call a feature on a target handled by a different processor p
then q needs to send a feature request to processor p. This is where the request
queue of processor p comes into place. The request queue keeps track of features
to be executed on behalf of other processors. Processor q can add a request to this
queue and processor p will execute the request as soon as it executed all previous
requests in the request queue. Processor p uses its call stack is used to execute
the feature request at the beginning of the request queue. Before processor q can
add a request, it must have a lock on processor p’s request queue. Otherwise
another processor could intervene. Once processor q is done with the request
queue of processor p it can add an unlock operation to the end of the request
queue. This will make sure that the request queue lock of p will be released after
all the previous feature requests have been executed. Similarly, processor p must
have a lock on its call stack to add features to it. To simplify this, every processor
starts with a lock on its own call stack. Section 5 on the semantics of feature calls
and feature applications will explain the interaction between processors in more
details. In conclusion, a processor and its object form a sequential system. The
overall concurrent system can be seen as a collection of interacting sequential
systems. A sequential system can be seen as a particular case of a concurrent
system with only one processor.

Definition 1 (Processor). A processor is an autonomous thread of control
capable of supporting the sequential execution of instructions on one or more
objects. Every processor has the following elements:

– Handled objects: It keeps track of the handled objects.
– Request queue: It keeps track of features to be executed on objects handled by

the processor. Requests in the request queue are serviced in the order of their
arrival.

– Call stack: It is used for the application of features.
– Locks: It contains all the locks held by the processor, as defined in definition

2.

Definition 2 (Processor locks). For every processor there exists a lock on the
request queue and a lock on the call stack. A lock on the request queue grants
permission to add a feature request to the end of the request queue. A lock on the
call stack grants permission to add a feature request to the top of the call stack.
Initially every processor has a lock on its own call stack and its request queue is
not locked.

Definition 3 (Processor loop). A processor loops through the following se-
quence of actions:

1. Idle wait: If both the call stack and the request queue are empty then wait
for new requests to be enqueued.

2. Request scheduling: If the call stack is empty but the request queue is not
empty then dequeue an item and push it onto the call stack.

3. Request processing: If there is an item on the call stack then pop the item
from the call stack and process it.

7

– If the item is a feature request then apply the feature.
– If the items is an unlock operation then unlock the request queue of the

processor.

In the standard case, every processor keeps the lock on its own call stack.
A processor needs this lock to dequeue items from the request queue and put
them on the call stack, as described in definition 3. Normally, only the request
queue is used for the communication between different processors. Section 5 will
show how this can be different. In the following we will introduce an abstrac-
tion under the assumption that every processor keeps its call stack lock. In this
abstraction we call the request queue lock on a processor p simply the lock on
p. As long as the call stack lock on a processor p is in possession of p, a request
queue lock on p in possession of a processor q means that processor p will be
executing new feature requests in the request queue exclusively on behalf of q.
This means that a request queue lock grants exclusive access to all the objects
handled by p. Transferring this insight to our abstractions, a lock on processor
p denotes exclusive access to the objects handled by p. We used the abstraction
in the beginning of the article, as it is easier to begin with. In the remaining
sections we will not make use of this abstraction anymore.

As stated earlier, there is only one processor that can execute features on a
particular object. As a consequence, any execution of a SCOOP program is free
ob low-level data races that occur when multiple processors access an attribute
of an object at the same time and there is at least one write access. Proposition
1 expresses this fact.

Proposition 1. A SCOOP system is free of low-level data races.

As mentioned, a request queue can only be accessed by a processor that is in
possession of the corresponding request queue lock. The execution of a feature
requires access to request queues of other processors. Therefore it is necessary
to obtain request queue locks prior to the execution of a feature so that these
request queues can be accessed during the execution. There might be more than
one processor whose current feature request requires a particular lock. This is
where the scheduler comes into place. The scheduler is the arbiter for feature
requests. More details on this will be given in section 5. The model permits a
number of possible scheduling algorithms. Scheduling algorithms differ in their
level of fairness and their performance. In this article we do not focus on a
particular instance. More information on particular scheduling algorithms can
be found in Nienaltowski’s dissertation [11].

Definition 4 (Scheduler). The scheduler is responsible for scheduling feature
applications.

Processors bring a new dimension to feature calls because feature calls can
either happen within one processor or from one processor to another. Thus fea-
ture calls can be separate or non-separate depending on the location of the client
and the target object.

8

Definition 5 (Separateness). Objects that are handled by different processors
are separate from each other. All the objects on the same processor are non-
separate from each other. A feature call is separate if and only if the target
and the client objects are separate. A references to a separate object is called a
separate reference.

4 Types

4.1 Definition

In SCOOP two objects are either separate or non-separate with respect to each
other. The separateness depends on the location of the two objects. Throughout
the following sections, the relative location of one object to another object will
be of importance. Thus there needs to be a way of computing this information.
SCOOP uses a refinement of the Eiffel type system to keep track of the relative
locations. The Eiffel type system is based on detachable tags and classes. The
detachable tag defines whether an entity is allowed to be void or not. In SCOOP
the detachable tag has an additional meaning. Section 5 will show that only
objects attached to attached entities will be locked. In order to argue about sep-
arateness the type system must accommodate the locality of objects in addition
to the existing type components. The following definitions refine the definitions
in section 8.11 of the Eiffel ECMA standard [4].

Definition 6 (Type). A type is represented as a triple T = (d, p, C) with the
following components:

– The component d is the detachable tag as described by definition 7.
– The component p is the processor tag as described by definition 8.
– The component C is the class type.

A type is always relative to the instance of the class where the type is declared.
An actual generic parameter is always relative to the instance of the class where
the corresponding formal generic parameter is declared.

Definition 7 (Detachable tag). The detachable tag d captures detachability
and selective locking.

– An entity can be of attached type, formally written as d = !. Entities of an
attached type are statically guaranteed to be non-void. Only request queues
of processors handling arguments of attachable type get locked.

– An entity can be of detachable type, formally written as d = ?. Entities of
detachable type can be void. Request queues of processors handling arguments
of detachable type do not get locked.

Definition 8 (Processor tag). The processor tag p captures the locality of
objects accessed by an entity of type T .

9

– The processor tag p can be separate, formally written as p = >. The object
attached to the entity of type T is potentially handled by a different processor
than the current processor.

– The processor tag p can be explicit, formally written as p = α. The object
attached to the entity of type T is handled by the processor specified by α.
Definition 9 shows how a processor can be specified explicitly.

– The processor tag p can be non-separate, formally written as p = •. The
object attached to the entity of type T is handled by the current processor.

– The processor tag p can denote no processor, formally written as p = ⊥. It
is used to type the void reference.

Note the difference between a separate type and a separate object. A separate
object is on a different processor. An entity of a separate type stores a potentially
separate object.

Definition 9 (Explicit processor specification). A processor can be speci-
fied explicitly either in an unqualified or a qualified way. An unqualified explicit
processor specification is based on a processor attribute p. The processor attribute
p must have the type (!, •,PROCESSOR) and it must be declared in the same
class as the explicit processor specification or in one of the ancestors. The pro-
cessor denoted by this explicit processor specification is the processor stored in p.
A qualified explicit processor specification relies on an entity e occurring in the
same class as the explicit processor specification or in one of the ancestors. The
entity e must be a non-writable entity of attached type and the type of e must
not have a qualified explicit processor tag. The processor denoted by this explicit
processor specification is the same processor as the one of the object referenced
by e.

Explicit processor tags support precise reasoning about object locality. Enti-
ties declared with the same processor tag represent objects handled by the same
processor. The type system takes advantage of this information to support safe
attachments and safe feature calls. A qualified explicit processor specification
can only be defined on a non-writable entity of attached type to facilitate static
type checking. Possibly void or writable entities would require an analysis of the
runtime behavior. This would make static type checking unfeasible. The type of
the entity e must not have a qualified explicit processor tag itself. This restriction
prevents dependency cycles among processor tags.

4.2 Syntax

SCOOP extends the Eiffel type syntax to incorporate the enhanced type defini-
tion.

Definition 10 (Type syntax).

t y p e ,
[d e t a c h a b l e t a g]

10

[separate] [e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n]
c lass name [a c t u a l g e n e r i c s]

d e t a c h a b l e t a g ,
attached | detachable

e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n ,
q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n |
u n q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n

q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n ,
”<” e n t i t y n a m e ”.” h a n d l e r ”>”

u n q u a l i f i e d e x p l i c i t p r o c e s s o r s p e c i f i c a t i o n ,
”<” e n t i t y n a m e ”>”

The absence of both the attached and detachable keyword implies an at-
tached type.

The SCOOP syntax change is minimal and ensures backward compatibility
to plain Eiffel programs. Definition 10 anticipates a change in the syntax of the
detachable tag which is not yet part of the Eiffel ECMA standard [4].

Example 1 (Type syntax). Listing 1.3 shows a couple of attributes along with
their types. The comments attached to the attributes explain what is meant by
the syntax.

Listing 1.3. type syntax example

a: BOOK −− (!, •,BOOK)
2 b: separate BOOK −− (!,>,BOOK)

c: separate <p> BOOK −− (!, p,BOOK)
4 d: attached BOOK −− (!, •,BOOK)

e: attached separate BOOK −− (!,>,BOOK)
6 f : attached separate <a.handler> BOOK −− (!, a.handler ,BOOK)

g: detachable BOOK −− (?, •,BOOK)
8 h: detachable separate BOOK −− (?,>,BOOK)

i : detachable separate <p> BOOK −− (?, p,BOOK)
10

p: PROCESSOR

4.3 Explicit and implicit types

Every entity has an explicit type. It is the type as written in the code. Thanks to
the qualified explicit processor specifications, every attached and non-writable

11

entity also has an implicit type. This is stated in definition 11. Current is one of
these attached and non-writable entities and consequently it has an implicit type.
The explicit type of Current is shown in definition 12. Definition 13 justifies
the processor tag ⊥. It is used to define the type of the void reference. Hereby,
the standard Eiffel class NONE is used as the class type, because it is at the
bottom of the class hierarchy.

Definition 11 (Implicit type). An attached non-writable entity e of type
(!, p, C) also has an implicit type (!, e.handler , C).

Definition 12 (Explicit type of the current object). In the context of a
class C, the current object has the type (!, •, C).

Definition 13 (Explicit type of the void reference). The void reference
has the type (?,⊥,NONE).

4.4 Expanded types

Every object is either of reference type or of expanded type. Instances of classes
annotated with the keyword expanded are objects of expanded type. Other
objects are of reference type. The difference between the two categories affects
the semantics of attachment. An attachment of an object of a reference type
to an entity stores the reference to the object in the entity. An attachment
of an object of expanded type copies the object and attaches it to the entity.
Section 7.4 of the Eiffel ECMA standard [4] explains this in more details. Due
to the copy semantics, an expanded object is never attached to more than one
entity and thus expanded objects do not get aliased. One can think of expanded
objects to be part of the object to which they are attached. Thus expanded
objects are defined to be non-separate. Furthermore, an entity of expanded type
never contains the void reference. Thus an expanded type is always an attached
type. This leads to the validity definition 14 for expanded types. Syntactically
this rule prohibits the use of separate annotations and the question mark as the
detachable tag.

Definition 14 (Expanded type validity). A type T based on an expanded
class E is valid if an only if it is attached and non-separate, i.e. T = (!, •, E).

4.5 Formal generic parameters

Formal generic parameters are type parameters for generic classes. A generic
derivation must be used to get a type from a generic class. In a generic deriva-
tion each formal generic parameter must be substituted by a type, which is the
actual generic parameter. Optionally, every formal generic parameter can have a
constraint on the actual generic parameter used in the generic derivation. Such a
constraint allows the generic class to make assumptions on a formal generic pa-
rameter. An implicit generic constraint is used if no explicit constraint is given.
In the presence of the new type system the implicit constraint as described in

12

section 8.12.7 of the Eiffel ECMA standard [4] must be generalized. For compat-
ibility with the existing rule the implicit constraint must be attached and have
the class type ANY. The class ANY is the root class in the Eiffel class hierarchy.
An implicit type should be as general as possible. The separate processor tag is
most general and thus definition 15 makes use of it.

Definition 15 (Implicit formal generic parameter constraint). The con-
straint of a formal generic parameter is the explicit constraint if present. Other-
wise the implicit constraint is (!,>,ANY).

4.6 Soundness

SCOOP extends the Eiffel type system with information about object locality.
This information can be used to determine whether an object is separate or
non-separate. To be sound, the type system must ensure that this information
is accurate at all times for all entities. In conjunction with the justifications of
the rules and mechanisms, the following sections provide arguments on why the
type system is sound. One component of soundness is the absence of traitors
as defined in definition 16. However, the absence of traitors does not imply full
soundness. Soundness must also be guaranteed for types with explicit processor
specifications.

Definition 16 (Traitor). A traitor is an entity declared as non-separate but
pointing to a separate object.

We defer a full soundness proof to later work as described in section 14.

5 Feature call and feature application

A processor p can call features on objects that are either handled by p or by
another processor q. A non-separate call is executed by p itself. For a separate
call, processor p needs to ask processor q to execute the feature. In this section
we will take a closer look at the steps involved in a feature call and in the
subsequent execution, which we call the feature application. As we will see, a
separate call can be asynchronous, but a non-separate call is always synchronous.
Every feature call happens in the context of a feature application. For this reason
we will start with the description of the feature application and then describe
the feature call. In the end we will present an example to illustrate once again
how the two concepts work together. In terms of contracts, this section only
describes the runtime aspects of contracts. A more detailed picture will be given
in section 7. The definitions presented in this section generalize the definitions
in section 8.23 of the Eiffel ECMA standard [4].

13

5.1 Feature application

We start in a situation where a processor p wants to apply a feature request f
on a target x. The execution of f will require a number of request queue locks.
Furthermore, the precondition of f must be satisfied before f can be executed.
These two prerequisites are established in the synchronization step. This step
involves the scheduler. Processor p will wait until the scheduler gives the green
light and then execute f . After the execution, the postcondition must be checked.
If f is a query then the result must be returned. Finally the obtained request
queue locks must be released. Definition 17 captures these steps.

Definition 17 (Feature application). The application of feature f on target
x, requested by a client processor pc, results in the following sequence of actions
performed by the supplier processor px:

1. Synchronization: Involve the scheduler to wait until the following synchro-
nization conditions are satisfied atomically:
– All the request queues of processors that handle arguments of an attached

type in f are locked on behalf of px.
– The precondition of f holds.

2. Execution
– If f is a routine then run its body.
– If f is an attribute then evaluate it.

3. Postcondition evaluation: Every query in the postcondition must be evaluated
by its target handler. The result must be combined by px if it is involved in
the postcondition. Otherwise any involved processor may be used.

4. Result returning: If f is a query then return the result to pc. Results of
expanded type need to be imported by the client handler pc.

5. Lock releasing: Add an unlock operation to the end of each request queue that
has been locked in the synchronization step.

Synchronization Before a feature can be applied there are some synchroniza-
tion constraints to be fulfilled. First, the supplier processor must have atomically
acquired all the required request queue locks. The formal argument list of f in-
dicates which request queues must be locked. If a formal argument is declared
as attached then the corresponding request queue gets locked. If a formal argu-
ment is declared as detachable then the corresponding request queue does not
get locked. Note that the feature call rule in definition 22 will show that px could
already have some locks through a chain of lock passing operations. It is not nec-
essary to reacquire these locks. The selective locking mechanism has advantages
over an eager locking mechanism where all the request queues get locked. The
likelihood of deadlocks is decreased thanks to fewer locks. Selective locking sup-
ports a precise specification of resources needed by a routine and it makes it
possible to pass an argument without locking the corresponding request queue.
There is a reason why the detachable tag is used to encode selective locking.
Assuming a formal argument would be detached then it is not clear how locking

14

should be defined on a detached formal argument. Thus it makes sense to restrict
locking to attached formal arguments. This leads to the generalized semantics of
the detachable tag. As a second synchronization constraint, the precondition of f
must hold. Note that if f is a routine that was called in qualified way and not as
a creation procedure then the invariant is part of the precondition, as described
in section 8.9.26 of the Eiffel ECMA standard [4]. A violated precondition clause
can either cause an exception or it can lead to waiting. Section 7 will show that
only unsatisfied controlled precondition clauses cause an exception.

Locking before executing ensures that processor px can access the locked re-
quest queues without interference caused by other processors. Thus processor px
can make separate calls without interference as long as all calls are on objects
handled by the corresponding processors. There is the assumption that each call
stack lock of the argument processors is either in possession of its own processor
or in possession of px. We will see later why this assumption is always given as
we take a look at lock passing. Non-separate calls can also be executed without
interference. As we will see, a non-separate call is handled over the call stack of
px and does not involve the request queue of px. A new feature request is simply
added to the top of the call stack. No other processor can interfere in this pro-
cess. In conclusion, there are a number of safe targets which we call controlled.
For safety reasons we only allow these targets in feature calls. Definitions 18 and
19 capture this restriction in terms of the type system.

Definition 18 (Controlled expression). An expression exp of type Texp =
(d, p, C) is controlled if and only if exp is attached, i.e. d = !, and exp satisfies
at least one of the following conditions:

– The expression exp is non separate, i.e. p = •.
– The expression exp appears in a routine r that has an attached formal argu-

ment farg with the same handler as exp, i.e. p = farg .handler.

The second condition of definition 18 is satisfied if and only if at least one of
the following conditions is true:

– The expression exp appears as an attached formal argument of r.
– The expression exp has a qualified explicit processor specification farg .handler

and farg is an attached formal argument of r.
– The expression exp has an unqualified explicit processor specification p, and

some attached formal argument of r has p as its unqualified explicit processor
specification.

Definition 19 (Valid target). Call exp.f(a) appearing in class C is valid if
and only if the following conditions hold:

– The expression exp is controlled.
– The expression exp’s base class has a feature f exported to C, and the actual

arguments a conform in number and type to the formal arguments of f .

15

Definitions 18 and 19 apply to invariants, preconditions, postconditions and
the routine bodies of a class. In case of an invariant, there is no enclosing routine.
Thus an invariant can only contain non-separate calls. As a further consequence
of definition 19. calls on void targets are prohibited. The call validity rule in
definition 19 replaces the validity rule in section 8.23.9 of the Eiffel ECMA
standard [4]. With this approach some safe feature calls are rejected. Such a
situation can occur if there is a feature call on a uncontrolled separate expression
to which a non-separate object is attached. In section 11 we will refer to this
object as a false traitor.

Example 2 (Valid targets). Listing 1.4 shows a feature print book. This feature
makes a copy of the book and notifies the author of the book.

Listing 1.4. printer class

class PRINTER feature
2 print book (a book: separate BOOK)

−− Print ’a book’.
4 do

a book.copy
6 a book.author.notify

end
8 end

10 class BOOK feature
author: AUTHOR −− The author of this book.

12 initial price: INTEGER −− The price as initially recommended.
is clean: BOOLEAN −− Is this book clean?

14
copy

16 −− Copy this book.
do

18 ...
ensure

20 this book is not clean: not is clean
end

22
clean

24 −− Clean this book.
require

26 this book is not clean: not is clean
do

28 ...
ensure

30 this book is clean: is clean
end

16

32 end

The author is accessible through a non-separate attribute in the book class.
Therefore the author and its book are on the same processor. In this example
we want to see whether the two calls a book.print and a book.author.notify are
valid according to definition 19. For this, we have to apply definition 18 to the
two expressions a book and a book.author. The expression a book is an attached
formal argument and therefore it is controlled. The explicit type of a book is
(!,>,BOOK). Judging from this, a book is attached. In addition, a book is non-
writable because it is a formal argument. We can therefore use definition 11 to
derive the implicit type (!, a book .handler ,BOOK). We will now use this implicit
type to derive the type of the expression a book.author. We noted that the author
and the book must be on the same processor. This means that we can use the
book’s processor tag for the author. The result type combiner in definition 27
will state this more clearly. With the implicit type of a book the type of the
expression a book.author becomes (!, a book .handler ,AUTHOR). In conclusion
the expression a book.author has a qualified explicit processor tag that is related
to the attached formal argument a book. Therefore the expression is controlled.
We can conclude that all targets are valid.

We already argued that any execution of a SCOOP program is free of low-
level data races. Next to low-level data races there are high-level data races. They
occur if multiple processors access a set of objects in a non-atomic way, i.e. in an
interleaved manner, and there is at least one write access. As a consequence of
the synchronization step in the feature application rule in definition 17 and the
valid call rule in definition 19, a SCOOP system is free of high-level data races
by design as stated by proposition 2.

Proposition 2. A SCOOP system is free of high-level data races.

Postcondition evaluation The postcondition of the feature must be executed
and checked. Note that if f is a routine that was called in qualified way or if f
was called as a creation procedure then the invariant is part of this postcondi-
tion, as described in section 8.9.26 of the Eiffel ECMA standard [4]. There is one
obvious way to evaluate the postcondition. Every processor that handles one or
more targets in the postcondition evaluates its share of the postcondition while
processor px is waiting for the results to come back. Once all the results have
been gathered, processor px can determine whether the postcondition holds or
not. However, this approach introduces sequentiality because px must wait for
the query evaluations to finish. It turns out that px does not need to wait if none
of its objects is used as a target in the postcondition. Any involved processor
will do.

In any case, processor px gets the guarantee that the postcondition will be sat-
isfied eventually. More precisely, it will be satisfied when the execution of the

17

features called within f terminated. The last set of feature requests on any post-
condition target will be the ones coming from the postcondition evaluation. Thus
the postcondition gets evaluated at the right time just after all the feature called
within f have terminated. Further feature request on the postcondition targets,
issued after the execution of f , will only be applied after the postcondition has
been evaluated. The postcondition might not hold right after the execution of f ;
but it will will hold when it becomes relevant, just before other feature request
can be issued on the postcondition targets.

A postcondition evaluation can result in a violated postcondition. Such a state
will trigger an exception in the supplier processor.

Result returning We consider a situation where f returns an expanded ob-
ject. The copy semantics of expanded objects could mislead to return a shallow
copy from px to pc. This is not a good idea. If the result object on px has an
attached non-separate entity then the copied object on pc has a non-separate
entity to which a separate object on px is attached. We would have introduced a
traitor. We introduce the import operation as defined in definition 20 to return
an expanded object without this issue.

Definition 20 (Import operation). The import operation executed by a pro-
cessor p and applied to an object o on a different processor q involves the following
sequence of actions:

1. Make a copy of o called o′.
2. Make a copy of all the non-copied objects that are reachable from o through

non-separate references.
3. For every non-separate once function f of every copied object the following

actions must be done:
(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh

on p and the value of f on q must be used as the value of f on p.
(b) If f is fresh on p and fresh on q then f remains fresh on p.
(c) If f is non-fresh on p then f remains non-fresh on p and the result of f

on p remains the same.
4. For every once procedure f of every copied object the following actions must

be done:
(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh

on p.
(b) If f is non-fresh on p then f remains non-fresh on p.

5. Rewire the copied object structure in such a way that it mirrors the original
object structure. Separate entities do not need to be altered in the copied
object structure as they can still point to the original separate objects.

6. Put the copied object structure on p.

Objects reachable through separate references do not need to be copied as
their entities are already equipped with the right type with respect to p. Once

18

functions with a non-separate result type complicate the import operation a
bit. As it will be formulated later in definition 37, such a function f must be
evaluated at most once on a given processor p and all the objects on p with f
must share the result. We need to be careful in a situation where we import an
object with a function f that has already been evaluated on processor q and on
processor p. We cannot have two different values for the same once function on
the same processor. Definition 20 takes care of issues of this kind. Similarly, it
takes care of once procedures; they have a once per processor semantics as well.
The terminology on freshness has been taken from section 8.23.20 of the ECMA
standard [4]. A once routine is called fresh on a particular processor if and only
if it has never been executed on any object handled by this processor. Otherwise
the once routine is called non-fresh.

Example 3 (Import operation). Figure 1 shows the objects o, a, b and c forming
an object structure. The objects o and a are on the same processor. The objects
b and c are on separate processors. The result of the import operation applied
to the object o by a processor p different than the handler of o is shown in the
lower half of figure 1. Objects o results in a copied object o′ on p. Because object
a is non-separate with respect to o, processor p receives a copied object a′ as
well. The objects b and c do not need to be copied. They can be shared by both
object structures as they were separate.

Fig. 1. import operation example object diagram

The import operation computes the non-separate version of an object struc-
ture. It potentially results in a copied object structure that contains both copied
and original objects. This can be an issue in case one of the copied objects has
an invariant over the identities of objects as example 4 shows.

Example 4 (Invariant violation as a result of the import operation). Imagine
two objects x and y on one processor and another object z on another processor.
Object x has a separate reference a to z and a non-separate reference b to y.

19

Object z has a separate reference c to y. Object x has an invariant with a query
a.c = b. An import operation on x executed by a third processor will result in
two new objects x′ and y′ on the third processor. The reference a of object x′ will
point to the original z. The reference b of object x′ will point to the new object
y′. Now object x′ is inconsistent, because a.c and b identify different objects,
namely y and y′.

The deep import operation is a variant of the import operation that does
not mix the copied and the original objects. The drawback of the deep import
operation is the increased overhead.

Definition 21 (Deep import operation). The deep import operation exe-
cuted by a processor p and applied to an object o on a different processor involves
the following sequence of actions:

1. Make a copy of o called o′.

2. Make a copy ons′ of all the non-copied objects that are reachable from o
through non-separate references.

3. Make a copy os′ of all the non-copied objects that are reachable from o through
separate references.

4. For every non-separate once function f of every copied object the following
actions must be done:

(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh
on p and the value of f on q must be used as the value of f on p.

(b) If f is fresh on p and fresh on q then f remains fresh on p.

(c) If f is non-fresh on p then f remains non-fresh on p and the result of f
on p remains the same.

5. For every once procedure f of every copied object the following actions must
be done:

(a) If f is fresh on p and non-fresh on q then f must be marked as non-fresh
on p.

(b) If f is non-fresh on p then f remains non-fresh on p.

6. Rewire the copied object structure in such a way that it mirrors the original
object structure.

7. Put the copied object o′ and the non-separate copied object structure ons′ on
p.

8. Put each copied object in the separate copied object structure os′ on the pro-
cessor of the respective original object.

Example 5 (Deep import operation). Figure 2 shows the objects o, a, b and c
forming an object structure. The objects o and a are on the same processor.
The objects b and c are on separate processors. The result of the deep import
operation applied on the object o by a processor p different than the handler of
o is shown on the lower half of the figure. All the objects involved in the object
structure got copied.

20

Fig. 2. deep import operation example object diagram

Lock releasing After the execution of f , processor px does not require the
request queue locks anymore. At this point the request queue locks might still
contain feature requests from px. However, there are no more new feature re-
quest because the execution of f is over. Therefore px can release the locks. For
this, processor px does not wait until all the features requests triggered in the
execution of f finished. Instead, it appends an unlock operation to each locked
request queue. As a result, different request queues may become unlocked at
different times after they are done with all the feature requests. Next to an in-
crease in parallelism, asynchronous unlocking permits safe realization of certain
synchronization scenarios that would lead to deadlocks otherwise.

5.2 Feature call

So far we studied the context in which a feature call can occur. A feature call
results in the generation of feature request by the client processor on a poten-
tially different supplier processor. The feature request gets executed eventually
by the supplier processor. Note the change of roles. A supplier processor becomes
a client processor when the supplier processor makes a call.

The calling processor has a number of locks to ensure exclusive access. The
client processor might be in possession of some locks that are necessary in the
synchronization step of the resulting feature request on the supplier processor.
In such a situation, the client processor can temporarily pass its locks to the
supplier processor. This step is called lock passing and it happens right after ar-
gument passing. Once these two steps completed, the client processor can place
its feature request. If the called feature is a query then the client processor must
wait for the result. Before the feature call can be completed, the client processor
must revoke the passed locks. Definition 22 explains these steps in more details.

Definition 22 (Feature call). A feature call x.f(a) results in the following
sequence of actions performed by the client processor pc:

21

1. Argument passing:

– Attach the actual arguments a to the formal arguments of f .
– Arguments of expanded type need to be imported by the supplier processor
px.

2. Lock passing:

– Full lock passing: If any controlled actual argument of a reference type
gets attached to an attached formal argument of f then pass all the cur-
rently held request queue locks and call stack locks to px.

– Call stack locks passing: In case there are no such arguments and there
is a separate callback, i.e. px already had a request queue lock on pc at
the moment of the call then pass the call stack locks to px.

3. Feature request: Ask px to apply f to x.

– Schedule f for an immediate execution by px using the call stack of px
and wait until it terminates, if any of the following conditions hold:
• The feature call is non-separate, i.e. pc = px.
• The feature call is a separate callback.

– Otherwise, schedule f to execute after the previous calls on px using the
request queue of px.

4. Wait by necessity: If f is a query then wait for its result.
5. Lock revocation: If lock passing happened then wait for f to terminate and

revoke the locks.

Lock passing, feature request, and lock revocation Deadlock avoidance
is the motivation behind lock passing. Without lock passing, it is very easy to
get into a deadlock. Suppose that processor px needs a particular lock in the
application of feature f . If this lock is in possession of processor pc then px can-
not proceed until pc releases this lock. If f happens to be a query then pc has
to wait for the result of f while pc is holding on to the lock. According to the
conditions given by Coffman et al [3] a deadlock occurred. If the client processor
pc could temporarily pass on the lock to px then px would be able to apply the
requested feature, return the result, and let pc continue. We call this solution
full lock passing.

Full lock passing includes passing the request queue locks and the call stack
locks. It happens if any controlled actual argument of a reference type gets at-
tached to an attached formal argument of f . An attached formal argument means
that the request queue will be locked in the synchronization step of f ’s applica-
tion. A controlled actual argument means that pc has a request queue lock on
the handler of the actual argument. In short, pc has a lock required by px. Full
lock passing is only relevant for arguments of a reference type. Arguments of ex-
panded type will be copied using the import operation during argument passing.

If full lock passing happens then pc passes all its locks to px and not only the
locks that triggered the lock passing mechanism. This generous behavior elimi-
nates more potential deadlocks compared to a solution where only a subset of the

22

locks gets passed. As soon as at least one lock gets passed, processor pc cannot
proceed until it can revoke the locks after the feature f terminated. Otherwise
the atomicity guarantees expressed by proposition 2 could be violated due to
two processor who could potentially be working on the same set of objects. As
pc has to wait in any case that involves lock passing, it does not hurt to pass all
the locks and not just a subset.

A feature call results in a feature request. The client processor pc generates
a feature request to be handled by the supplier processor px. The feature re-
quest could either go to the end of the request queue or on top of the call stack
of processor px. If the two processors are the same then the call is non-separate
and f must be applied immediately. This is the sequential case. The request
queue is irrelevant for this and only the call stack is involved. There is another,
more special case, where feature f must be applied immediately. A separate
callback occurs when the supplier processor px already held a lock on the client
processor pc at the moment of the feature call to f . This can happen in the
following situation: We assume px initiated a chain of feature calls involving
full lock passing. At the end of this chain processor pc executes the feature call
x.f(a). Processor px is responsible for the application of this call. At this point
processor px is waiting until its feature call terminates to revoke the locks. We
assume the feature call f involves lock passing as well. In this situation pc will
wait for the feature call f to terminate. If the feature call f gets added to the
end of the request queue of px then the system ends up in a deadlock. Processor
pc would be waiting for processor px to finish the feature application x.f(a). But
processor px would never get to this point because it would still be waiting for
its locks to come back. Immediate execution is the way out of this. The feature
f must be applied immediately using the call stack of px. At the moment of
a separate callback the processor pc is in possession of the call stack lock on
px, because px passed its locks. However, px will require this lock during its
own execution. Therefore pc must temporarily pass back its call stack locks to
px and wait for the locks to return. Again, it does not hurt to pass back all
call stack locks instead of just one. In the remaining case the call is a normal
separate call. The feature request gets added to the end of the request queue of
processor px. The processor loop described in definition 3 will put the feature re-
quest on top of the call stack as soon as all previous feature requests terminated.

Note that it is not possible to lock a request queue of a processor p that is
not in possession of its own call stack lock. We assume p is not in possession
of its own call stack lock. This is only possible if p passed its locks in a feature
call. This means that p is currently applying a feature and waiting for the locks
to return. While p is applying a feature, its request queue is locked. Therefore
it is not possible to lock the request queue of p. If a processor q has a request
queue lock on p then there are two options. Processor q could have acquired the
request queue lock in the synchronization step and therefore p is in possession
of its call stack lock. The request queue lock on p could also have been passed to

23

q. This means that some processor must have acquired the request queue lock
on p. The only way how p could have lost its call stack lock is a chain of lock
passing operation where processor p is involved. In this case p would have passed
on its call stack lock to processor q.

Wait by necessity Next to lock passing, there is another situation where pc
has to wait for px to finish its feature application of f . If f is a query then the
subsequent statements after the call to f potentially depend on the result of the
query. Thus processor pc needs to wait for the query to terminate before it can
proceed. This scheme is called wait by necessity.

5.3 Lock revocation

After the feature f terminated, the locks of px and pc must be restored to the
state before lock passing happened.

Valid assumptions after a feature call Processor pc can be assured that
every future feature call on a target mentioned in the postcondition of f will be
applied after all the feature requests resulting from the application of f . This
includes the feature requests resulting from a postcondition evaluation. This is
ensured by the synchronization step in the application of f .

Example 6 (Feature calls and feature applications). Consider the feature sell book
in listing 1.5.

Listing 1.5. seller class

class SELLER feature
2 sell book (a book: separate BOOK; a buyer: separate BUYER; a valuer:

separate VALUER)
−− Sell ’a book’ to ’a buyer’ after asking ’a valuer’ for the price.

4 local
l estimated price: INTEGER

6 do
a book.clean

8 l estimated price := a valuer.estimate (a book)
a buyer.buy (a book, l estimated price)

10 end
end

12
class VALUER feature

14 estimate (a book: separate BOOK): INTEGER
−− The estimated price of ’a book’.

16 do
Result := f (a book.initial price)

24

18 end
end

We use the following notation to describe a processor p with a request queue
rq, request queue locks rql, and call stack locks csl: p :: rq, rql, csl. We start
from a point where the request queue of the current processor pc contains the
feature sell book.

pc :: (Current.sell book (a book, a buyer, a valuer)), (), (pc)
pbook :: (), (), (pbook)
pvaluer :: (), (), (pvaluer)

As a first step, pc removes the feature sell book from its request queue and puts
it on its call stack as described in definition 3. Next pc starts with the feature
application according to definition 17. As there is no precondition, processor pc
asks the scheduler to get the request queue locks on the handlers pbook , pbuyer ,
and pvaluer . We assume that each of these handlers are different from each other.
Eventually these locks are available and pc can execute the body of sell book.
Note that sell book is now on the call stack and not in the request queue anymore.

pc :: (), (pbook , pbuyer , pvaluer), (pc)
pbook :: (), (), (pbook)
pvaluer :: (), (), (pvaluer)

The body has three feature calls. Their semantics is described in definition 22.
The treatment of a book.clean is easy. There are no arguments to be passed. The
feature request step results in the following situation:

pc :: (), (pbook , pbuyer , pvaluer), (pc)
pbook :: (a book.clean), (), (pbook)
pvaluer :: (), (), (pvaluer)

The remaining two steps of a feature call do not apply here. The treatment of
a valuer.estimate (a book) is more complex as it involves lock passing. According
to definition 18 the expression a book is controlled in the feature sell book. The
expression is used as an actual argument of reference type in the call. The cor-
responding formal argument is attached. We just encountered a situation where
the caller has a request queue lock which is necessary in the execution of the
supplier. Lock passing and the addition of a feature request result in the follow-
ing situation:

pc :: (), (), ()
pbook :: (a book.clean), (), (pbook)
pvaluer :: (a valuer.estimate (a book)), (pbook , pbuyer , pvaluer), (pvaluer , pc)

25

Note that the call stack lock of pc gets passed to give pvaluer a chance to handle
a separate callback. In the current example we do not make use of this. At this
point processor pc has to wait until the locks can be revoked. While pc is waiting,
processors pbook and pvaluer proceed in parallel. They can dequeue a feature from
the beginning of their request queues, put it on their call stacks, and apply the
features.

pc :: (), (), ()
pbook :: (), (), (pbook)
pvaluer :: (), (pbook , pbuyer , pvaluer), (pvaluer , pc)

At this point pc can retrieve the result, revoke the locks and do the assign-
ment.

pc :: (), (pbook , pbuyer , pvaluer), (pc)
pbook :: (), (), (pbook)
pvaluer :: (), (), (pvaluer)

The last instruction a buyer.buy (a book, l estimated price) triggers another pass-
ing of locks. Here, processor pc will have to wait due to the passed locks, even
though the instruction itself does not impose wait by necessity. Last but not
least, pc will add unlock operations to the end of the request queues of pbook ,
pbuyer , and pvaluer .

6 Object creation

Constructing objects is more complicated in SCOOP than in Eiffel because an
object needs to be created on a processor. Definition 23 refines the definitions
in section 8.20 of the Eiffel ECMA standard [4].

Definition 23 (Object creation). A creation call x.cp(a) on the target x of
type (d, p, C) and with the creation procedure cp results in the following sequence
of actions performed by the client processor pc:

1. Processor creation

– If x is separate, i.e. p = >, then create a new processor px.
– If x has an explicit processor specification, i.e. p = α, then

• if the processor denoted by p already exists then take px = pp.
• if the processor denoted by p does not exist yet then create a new

processor px.

– If x is non-separate, i.e. p = •, then take px = pc.

2. Locking: If px 6= pc and pc does not have a request queue lock on px yet then
lock the request queue of px.

3. Object creation: Ask px to create a fresh instance of C using the creation
procedure cp. Attach the newly created object to x.

26

4. Lock releasing: Add an unlock operation to the request queue of px if a lock
has been obtained earlier.

The type of an entity specifies the locality of the attached object. When an
entity is used as the target of a creation routine then the new object must be
handled by a compatible processor. In some cases such a processor might al-
ready exist in other cases a compatible processor must be created. If p = • then
the new object must be created on the current processor. If p = > then any
processor could be taken. To exploit parallelism, a new processor gets created.
An explicit processor specification specifies a particular processor. If the explicit
processor specification is qualified then the specified processor exist already be-
cause there is an attached entity whose object is handled by this processor. For
an unqualified explicit processor specification it might be necessary to create a
new processor if this did not happen already.

After the new object got created there needs to be a call to the creation routine.
This call is handled like a feature call as described in definition 22. If the call to
the creation routine is separate and pc does not have the request queue lock on
px then it is necessary to acquire a request queue lock on px before the call. The
lock must be released after the call. The new object gets attached to the entity
x as soon as the object is created but without waiting for the creation procedure
to be applied. This means that x points to a potentially inconsistent object until
the creation procedure terminates. However, this is not harmful because new
feature requests will be added after the feature request for the creation routine.

Example 7 (Object creation). Feature initialize in listing 1.6 shows four creation
instructions for four different books. In this example we will go through this list
and explain what will happen at runtime.

Listing 1.6. book collection class

class BOOK COLLECTION feature
2 hamlet: HAMLET −− Hamlet.

robinson: separate ROBINSON −− Robinson.
4 cinderella: separate <p> CINDERELLA − Cinderella.

tarzan: separate <p> TARZAN −− Tarzan.
6

p: PROCESSOR
8

initialize
10 −− Initialize this book collection.

do
12 create hamlet

create robinson
14 create cinderella

create tarzan
16 end

27

end
18

class HAMLET inherit BOOK end
20 class ROBINSON inherit BOOK end

class CINDERELLA inherit BOOK end
22 class TARZAN inherit BOOK end

The first instruction creates a book and stores it in hamlet. The type of this
entity is non-separate. Thus Hamlet will be created on the current processor.
The second instruction creates the book called Robinson. The type of the entity
is separate and thus a new processor must be created and used as the handler
of the new book. The third instruction creates another classic called Cinderella.
The type separate <p> CINDERELLA has an unqualified explicit processor
specification. We assume that the specified processor has not been created before.
Under this assumption, the processor must be created and used as the handler
of the new book. In the last instruction the book called Tarzan gets created. The
type of the target separate <p> TARZAN has an unqualified explicit processor
specification that specifies the same processor as the entity cinderella. Based on
the previous instruction it is clear that this processor already exists. Thus there
is no need to create a new processor. The books Cinderella and Tarzan are
handled by the same processor.

7 Contracts

Design by Contract [8] introduces a new paradigm in object-oriented program-
ming. The use of contracts imposes a crucial reduction of complexities in object-
oriented development, in particular when it comes to correctness reasoning. By
enriching class interfaces with contracts each class implementation can be veri-
fied and proven correct separately. Contracts typically consist of preconditions
and postconditions for features and invariants on a class level. These contracts
result in mutual obligations of clients and suppliers. In the context of classes
enriched with contracts, the principle called separation of concerns gains in im-
portance because the client can rely on the interface of the supplier without the
need to know its implementation details. Eiffel supports contracts in the form of
assertions being checked at runtime. Sections 7.5 and 8.9 from the Eiffel stan-
dard [4] provide more details on contracts in Eiffel.

Unfortunately the traditional interpretation of contracts breaks down in the
context of concurrency. In concurrent programs a client calling a feature of a
class generally cannot establish the precondition of the feature any more. The
reason is that in general feature calls are asynchronous and the point in time
of the feature call and the moment of the actual execution of the feature body
do not coincide, as it is the case in a sequential program. Thus the objects in-
volved in the precondition may be changed in between by feature calls from
other clients. This results in the situation where the precondition that was satis-

28

fied at the moment of the call is violated at the moment of execution. Similarly,
postconditions cannot be interpreted as full guarantees any more.

SCOOP introduces a new approach to a uniform and clear semantics of con-
tracts in a concurrent context. Thus SCOOP generalizes the principles of Design
by Contract, and additionally fosters the use of modular proof techniques. The
advantage of the proposed semantics of contracts is that it applies equally well
in concurrent and sequential contexts. Following the idea of Eiffel, contracts in
SCOOP are formulated as assertions directly written into the code and evalu-
ated during runtime. If an assertion is evaluated and it is not satisfied, then an
exception is raised. For preconditions this rule must be carefully revisited due to
the observation made above that it may happen that a caller (from a different
handler than the target object’s handler) cannot be held responsible for estab-
lishing the whole assertion of the feature. These considerations result in a refined
rule saying that a violated precondition clause that is not under the control of
the caller does not lead to an exception - instead the feature call is queued for a
later application. Similarly, the semantics of postconditions are adapted to the
concurrent context.

7.1 Controlled and uncontrolled assertion clauses

Following the new generalized semantics of contracts proposed by [11], the han-
dling of a feature call strongly depends on the controllability of the involved
assertion clauses. The notion of controlled and uncontrolled assertion clauses in-
troduced in the following essentially captures the idea of controlled expressions
(definition 18): An assertion clause is called controlled with respect to the cur-
rent context if all involved objects are under the control and cannot be modified
by other processors. Otherwise the assertion clause is called uncontrolled.

Definition 24 (Controlled assertion clause). For a client performing the
call x.f(a) in the context of a routine r, a precondition clause or a postcondi-
tion clause of f is controlled if and only if, after the substitution of the actual
arguments a for the formal arguments, it only involves calls on entities that are
controlled in the context of r. Otherwise, it is uncontrolled.

Example 8 (Controlled and uncontrolled precondition clauses). We illustrate the
difference between controlled and uncontrolled precondition clauses by the ex-
ample shown in listing 1.7.

Listing 1.7. cleaner class

class CLEANER feature
2 manual: BOOK −− The cleaning manual.

4 clean (a book: separate BOOK)
−− Clean ’a book’.

29

6 require
a book is not clean: not a book.is clean

8 do
a book.clean

10 end
end

12
class CLEAN BOOK COLLECTION inherit BOOK COLLECTION feature

14 clean all (a cleaner: separate CLEANER; a extra book: separate BOOK)
−− Clean all available books.

16 require
...

18 do
−− Clean all books in the collection.

20 a cleaner.clean (robinson) −− a book is not clean uncontrolled
a cleaner.clean (hamlet) −− a book is not clean controlled

22 ...
−− Clean additional books.

24 a cleaner.clean (a extra book) −− a book is not clean controlled
a cleaner.clean (a cleaner.manual) −− a book is not clean controlled

26 end
end

We consider a client calling the feature clean all. In the body of clean all, the
precondition a book is not clean of the feature call a cleaner.clean (robinson) is
uncontrolled since robinson is not controlled in the context of clean all; robinson
is declared as a potentially separate object whose processor’s request queue is
not locked in clean all. On the other hand, a book is not clean is controlled in
the three remaining calls to clean because the targets of the call to is clean in the
precondition are controlled in clean all. The expression hamlet is non-separate
hence controlled. The expression a extra book is separate but it is a formal ar-
gument of clean all. Therefore it also controlled. Finally, a cleaner.manual is
separate in the context of clean all, but it is non-separate from a cleaner and
a cleaner is controlled hence a cleaner.manual is controlled too.

Remark 1. The notion of an assertion clause originates in section 8.9 of the Eiffel
ECMA standard [4].

7.2 Semantics of contracts

In the following we will precisely describe how contracts given by invariants,
preconditions and postconditions are interpreted during runtime of a SCOOP
program.

Semantics of preconditions In concurrent programs the usual correctness
semantics of preconditions does not fit anymore because in general the client

30

cannot guarantee that the precondition will hold at the moment of the feature
application. This inconsistency in the standard interpretation of preconditions
in the concurrent context is called separate precondition paradox in [11]. This
suggests the wait semantics for preconditions involving separate clauses. If the
precondition is violated only due to violated uncontrolled precondition clauses,
the feature application has to be delayed until the precondition clauses holds.
On the other hand, a violated controlled precondition clause has to be blamed
on the client because no other processor than the client’s processor could have
accessed the objects occurring in a controlled precondition clause. For such a
case an exception needs to be raised in the client. Asynchronous Exceptions
raise some problems; this is discussed in section 14.

Example 9 (Precondition semantics). We consider class READING LIST in list-
ing 1.8. It used a bounded buffer to maintain books to be read.

Listing 1.8. reading list class

class READING LIST inherit BOOK COLLECTION feature
2 bestsellers: separate BUFFER[separate BOOK] −− The bestsellers.

favorites: BUFFER[separate BOOK] −− The favorites.
4

store (a book list: separate BUFFER[separate BOOK]; a book: BOOK)
6 −− Store ’a book’ in ’a book list’.

require
8 a book list is not full: not a book list.is full

a book is clean: a book.is clean
10 do

a book list.put (a book)
12 ensure

a book list is not empty: not a book list.is empty
14 end

16 get (a book list: separate BUFFER[separate BOOK]): separate BOOK
−− Remove a book from ’a book list’.

18 require
a book list is not empty: not a book list.is empty

20 do
Result := a book list.get

22 end

24 add hamlet to all (a extra book list: separate BUFFER[separate BOOK])
−− Add Hamlet to all book lists including ’a extra book list’.

26 require
...

28 do
store (a extra book list, hamlet)

31

30 store (bestsellers, hamlet)
store (favorites, hamlet)

32 end
end

The feature store has as formal arguments a book list and a book; when ap-
plied it puts the book into the book list. The precondition of that feature requires
that the book list is not full and moreover, that the book is clean. The latter
is always a correctness condition since waiting is meaningless if the book is not
clean. However, the semantics of the former precondition depends on the local-
ity of the actual arguments. This is illustrated by the feature add hamlet to all,
where there are three feature calls to store. For the first call the precondition
a book list is not full is a correctness condition since a extra book list is con-
trolled and hence the precondition clause is controlled. For the second call the
precondition is a waiting condition since bestsellers is uncontrolled. Finally, for
the third call the precondition is a correctness condition since favorites is a non-
separate attribute of the class and hence a book list is not full is controlled as
well.

Definition 25 (Precondition semantics). A precondition expresses the nec-
essary requirements for a correct application of the feature. The execution of the
feature’s body is delayed until the uncontrolled precondition clauses are satisfied.
A violated controlled precondition clause immediately marks the precondition as
violated.

The generalized semantics proposed in [11, 12] comprises both interpretations
of precondition clauses. As seen in the example, they can be correctness condi-
tions or wait conditions. Correctness conditions only apply to those clauses that
are controlled by the client: the client can ensure that the precondition clause
hold at the moment of the feature application. The uncontrolled precondition
clauses cannot be established by the client, i.e., the client cannot take the re-
sponsibility for satisfying them at the moment of the feature application. For
this reason wait semantics are applied in this case. Note that waiting always hap-
pens at the supplier side. Wait conditions can be used to synchronize processors
with each other. A supplier processor only proceeds when the wait condition is
established.

Semantics of postconditions Similar to the previously mentioned separate
precondition paradox, we can constitute a separate postcondition paradox for
postconditions. On return from a separate call, the client cannot be sure that
the postcondition still holds. After the termination of the call and before re-
turning from the call another object may have modified the state of an object
occurring in an uncontrolled postcondition clause. However, the client knows
that the postcondition was fulfilled on termination of the call. Thus after re-
turning from the call the client can only assume the controlled postcondition

32

clauses since no other client can invalidate these. The interpretation of postcon-
ditions is symmetric to the treatment of preconditions. Controlled postcondition
clauses are a guarantee given to the client and an obligation on the supplier.

In order to avoid blocking semantics of postconditions and to increase paral-
lelism, postconditions are evaluated individually and asynchronously by the ob-
ject’s handler. This means that the client can continue its own activity after
returning from a feature call without waiting for the evaluation of a postcondi-
tion. The client gets the guarantee that the postcondition will hold eventually.

Example 10 (Postcondition semantics). Listing 1.9 shows a testable version of
class READING LIST.

Listing 1.9. reading list test class

class TESTABLE READING LIST inherit READING LIST feature
2 test (a extra book list: separate BUFFER[separate BOOK])

−− Run a test on all book lists including ’a extra book list’.
4 require

...
6 local

l book: separate BOOK
8 do

store (a extra book list, hamlet)
10 store (bestsellers, hamlet)

store (favorites, hamlet)
12

l book := get (a extra book list)
14 l book := get (bestsellers)

l book := get (favorites)
16 end

end

The feature call store (a extra book list, hamlet) in feature test has a con-
trolled postcondition. The postcondition involves an asynchronous call to the
separate entity a extra book list. However, the postcondition can be assumed im-
mediately, because it will hold eventually. The second (again asynchronous) call
store (bestsellers, hamlet) ensures the uncontrolled postcondition. The caller gets
the guarantee that the postcondition holds after termination but the postcondi-
tion cannot be assumed at a later point in time since the current processor does
not have a request queue lock on bestsellers. For the call get (a extra book list),
the precondition is controlled, hence it is a correctness condition and it holds
since the postcondition of store (a extra book list, hamlet) can be assumed. For
the second call get (bestsellers), the precondition is uncontrolled, hence it is a
waiting condition. The postcondition of store (bestsellers, hamlet) can be as-

33

sumed to hold on termination of that feature, but not at the time of the call
get (bestsellers).

Definition 26 (Postcondition semantics). A postcondition describes the re-
sult of a feature’s application. Postconditions are evaluated asynchronously; wait
by necessity (i.e. the need to wait for a result of the feature application) does not
apply. Postcondition clauses that do not involve calls on objects handled by the
same processors are evaluated independently.

A violation of a postcondition clause raises an exception in the processor that
has evaluated this clause.

Semantics of invariants Invariants express class level consistency conditions
on objects that must be satisfied in every observable state (see sections 7.5 and
8.9.16 of the ECMA standard [4]). This means that invariants must be satisfied
before and after every generally or selectively exported routine that is not used
as a creation procedure. In case of a routine used as a creation procedure the
invariant must be satisfied after the execution. On the evaluation side invariants
get evaluated on both start and termination of a qualified call to a routine
that is not used as a creation procedure. It is also evaluated after every call
to a creation procedure (see 8.9.26 of the ECMA standard [4]). Invariants are
allowed to have non-separate calls only - separate calls are prohibited. This is a
direct consequence of the target validity rule 19. Therefore they can be evaluated
without the acquisition of further locks. Note that a feature used in an invariant
can have separate formal arguments.

Semantics of loop assertions and check instructions There are further
types of assertions namely loop variants, loop invariants, and check instructions.
Similar to the semantics of postconditions they are evaluated asynchronously,
hence wait by necessity does not apply here. Because the assertions cannot be
split up in individual clauses (see remark above) the assertion is evaluated at
once. Formal reasoning is again not affected since they can (like postconditions)
be assumed immediately. Notice that all such assertions are controlled since all
call targets must be controlled. If a loop assertion or a check fails, an exception
is raised in the supplier.

7.3 Proof rule

The new generalized semantics of contracts in a concurrent context suggest the
following mutual obligations between clients and suppliers. The supplier may
assume all the controlled and uncontrolled precondition clauses and must en-
sure - after the execution of the routine’s body - all controlled and uncontrolled
postcondition clauses. These obligations are exactly the same as in a sequen-
tial context, thus from the contract point of view, the same implementation is
suitable for both sequential and concurrent contexts. However, in the concur-
rent context the obligations and the guarantees of the client differ. The client

34

must establish all controlled precondition clauses. The uncontrolled precondition
clauses will possibly delay the execution of the feature due to the wait seman-
tics, but nevertheless they will hold when the execution of the feature’s body
takes place. Conversely, the client can only assume the controlled postcondi-
tion clauses, because - even though the supplier must establish all postcondition
clauses - in the meantime uncontrolled objects involved in an uncontrolled post-
condition clause may have changed. Hence the client has fewer obligations but
it gets fewer guarantees. This is expressed in the following proof rule.

{INV ∧ Prer}bodyr{INV ∧ Postr}
{Prectr

r [a/f]}x.r(a){Postctrr [a/f]}
(1)

Prectr
r [a/f] denotes the controlled clauses of the precondition of the routine

r with the formal arguments f substituted simultaneously by a, similarly for
Postctrr [a/f]. With this proof rule we can prove partial correctness of routines.
Given that under the assumption INV ∧ Prer the executing of bodyr results in
a state where INV ∧Postr holds, we can deduce that in a given context the call
x.r(a) in a state where Prectr

r [a/f] is satisfied leads to a state where Postctrr [a/f]
holds. This proof rule is parametrized by the context. The resulting precondi-
tion and postcondition clauses depend on the context, which is expressed in the
conclusion by adding ctr to the precondition and postcondition.

With the new proof rule we cannot prove total correctness, what we can prove
however is partial correctness. Uncontrolled preconditions and postconditions
can lead to deadlocks and infinite waiting on non-satisfied preconditions. In
its current state the programming model of SCOOP cannot rule out deadlocks
completely. However, the likelihood of a deadlock is decreased significantly by
introducing selective locking and lock passing. See the outlook section 14 for
future work and work that has been done to improve that fact. As pointed out
in [11], a fully modular proof system for SCOOP would require much more ex-
pressive contracts.

The new proof rule looks very similar to the sequential Hoare rule [6]. The differ-
ence between the Hoare rule and the new proof rule resides in the conclusion. The
new proof rule limits the assertion clauses to controlled assertion clauses. There
is however a case where the Hoare rule becomes a special case of the new proof
rule. In a sequential program every assertion clause that involves only attached
entities is controlled. Therefore if all assertion clauses only involve attached enti-
ties then every assertion clause becomes controlled, i.e. Prer[a/f] = Prectr

r [a/f]
and Postr[a/f] = Postctrr [a/f].

8 Type combiners

An entity e declared as non-separate is seen as such by the current object o.
However, separate clients of o should see e as separate because from their point
of view the object attached to e is handled by a different processor. Following

35

this thought, there is a need to determine how a particular type is perceived from
the point of view of an object different than the current object. Type combiners
are the answer to this question.

8.1 Result type combiner

The result type combiner shown in definition 27 determines the type Te of a
query call x.f based on the type Ttarget of x and the type Tresult of f . The
result type combiner gives the result type of a query from the perspective of the
client. The type Tresult is relative to the target x and the result type combiner
determines how this type should be seen by the client.

Definition 27 (Result type combiner). ∗ : Type× Type 7→ Type

(d1, p1, C1) ∗ (d2, p2, C2) =

 (!, •, C2) if isExpanded(C2)
(d2, p1, C2) if ¬isExpanded(C2) ∧ p2 = •
(d2,>, C2) otherwise

The result type combiner is a function of two arguments. The first argument
is the type of the target Ttarget and the second argument is the type of the result
Tresult .

The first case handles the situation where the result class type is expanded. Re-
sults of expanded types are passed back to the client using the import operation
described in definition 20. Doing so the result becomes non-separate from the
perspective of the client. Thus the result type combiner yields non-separateness
as the combined type. The result stays expanded and thus the combined type
must be attached. The remaining cases handle the situations where the class of
the return type is not expanded.

If the result type is non-separate with respect to the target, i.e. p2 = •, then we
conclude that the result must be handled by the same processor as the target.
Therefore the combined type has the processor tag of the target type. This sit-
uation is handled by the second case.

If the result type is separate with respect to the target, i.e. p2 = >, then the
result can be considered separate from the point of view of the client. This works
because p = > means potentially separate. Thus the combined type can be sep-
arate as well. This is reflected in case number three.

If the result type explicitly denotes a processor, i.e. p2 = α, then one could
think that the processor tag of the combined type must be p2 because it is an
exact specification of a processor. This is not true. The explicit processor tag p2
only makes sense in the context of class C2 for the target x. A processor tag is
not a global identification. However, the client can conclude that the result will
be potentially separate. This is shown in the third case.

36

Example 11 (Basic usage of the result type combiner). In combination with
genericity the result type combiner can get complicated. Consider listing 1.10.

Listing 1.10. simple library class

class LIST[G −> separate ANY] feature
2 last: G

−− The last element of the list.
4

put (a element: G)
6 −− Add ’a element’ to the list.

do
8 ...

end
10 end

12 class SIMPLE LIBRARY feature
books: LIST[separate BOOK] −− The books.

14 end

The class SIMPLE LIBRARY declares a feature books of type LIST[separate
BOOK]. The actual generic parameter separate BOOK is relative to the object

attached to books. The result type combiner determines the type of books.last
from the perspective of the library. The type of the target books is given by
(!, •,LIST [(!,>,BOOK)]). The result type of last is (!,>,BOOK). As a result
one gets (!, •,LIST [(!,>,BOOK)]) ∗ (!,>,BOOK) = (!,>,BOOK).

Example 12 (Iterative usage of the result type combiner). The result type com-
biner can be applied iteratively to multi-dot expressions. Consider listing 1.11.

Listing 1.11. stacked library class

class STACK[G] feature
2 top: G −− The top element.

end
4

class STACKED LIBRARY feature
6 books: LIST[STACK[separate BOOK]] −− The books.

end

The class STACKED LIBRARY defines a feature books of type LIST[STACK
[separate BOOK]]. In this example we will determine the combined type of
books.last.top from the perspective of an instance of STACKED LIBRARY. The
result type combiner must be applied from left to right because the targets are
determined from left to right. The target type of books together with the result
type of last result in the first combined type. This first combined type is the

37

target type for the call to top. This target type and the result type of top result
in the final combined type.

(!, •,LIST [B]) ∗
B︷ ︸︸ ︷

(!, •,STACK [A]) ∗
A︷ ︸︸ ︷

(!,>,BOOK) =

(!, •,STACK [A]) ∗
A︷ ︸︸ ︷

(!,>,BOOK) = (!,>,BOOK)

8.2 Argument type combiner

The argument type combiner determines the admissible type Tactual of an actual
argument a in a call x.f(a). It is based on the target type Ttarget and the type
Tformal of the formal argument. In other words the argument type combiner
determines how the client perceives the type of an argument.

Definition 28 (Argument type combiner). ⊗ : Type× Type 7→ Type

(d1, p1, C1)⊗(d2, p2, C2) =


(!, •, C2) if isExpanded(C2)
(d2, p1, C2) if ¬isExpanded(C2) ∧ p1 6= > ∧ p2 = •
(d2,>, C2) if ¬isExpanded(C2) ∧ p2 = >
(d2,⊥, C2) otherwise

The argument type combiner is a function of two arguments. The first ar-
gument Ttarget is the type of the target and the second argument Tformal is the
type of the formal argument.

The first case handles formal arguments of expanded type. Actual arguments
of expanded types are passed to the supplier using the import operation de-
scribed in definition 20. Doing so, the actual argument becomes non-separate
from the perspective of the supplier. The client can assume the argument is non-
separate. Therefore the argument type combiner yields non-separateness as the
combined type. The actual argument is expanded and thus the combined type
needs to be attached. The remaining cases handle the situations where the class
of the actual argument type is not expanded.

If the formal argument type is non-separate with respect to the target, i.e. p2 = •,
then we know that the actual argument must be handled by the same processor
as the target. This processor is specified by the target type. If the target type
is separate, i.e. p1 = >, then there is no chance of knowing which processor it
is. In the remaining cases we know with certainty which processor to use for
the actual argument: when the target type explicitly denotes a processor, i.e.
p1 = α, when the target type is non-separate, i.e. p1 = •, or when p1 = ⊥. The
situation where p1 = ⊥ cannot occur because this processor tag is only used
to type the void reference. In conclusion, we can only know which processor is
expected if p1 6= >. If this condition is satisfied then the combined type can have

38

the processor tag of the target type. This scenario is described in the second case.

If the formal argument type is separate relative to the target, i.e. p2 = > then
the client can provide an actual argument on any processor. Therefore the actual
argument can be considered as potentially separate from the perspective of the
client. This scenario is handled by the third case.

If the formal argument type explicitly names a processor, i.e. p2 = α, then
one could think that the processor tag of the combined type must be the pro-
cessor tag of the formal argument type because we can exactly determine the
processor of the actual argument. This is not true. The processor tag is not a
global identification. It only makes sense in the context of class C2 for the target
x. In this situation we know that f is expecting an actual argument on a partic-
ular processor, but we do not know which one. Therefore this situation is illegal.
This is indicated in the forth case where the processor tag of the combined type
is set to ⊥. The forth case also handles the situation where the formal argument
is non-separate with respect to the target, i.e. p2 = • but the target type is
separate, i.e. p1 = >. As explained earlier this situation is illegal as well.

9 Type conformance

In this section we will refine the existing type conformance rules described in
sections 8.14.6 and 8.14.8 of the Eiffel ECMA standard [4] for the new type
system to ensure soundness. We define the conformance of one type to another
type over the conformance of the type components. Definition 29 states this
more clearly. We use the symbol v for class type conformance and we use the
symbol � for type conformance. The typing environment Γ contains the class
hierarchy of the program enriched with ANY and NONE along with the type
declaration for all features, local variables, and formal arguments as defined by
Nienaltowski [11].

Definition 29 (Type conformance).

Γ ` E1 v E2

Γ ` ∀j ∈ {1, . . . ,m}, (dt, pt, Ct) = relatedActualGenericParameter(bj) : (
(dt, pt, Ct) � (dbj , pbj , Cbj)∧
((dt = dbj = ?) ∨ (dt = dbj ∧ pt = pbj ∧ Ct = Cbj))

)

Γ ` E1[a1, . . . , an] v E2[b1, . . . , bm = (dbm , pbm , Cbm)]
(2)

The related actual generic parameter of an actual generic parameter bj is the
actual generic parameter ai whose formal generic parameter is used in the inher-
itance declaration of E1 as an actual generic parameter for the formal generic
parameter of bj, provided such an ai exists. Otherwise it is the actual generic
parameter for the formal generic parameter of bj as defined in the inheritance
declaration of E1 or one of its ancestors.

39

Γ ` C1 v C2

Γ ` isExpanded(C2)→ (C1 = C2)

Γ ` (d, p, C1) � (d, p, C2)
(3)

Γ ` (d, p, C1) � (d, p, C2)

Γ ` (d, p1, C1) � (d,>, C2)

Γ ` (d, p, C1) � (d, p, C2)

Γ ` (d,⊥, C1) � (d, p2, C2)
(4)

Γ ` (d, p1, C1) � (d, p2, C2)

Γ ` (!, p1, C1) � (?, p2, C2)
(5)

Example 13 (Related actual generic parameters). Listing 1.12 shows the class
ARRAY, which inherits from class INDEXABLE.

Listing 1.12. array and indexable classes

class ARRAY[F] inherit INDEXABLE[INTEGER, F] ... end
2

class INDEXABLE[G, H] ... end

We use E1 to identify the type ARRAY[separate BOOK] and we use E2

to identify the type INDEXABLE[INTEGER, separate BOOK]. We use a1 for
the single actual generic parameter in E1 and we use b1 and b2 to denote the
first and the second actual generic parameters in E2. The goal of this example
is to find the related actual generic parameters of b1 and b2. The formal generic
parameter of a1 is F. In the inheritance declaration of class ARRAY the formal
generic parameter F is used as an actual generic parameter for the formal generic
parameter H of class INDEXABLE. As b2 belongs to H, a1 is the related actual
generic parameter of b2. For b1 there are no more actual generic parameter in E1

that could serve as the related actual generic parameter. However, class ARRAY
uses (!, •, INTEGER) as the actual generic parameter for the formal generic

parameter G of class INDEXABLE. As b1 belongs to G, (!, •, INTEGER) is the
related actual generic parameter of b1.

Equations 2 and 3 deal with class type conformance. Equation 2 deals with
generically derived class types and equation 3 handles class types that are not
generically derived. In principle, equation 2 is the covariant Eiffel rule with a
restriction that prevents traitors as a special form of cat calls. Such a cat call is
shown in example 14. To prevent catcalls, the definition requires equality between
two related actual generic parameters. This requirement can only be ignored if
the actual generic parameter in the sub type is detachable. This implies that
the corresponding formal generic parameter has a detachable constraint. As a
consequence, every feature that has a formal argument of a type equal to such
a detachable formal generic parameter must ensure that the formal argument
is non-void prior to a safe call. The object test is a mechanism to test whether
an expression is non-void. In addition, an object test ensures that the attached
object has a certain dynamic type. Note that the dynamic type includes the

40

processor tag. In conclusion, a detachable actual generic parameter implies the
necessity of a check of the processor tag. A detachable actual generic parameter
in the sub type implies a detachable actual generic parameter in the super type
because the sub type must conform to the super type. More information on ob-
ject tests can be taken from the Eiffel ECMA standard [4]. Equation 3 shows
that expanded classes cannot serve as ancestors and thus a class type conforms
to an expanded class type only if the two class types are actually the same.

The processor tag conformance rule in equation 4 states that every processor
tag conforms to the > processor tag. Furthermore it defines that the ⊥ proces-
sor tag conforms to every other processor tag. As a result, processor tags can be
arranged in a lattice with the > processor tag on the top and the ⊥ processor
tag at the bottom. Every other processor tag is in the middle, conforming to the
top element. The bottom element conforms directly to the middle elements and
indirectly to the top element. The > processor tag denotes a potentially separate
processor. An object on any processor can be attached to an entity of such a type.
Therefore the explicit processor tag and the non-separate processor tag conform
to the > processor tag. The ⊥ processor tag symbolizes no processor and it is
used to type the void reference. A void reference can be assigned to any writable
entity of detachable type, regardless of the processor tag of the entity. As a con-
sequence, the ⊥ processor tag conforms to any other processor tag. Note that
the explicit processor tag does not conform to the non-separate processor tag,
even though one can denote the current processor with the explicit processor tag.

An entity of detachable type potentially has an object attached to it. Equa-
tion 5 states that the ! detachable tag conforms to the ? detachable tag. The
reverse argument is not true. An entity of attached type cannot store a void ref-
erence. Note that this definition is compatible with the self-initialization rule for
generic parameters as described in section 8.12.6 of the Eiffel ECMA standard
[4].

Example 14 (Traitor cat calls). In listing 1.13 the class ILLEGAL LIBRARY
declares an attribute books of type LIST[separate BOOK].

Listing 1.13. illegal library class

class ILLEGAL LIBRARY feature
2 initialize

−− Initialize this library.
4 do

create {LIST[BOOK]} books
6 books.put (create {separate BOOK})

end
8

books: LIST[separate BOOK] −− The books.
10 end

41

The type of the formal argument in books.put is separate BOOK. Therefore
the feature books.put can be called with create {separate BOOK} as an ac-
tual argument. If equation 2 would permit covariant actual generic parameters
without restrictions then it would be possible to attach an object of type LIST[
BOOK] to the entity books. However, a call to the feature books.put would then
result in a traitor, because the object stored in books expects a non-separate
formal argument whereas the call provides a separate actual argument. For this
reason definition 29 does not allow the attachment of an object of type LIST[
BOOK] to an entity of type LIST[separate BOOK].

Definition 29 implies that there must be a root type in the type system. Any
object can be attached to an entity of this type. In the Eiffel type system, the
class ANY is at the top of the type hierarchy. Thus ANY is suitable as the class
type component of the root type. To be most general, the root type must be
detachable and separate.

Definition 30 (Root type). The root type is (?,>,ANY).

Example 15 (Valid and invalid subtypes). Listing 1.14 shows a number of enti-
ties. In this example we will explore whether these entities can be assigned to
each other.

Listing 1.14. entities to demonstrate valid and invalid subtypes

a: HAMLET
2 b: detachable separate BOOK

c: separate <p> BOOK
4 d: separate <q> BOOK

e: ARRAY[detachable HAMLET]
6 f: ARRAY[HAMLET]

g: INDEXABLE[INTEGER, detachable separate BOOK]
8

p: PROCESSOR
10 q: PROCESSOR

We will start with the entities a and b. We will use definition 29 to determine
whether (!, •,HAMLET) conforms to (?,>,BOOK). We omit premises that do
not apply and we omit premises that are satisfied trivially.

Γ ` HAMLET v BOOK
Γ ` (d, p,HAMLET) � (d, p,BOOK)

Γ ` (d, •,HAMLET) � (d,>,BOOK)

Γ ` (!, •,HAMLET) � (?,>,BOOK)

We read the derivation bottom-up. In the first step we use the detachable
tag conformance rule from equation 5. In the second step we use the processor

42

tag conformance rule from equation 4. The class type conformance rule from
equation 3 leads us to the last premise, which can be derived from the typing
environment. The details on the typing environments can be taken from section
6.11.4 in Nienaltowski’s dissertation [11]. The derivation shows that a can be
assigned to b. In a similar way, one can derive that c and d can be assigned to
b. It is however not possible to do any other assignments among a, b, c, and
d. In particular, c cannot be assigned to d because the types specify different
processors.

So far we only looked at types that are not generically derived. In a next step
we will take a look at generically derived types to see whether e can be assigned
to g. We use the class type conformance rule for generically derived class types
from equation 2.

Γ ` ARRAY v INDEXABLE

Γ ` HAMLET v BOOK
Γ ` (d, p,HAMLET) � (d, p,BOOK)

Γ ` (?, •,HAMLET) � (?,>,BOOK)

Γ ` ARRAY [(?, •,HAMLET)] v INDEXABLE [(!, •, INTEGER), (?,>,BOOK)]

We do not show the premise (!, •, INTEGER) � (!, •, INTEGER), because
it is satisfied trivially. In the same spirit we do not show the premise (dt =
dbj = ?) ∨ (dt = dbj ∧ pt = pbj ∧ Ct = Cbj). The derivation shows that indeed
e can be assigned to g. The entity f cannot be assigned to g. This is due to
the attached actual generic parameter of f , which is not compatible with the
detachable generic parameter in g.

10 Feature redeclaration

A child class inherits features from a parent class. An inherited feature can either
be reused, undefined, or redeclared. In a redeclaration, the child class provides
a new implementation. The redeclaration can have a weaker precondition and it
can have a stronger postcondition. Any feature redeclaration must ensure that
the redeclared version of the feature can be called whenever the parent feature
can be called. In particular, the contracts and the signatures must be compatible.
Sections 8.10.26, 8.14.4, and 8.14.5 of the Eiffel ECMA standard [4] define rules
to take care of this for Eiffel. In this section we will refine these rules for SCOOP.
Definition 31 defines valid result type redeclarations and definition 32 does the
same for formal arguments.

Definition 31 (Valid result type redeclaration). The result type of a fea-
ture can be redeclared from T1 to T2 if and only if T2 conforms to T1, i.e. T2 � T1.

Just like in Eiffel, the result type can be redeclared covariantly. For all three
components of a SCOOP type it is always possible to return something more
specific than what the client of a feature expects.

43

Definition 32 (Valid formal argument redeclaration). The type of a for-
mal argument x can be redeclared from T1 = (d1, p1, C1) to T2 = (d2, p2, C2) if
and only if all of the following conditions are true:

– If T1 is detachable then T2 is detachable, i.e. d1 = ?→ d2 = ?. T2 can only
be detachable if x is not a target in the inherited postcondition.

– Types T2 and T1 have identical processor tags, i.e. p2 = p1, or T2 is separate,
i.e. p2 = >.

– Class type C2 conforms to C1, i.e. C2 v C1. If C2 and C1 are not the same
then T2 is detachable, i.e. C2 6= C1 → d2 = ?.

In Eiffel, formal arguments can be redeclared in a covariant way. However, if
the class type changes then the redeclared formal argument must be detachable.
A detachable formal argument can contain the void reference. This forces the
redeclared feature to use an object test to ensure that the formal argument is
non-void. Next to the non-void check the object test ensures that the formal ar-
gument has a certain dynamic type. Therefore the redeclared feature is required
to check the dynamic type of the formal argument. This makes it possible for
the redeclared feature to receive an actual argument whose type is a super type
of the redeclared formal argument type, as it is possible in a covariant redec-
laration. Definition 32 goes along this line for the class type. A class type of a
formal argument can be redeclared covariantly as long as the redeclared formal
argument becomes detachable. The processor tag of a formal argument can be
redeclared contravariantly. The covariant redeclaration is not allowed for pro-
cessor tags because it would lead to traitors. If the processor tag of a formal
argument can be redeclared covariantly then it would be possible to redeclare
a separate formal argument to non-separate. The contravariant redeclaration is
not a problem because the redeclared feature can always use a more general
processor tag.

Detachable tags encode selective locking. Assuming a formal argument could
be redeclared covariantly from detachable to attached then the application of
the redeclared feature would lock the request queue of the formal argument.
However, the parent feature specifies a non-locking formal argument. The rede-
clared feature could not be called whenever the parent feature is called. On the
other hand a formal argument can be redeclared contravariantly from attached
to detachable because this would alleviate the locking requirements. Further-
more it is always safe to assume a detachable formal argument when the actual
argument is non-void.

A redeclaration of a formal argument from attached to detachable imposes a risk
on the validity of the inherited postcondition. Assuming a parent feature has a
postcondition clause that contains a query on a formal argument. According to
the valid target rule in definition 19 this formal argument must be attached. A
redeclaration of the formal argument from attached to detachable renders the in-
herited postcondition clause invalid. An invalid postcondition clause is equivalent
to a weaker postcondition and thus this situation is not acceptable. Therefore

44

a formal argument can only be redeclared from attached to detachable if the
formal argument is not a target in the inherited postcondition clause.

There is a similar issue for inherited precondition clauses. A redeclaration of
a formal argument from attached to detachable renders the precondition clause
invalid. An invalid precondition clause is equivalent to a weaker precondition.
This situation is accepted because this is only a problem for the redeclaring
feature and not for the client of the feature. The redeclared feature can assume
a weaker precondition as it ignores the invalid precondition clause. As a conse-
quence, such a precondition clause can be assumed to hold vacuously. This is
expressed in definition 33.

Definition 33 (Inherited precondition rule). Inherited precondition clauses
with calls on a detachable formal argument hold vacuously.

Example 16 (Valid feature redeclaration). Listing 1.15 shows a valid redeclara-
tion of the feature cheaper alternative.

Listing 1.15. finder class

class LOCAL FINDER feature
2 cheaper alternative (a book: BOOK): BOOK

−− A cheaper alternative to ’a book’.
4 do

...
6 ensure

Result.initial price < a book.initial price
8 end

end
10

class WORLDWIDE FINDER
12

inherit LOCAL FINDER
14 redefine

cheaper alternative
16 end

18 feature
cheaper alternative (a book: separate BOOK): BOOK

20 −− A cheaper alternative to ’a book’.
do

22 ...
end

24 end

The formal argument gets redeclared from FT1 = (!, •,BOOK) to FT2 =
(!,>,BOOK). This is valid according to definition 32. Note that FT2 cannot

45

be detachable because the formal argument is a target in the inherited postcon-
dition. A detachable type would make the inherited postcondition invalid. The
processor tag changes from non-separate to separate. It is allowed to accept a
non-separate object in a separate entity.

11 False traitors

At runtime a non-separate object can get attached to a separate entity. The type
system permits this. The downside of such an action is a loss of information in
the type system. We know that the entity points to a non-separate object, but
the type system cannot make this assumption. For example it is not possible
to assign the separate entity to a non-separate entity. The type system would
complain about a traitor, even though the attached object is in fact non-separate.
We call such an object a false traitor.

Definition 34 (False traitor). A false traitor is a non-separate object acces-
sible through to a separate expression.

This is not a SCOOP specific problem. The same issue occurs when an object
gets attached to an entity whose static type is a proper parent of the object’s
dynamic type. The solution is the same as in Eiffel. An object test can be used
to ensure that the dynamic type of the expression is non-separate.

12 Agents

Agent objects wrap feature calls. An agent can be passed around and the wrap-
per feature can be called at a later time. When the agent gets created any of
the actual arguments can be predefined. An agent call must only provide the
remaining actual arguments. These remaining actual arguments are called open
and the predefined ones are called closed. Similarly, it is possible to have an open
or a closed target. An open target specifies the type of the future target instead
of the target itself. In this section we will discuss the location of a new agent.
We consider two options. The agent could be handled by the current processor
or the agent could be handled by the processor of the target.

The creation of a new agent on the current processor causes problems. Such
an agent would be non-separate from the current object. Therefore the agent
would always be a valid target on the current processor. If the agent encapsu-
lates a feature call on a separate target then the current processor could call the
encapsulated feature on the separate object without having acquired a request
queue lock. The agent would be a non-separate object that encapsulates a sep-
arate object and we would have a traitor situation.

If the new agent is handled by the same processor as the target then this problem
does not occur. This way, the agent represents its target properly in terms of

46

location. Agent calls can be freely mixed with other feature calls. A lock on the
request queue of the handler of encapsulated target is ensured through a lock on
the request queue of the handler of the agent. There is however a price for this
scheme with respect to open targets. At construction time, the handler of the
agent must be known and it must be equal to the handler of the future target.
If the target type is non-separate then this is not a problem because the exact
processor is know. If the target type has an explicit processor specification then
the exact processor is known at creation time. However, the explicit processor
specification is only valid in the context where the agent gets created. If the
agent gets called in a different context then the exact processor of the target
is unknown at call time. If the target type is separate then there is no way of
knowing the exact handler when the agent gets created. In conclusion, the type
of an open target must be non-separate. As a further restriction, the open target
type must be attached because it is not possible to invoke a method on a non
existing target. Definition 35 captures these requirements.

Definition 35 (Agent creation). A new agent is handled by the same proces-
sor as its target. An open target agent must have an attached and non-separate
type.

The type of an agent must show that the agent is on the same processor as
the target. Definition 36 redefines section 8.27.17 of the Eiffel ECMA standard
[4].

Definition 36 (Agent expression type). Consider an agent expression with
target type Tx = (!, p,X) and feature f . Let i1, . . . , im be the open argument
positions and let T1, . . . , Tm be the types of f ’s formal arguments at positions
i1, . . . , im (taking Ti1 to be Tx if the target is open, e.g. i1 = 0). The agent
expression has the following type:

– The type is (!, p,PROCEDURE [(!, •, X), (!, •,TUPLE [T1, . . . , Tm])]) if f is
a procedure.

– The type is (!, p,FUNCTION [(!, •, X), (!, •,TUPLE [T1, . . . , Tm]), TR]) if f is
a function of result type TR other than (!, •,BOOLEAN).

– The type is (!, p,PREDICATE [(!, •, X), (!, •,TUPLE [T1, . . . , Tm])]) if f is a
function of result type (!, •,BOOLEAN).

Example 17 (Agents). Listing 1.16 shows a class representing book traders.

Listing 1.16. trader class

class TRADER feature
2 option: separate PROCEDURE[SELLER, TUPLE[separate BUYER]]

4 prepare option (a seller: separate SELLER; a book: separate BOOK;
a valuer: separate VALUER)

do
6 option := agent a seller.sell book (a book, ?, a valuer)

47

end
8 end

The feature prepare option creates an option to sell a particular book through
a particular seller using a particular valuer at a later time. Profit can be gen-
erated if a book has been bought at a low price through the estimate of one
valuer and if the book can be sold later at a higher price through the estimate
of another valuer. In this example the option is represented by an agent for the
feature sell book with the seller as the target. The book and the valuer are closed
arguments. The buyer is left as an open argument. The open argument is indi-
cated with the question mark. The type of the agent is the type of the attribute
option. The agent has the same processor tag as the target.

13 Once routines

A once routine gets executed at most once in a specified context. In Eiffel, a once
routine either has a once per object, a once per thread, or a once per system se-
mantics. If the once routine is a once function then the result gets shared within
the specified context. Sections 8.23.20, 8.23.21, and 8.23.22 of the Eiffel ECMA
standard [4] describe this in more details. In SCOOP, processors replace the
notion of threads. In this section we will refine the existing Eiffel rules. Instead
of the original options we consider a once per system or a once per processor
semantics.

The result of a once function with a separate result type is supposed to be
shared by different processors. Otherwise it makes no sense to declare the result
as separate. Therefore such a function must have the once per system semantics.
Once functions with a non-separate result type on the other hand must have a
once per processor semantics. Otherwise there would be one object for multi-
ple non-separate once functions on multiple processors. Clearly, the object can
only be non-separate with respect to one processor. For all other processors the
object would be a traitor. Once procedures do not come with these complica-
tions as they do not have a result. We assign a once per processor semantics to
once procedures to give each processor the chance to make a fresh call to the
procedure.

Definition 37 (Once routines semantics). A once routine either has a once
per system or a once per processor semantics.

– Once functions with a separate result type have the once per system seman-
tics.

– Once functions with a non-separate result type have the once per processor
semantics.

– Once procedures have the once per processor semantics.

Example 18 (Once functions). Listing 1.17 shows a class representing phone di-
rectories of a country.

48

Listing 1.17. phone directory class

class PHONE DIRECTORY feature
2 national directory: separate BOOK

once
4 ...

end
6

local directory: BOOK
8 once

...
10 end

end

The country is divided into several states. Each state has a set of phone
numbers. In addition there are some national phone numbers that are valid in
every state. The phone directory takes this into account with two once func-
tions: national directory is a book containing all the national numbers and
local directory is a book with the local numbers. We imagine that each state
is handled by a different processor and that the phone directory is on yet an-
other processor. The feature national directory is a separate once function. It has
a once per system semantics. This takes into account that there is one directory
for the whole nation. The feature local directory is a non-separate once function
and thus it has a once per processor semantics. This reflects the fact that there
is one local directory per state.

14 Limitations and future work

At the beginning of this article we emphasized SCOOP’s simplicity in compari-
son to semaphore based concurrent programming models. There are some threats
to the validity of this claim. Our claim is not supported by any systematic study.
Furthermore there has been progress on other concurrent programming models
that make it easier to write correct and reusable concurrent programs. In partic-
ular there exist powerful concurrency libraries that can be used by developers,
e.g. the concurrency libraries of Java (see e.g. [5]). A full support of our claim
requires a study that compares SCOOP to the state-of-the art of concurrent
programming models.

We do not claim that SCOOP programs run faster than other concurrent pro-
grams. However, performance is a key objective in any concurrent program.
Performance of SCOOP programs is negatively affected if a centralized schedul-
ing algorithm is used. A decentralized scheduling algorithm solves this issue
and makes the system scalable. Performance can also be negatively influenced
if the program under execution applies locking too coarsely. The differentiation
between read- and write locks could improve the situation together with other re-
finements of the model. One refinement concerns wait by necessity. The SCOOP

49

model can be optimized by only waiting when the result of the query is about to
be accessed. As long as the result is not being accessed, it does not need to be
available. A profiler for SCOOP specific metrics could help to find bottlenecks
in SCOOP programs.

Currently SCOOP does not solve the asynchronous exception problem. Con-
sider a situation where the execution of a procedure on a separate object results
in an exception. It is possible that the client processor left the context of the
feature call. In such a case the client processor is no longer able to handle the
exception. The problem is tackled by Arslan and Meyer [1] as well as Brooke and
Paige [2]. Arslan and Meyer define the guilty processor as the one who called the
feature that triggered the exception. In their approach the target processor is
considered busy by non-guilty processors. Only the guilty processor can resolve
the situation by handling the exception as soon as the guilty processor locks
the request queue of the busy processor once again. Brooke and Paige propose
another mechanism to handle asynchronous exceptions. Their approach includes
the notion of failed or dead objects.

Deadlocks are still an open problem in SCOOP. The selective locking mecha-
nism is a useful technique to reduce the potential for deadlocks. However, this
is not a method for ensure absence of deadlocks. It is necessary to conduct a
comprehensive study on how deadlocks can occur in SCOOP programs. Such
a study would facilitate an approach to avoid deadlocks in SCOOP programs.
One approach in this direction is presented by Ostroff et al. [13]. They describe
a virtual machine for SCOOP. The goal is to use model-checking and theorem
proving methods to check global temporal logic properties of SCOOP programs.

The operational semantics used by Ostroff et al. may be extended to cover
more of SCOOP. A complete definition could serve as a precise description of
the model. At the moment SCOOP’s complexity and the intrinsic details are
hidden behind informal descriptions. The formalization could be the basis for
formal proofs of properties promised by the model as well as for formal proofs
of SCOOP programs. Interesting properties of the model include the absence of
data races and the soundness of the type system.

Even though SCOOP naturally embraces distribution right from its start there
are still open issues to be solved. In particular, it is unclear how distributed
scheduling or mapping of processors to resources should be devised and imple-
mented. Furthermore there is a fixed association of one object to a particular
processor. It unclear whether this processor must be constant over time. Object
migration would be especially beneficial for distribution because the latency of
separate feature calls becomes significant in distributed programs.

The execution of a concurrent program can be different from one execution
to the other. Hence, some bugs only show in some scheduling scenarios. This

50

makes testing of concurrent applications very cumbersome. By design, SCOOP
already rules out a number of scheduling related bugs such as high-level and
low-level data races. Other potential bugs remain. It would be interesting to
extend a testing framework to make scheduling a factor in test cases. Along the
same line, it would be interesting to develop a debugger for SCOOP programs.

It would be interesting to have a design tool where one can graphically spec-
ify the dynamic and the static view of a SCOOP program. The dynamic view
includes processors, the objects, and the interactions. The dynamic view uses
concepts introduced in the static view. The static view shows the classes and ex-
isting SCOOP components. The graphical design is linked to the SCOOP code.
Hence the designer can produce a SCOOP program out of the diagrams.

As part of the ETH Verification Environment (EVE) there is an implemen-
tation of SCOOP in progress. The implementation is available on our project
website http://scoop.origo.ethz.ch.

References

1. Volkan Arslan and Bertrand Meyer. Asynchronous exceptions in concurrent object-
oriented programming. In Symposium on Concurrency, Real-Time and Distribution
in Eiffel-like Languages Proceedings, pages 62–70, 2006.

2. Phillip J. Brooke and Richard F. Paige. Exceptions in concurrent eiffel. Journal
of Object Technology, 6(10), 2007.

3. Edward G. Coffman, Melanie J. Elphick, and Arie Shoshani. System deadlocks.
ACM Computing Surveys, 3(2):67–78, 1971.

4. ECMA. Ecma-367 eiffel: Analysis, design and programming language 2nd edition.
Technical report, ECMA International, 2006.

5. Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, David Holmes, and Tim
Peierls. Java Concurrency in Practice. Addison-Wesley, 2006.

6. C.A.R. Hoare. Procedures and parameters: An axiomatic approach. In Symposium
on Semantics of Algorithmic Languages, pages 102–116, 1971.

7. Bertrand Meyer. Sequential and concurrent object-oriented programming. In Tech-
nology of Object-Oriented Languages and Systems, pages 17–28, 1990.

8. Bertrand Meyer. Applying design by contract. IEEE Computer, 25(10):40–51,
1992.

9. Bertrand Meyer. Systematic concurrent object-oriented programming. Communi-
cations of the ACM, 36(9):5680, 1993.

10. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edi-
tion, 1997.

11. Piotr Nienaltowski. Practical framework for contract-based concurrent object-
oriented programming. PhD thesis, Swiss Federal Institute of Technology Zurich,
2007.

12. Piotr Nienaltowski and Bertrand Meyer. Contracts for concurrency. In First In-
ternational Symposium on Concurrency, Real-Time and Distribution in Eiffel-like
Languages, pages 27–49, 2006.

13. Jonathan S. Ostroff, Faraz Ahmadi Torshizi, Hai Feng Huang, and Bernd Schoeller.
Beyond contracts for concurrency. Formal Aspects of Computing, 21(4):319–346,
2008.

