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Abstract 

The Eiffel language and environment apply the conceplS of object-oriented design and 
programming to the construction of high quality software. 

As a language, Eiffel provides a range of features for the construction of reusable and 
reliable software components: classes. multiple inheritance. polymorphism and dynamic binding. 
genericity. strict static type checking. a disciplined exception mechanism. systematic use of 
assertions, invariants and other constructs for ensuring program correctness. 

Eiffel is implemented by compilation through C. ensuring wide portability. On option. a 
stand alone C package, movable to any machine supporting C. may be generated from the text of 
an Eiffel system. However the language itself is an original design and has no relation to C. 

The environment ensures separate compilation of Eiffel classes; it also takes care of 
recompilation mangagement, automatically triggering re-compilation of modified classes without 
programmer intervention. The tools of the environment include facilities for automatic 
documentation (producing a class interface description from the clauss texIS), class browsers, an 
interactive debugger. a system for graphical display of class hierarchies. an optimising 
postprocessor and other facilities. 

An important part of the environment is a set of libraries of reusable software components 
(classes). They include the Data Structure Library. which covers fundamental data structures and 
algorithms. Graphics library. supporting windowing and bit-mapped graphics. and the Parsing 
Library. for writing compilers ad other parser-based tools. 
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WHAT IS EIFFEL? 

Eiffel addresses the software indusLry's need for a modcrn language and development environment 
supporting the analysis. design and implementation of high-quality software. 

The language is based on advanced principles of object-oriented programming, with a special 
emphasis on the reliability or the resulting software components and systems. 

The supporting environment, available on a number of hardware platforms, includes tools for 
such tasks as automatic compilation management, C package generation, class browsing, automatic 
documentation and debugging. 

A complementary component of Eiffel is the set of libraries of pre-packaged reusable 
software components covering many of the common tasks of software development, from 
fundamental data structures and algorithms to graphics. parsing, window management and others. 

Beyond the language. environment and libraries, Eiffel is also a method of software 
construction by combination of self-contained and flexible modules, and opens the perspective of a 
true industry of reusable software components. 

The present article is a gencml introduction to Eiffel. More detailed information [1.2,5-7] is 
available. A recent book [3]. explores the issues of object-oriented software engineering in depth, 
and explains the Eiffel method of software design and implementation. 

DESIGN PRINCIPLES 

Software quality is a combination of many factors. In the current staLe of the indusLry. some of 
these factors are in dire need of improvements. One is reusability, or the ability to produce 
components that may be used in many different applications. Another is exlendibility: "soft" as 
software is supposed to be. it is notoriously hard to modify software systems, especially large ones. 

Among quality factors, reusability and extendibility play a special role: satisfying them 
means having less software to write - and hence more time to devote to the other goals (such as 
efficiency, ease of usc or integrity). 

The third fundamental factor is reliability. Techniques such as assertions, disciplined 
exception handling and static typing, enabling developers to produce software with dramatically 
fewer bugs, are part of the distinctive Eiffel approach to the engineering of quality software. 

Other requirements were portabililY of the implementation, and efficiency of Eiffel.generated 
software in both time and space, a concern that could not be neglected in a tool aimed at practical, 
medium- to large-scale industrial developments. 

OBJECT-ORIENTED DESIGN 

To achieve reusability and extendibility, the principles of object-oriented design seem to provide 
the best known technical answer. An in-depth discussion of these principles would fall beyond the 
scope of this introduction (see [3]), but we need a definition. Object-oriented design is the 
construction of software systems as structured collections of abstract data type 
implementations. The following points are worth noting in this definition: 

• The emphasis is on structuring a system around the classes of objects it manipulates rather 
than the functions it performs on them, and on reusing whole data structures, together with 
the associated opcrations, rather than isolated routines. 

• Objects are described as instances of abstract data types - that is to say, data structures 
known from an official interface rather than through their representation. 

• The basic modular unit. called the class, dcscribes one implementation of an abstract data 
type (or, in the case of "defcrred" classc§, studied below, a set of possible implementations 

-192-



of the same abslract data type). 

• The word collection reflects how classes should be designed: as units which arc interesting 
and useful on their own, independently of the systems to which they belong, and may be 
reused by many different systems. Software construction is viewed as the assembly of 
existing classes, not as a top-down process starting from scratch. 

• Finally, the word structured reflects the existence of important relationships betwccn 
classes, particularly the multiple inheritance relation. 

Eiffel results from a systematic effort to apply the full extent of object-oriented technology, 
without the compromises that have marred previous object-oriented language designs. 

Eiffel as a language includes more than presented in this introduction, but not much more; it 
is a small language, comparable in size (by such a measure as the number of keywords) to Pascal. 
It was meant to be a member of the class of languages which programmers can master entirely - as 
opposed to languages of which most programmers know only a subset. Yet it is appropriate for the 
development of induslrial software systems, as has by now been shown by a number of full-scale 
projects, some in the hundreds of thousands of lines, in a number of companies. 

CLASSES 

A class, it was said above, represents an implementation of an abstract data type, that is to say a 
set of run-time objects characterized by the operations available on them (the same for all instances 
of a given class), and the propenies of these operations. These objects are called the instances of 
the class. Classes and objects should not be confused: "class" is a compile-time notion, whereas 
objects only exist at run-lime. This is similar to the difference that exists in classical programming 
betwccn a program and one execution of that program. 

A simple example is a class ACCOUNT describing bank accounts. Before presenting the 
class itself, it is useful to illustrate how it may be used by other classes, called its clients. 

A class X becomes a client of ACCOUNf by declaring one or more entities of type 
ACCOUNT. Such a dcclaration is of the form: 

aeel: ACCOUNT 

Bank Account object 

Figure 1: Entity and associated object 

The term "entity" generalizes the more common notion of "variable". An entity declared of 
a class type, such as aeel, may at any time during execution become attached to an object; the 
type rules imply that this objcct must be an instance of ACCOUNT (or, as seen below, of a 
"descendant" of that class). An entity which is not attached to any object is said to be void. By 
default (at initialization) entities arc void; an object is created by an inSlruction 

acc1.Create 

which attaches acc1 to the newly created objcct. Create is a predefined "feature" of the language. 
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Once Lhe client has associated aeel with an object. it may apply to it the features defined in 
class ACCOUNT. Examples are: 

aecZ.open ("Jill"); 
aecZ.deposit (5000); 

if aecl.may_willuJraw (3000) then 
aeel.withdraw (3000) 

end; 
aeel.balance.print 

Most feature applications use the dot notation: entity_namefeature_name. (Prefix and infix 
form. described below, arc also available.) There are two kinds of features: routines (as open, 
deposit, may_withdraw or withdraw). representing operations applicable to instances of the class; 
and attributes. representing data items associated with these instances. 

Routines are further divided into procedures (actions, which do not return a value) and 
functions (returning a value). Here may_withdraw is a function returning a boolean resulL; the other 
three routines invoked arc procedures. 

The above extract of class X docs not show whether, in class ACCOUNT, balance is an 
attribute or an argumenLless function. This ambiguity is intentional. A client of ACCOUNT, such 
as X, does noL need to know how a balance is obtained: it could be stored as an attribute of every 
account object, or computed by a function from other attributes. Choosing between these 
techniques is the business of class ACCOUNr, not anybody else's. Because such implementation 
choices arc often changed over the lifetime of a project, it is esscntial to protect clients against 
their effects. 

Here now is a first skeLch of how class ACCOUNT itself might look. Line segments 
beginning with -- arc comments. 

class ACCOUNT export 
open. deposit, may_withdraw. 
withdraw, balance, minimum_balance, owner 

feature 
balance: INTEGER " 

minimum_balance: INTEGER is 1000 ; 

owner: STRING " 

open (who: STRING) is 
-- Assign the account to owner who 

do 
owner:= who 

end; -. open 

add (sum: INTEGER) is 
-- Add sum to the balance 
-- (Secret procedure) 

do 
balance := balance + sum 

end;·- add 

deposit (sum: INTEGER) is 
_. Deposit sum into the account 

do 
add (sum) 

end; -. deposit 
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withdraw (sum: INTEGER) is 
-- Withdraw sum from the account 

do 
add (-sum) 

end; -- withdraw 

may_witluiraw (sum: INTEGER): BOOLEAN is 
-- Is there enough to withdraw sum? 

do 
Result := 

(balance >= sum + minimum_balance) 
end -- may_withdraw 

end -. class ACCOUNT 

This class includes two clauses: feature. which describes the features of the class, and 
export, which lists the names of features available to clients of the class. Non-exported features are 
said to be secret. Here procedure add is secret, so that acel.add (-3000) would be illegal in X. 
Attribute minimum_balance is also secret. 

Let us examine the features in sequence. The is '" do ... end distinguishes routines from 
attributes. So here balance has been implemented as an attribute. The clause is 1000 introduces 
minimum_balance as a constant attribute, which will not occupy any physical space in objects of 
the class. Non-constant attributes such as balance do usc space for each object of the class; they 
are similar to components of a record in Pascal. 

The language definition guarantees automatic initialization, so that the initial balance of an 
account object will be zero after a Create. The initial values arc zero for numeric attributes, false 
for booleans, null characters for characters, and void references for entities of class types. 

The other five features arc straightforward routines. The first four arc procedures, the last 
one (may_withdraw) a function returning a boolean value. The special variable Result denotes the 
function result; it is initialized on function entry to the default value of the appropriate type, as 
defined above. 

To understand the routines fully, you must remember that in Eiffcl's object-oriented 
programming style any operation is relative to a certain object. In an external client invoking the 
operation, this object is specified by writing the corresponding entity on the left of the dot, as acel 
in acel.open (ltJiII It

). Within the class, however, the "current" instance to which operations apply 
usually remains implicit, so that unqualified feature names, such as owner in procedure open or add 
in deposit, mean "the owner attribute or add routine relative to the current instance". The spccial 
variable Current may be used, if needed, to denote this object explicitly. For example the 
unqualified occurrences of add appearing in the above class arc equivalent to Current. add. 

In some cases, infix or prefix notation is more convenient. For example, most people will 
prefer calling the addition routine of a class VECTOR under the form v + w rather than v.plus( w ). 
This is indeed possible if you call the routine infIx "+It rather than plus. Internally, the operation is 
still a routine call. Prefix operators arc similarly available. 

The above simple example has shown the basic structuring mechanism of the language: the 
class. A class describes a data structlll'C, accessible to clients through an official inlerface 
comprising some of the class features. Features are implemcnted as attributes or routines; the 
implementation of exported features may rely on other, secret ones. 

TYPES 

Eiffel is strongly typed. Every entity is declared of a certain type; a type may be either a class Lype 
or an expanded type. 
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A class type is simply defined by a class, such as ACCOUNT. As noted above, the run-time 
value of an entity dcclarcd of a class type is a reference to potential objects (instances of the class). 
Class types include such types as ARRAY and STRING, described by classes in the Basic Eiffel 
Library. 

In contrast wiLh class types, values of an expanded type are objects, not references to objects. 
Expanded types include the basic predefined types INTEGER, REAL, DOUBLE, ClIARACTER and 
BOOLEAN. Clearly, the value of an entity declared of type INTEGER should be an integer, not a 
reference to an object containing an integer value. Operations on these types are defined by prefix 
or infix operators. as a result, the Eiffel type system is fully regular and consistent: every type, 
including the basic types, is defined from a class, either as a class type or as an expanded type. 
(Of course, in the case of basic types, the compiler implements the standard arithmetic and boolean 
operations directly, not through routine calls; but this is only an optimization, which docs not 
hamper the conceptual homogeneity of the type edifice.) 

ASSERTIONS 

Classes arc defined as abstract data type implementations. What defines an abstract data type, 
however, is not just lhe available operations, but also the formal properties of these operations, 
which do nOl appear in lhe above example. 

Eiffel enables and encourages programmers to express formal properties of classes by writing 
assertions, which may in particular appear in U1C following roles: 

• Routine preconditions express the requirements that clients must satisfy whenever they 
call a routine. For example withdrawal might only be permitted if it keeps the account's 
balance on or above the minimum. Preconditions are introduced by the keyword require . 

• Routine postconditions, inlroduced by Lbe keyword ensure, express conditions that the 
routine (the supplier) guarantees on return, if the precondition was satisfied on entry. 

• Class invariants must be satisfied by objects of the class at all times, or more precisely 
after object creation and after any call to a routine of the class. Thcy are described in the 
invariant clause of the class and represent general consistency constraints that arc imposed 
on all routines of the class. 

With appropriate assertions, U1C ACCOUNT class becomes: 

class ACCOUNT export ... (as bcfore) feature 
... Attributes as before: balance, minimum_balance, owner 

open ... -- as before,' 

add ... -- as before; 

deposit (sum: INTEGER) is 
.- Deposit sum into U1C account 

require 
sum >= 0 

do 
add (sum) 

ensure 
balance = old balance + sum 

end; _. deposit 
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withdraw (sum: INTEGER) is 
-- Withdraw sum from the account 

require 
sum >= 0; 
sum <= balance - minimum_balance 

do 
add (-sum) 

ensure 
balance = old balance - sum 

end; -- withdraw 

may_withdraw ... -- as before 

Create (initial: INTEGER) is 
require 

initial >= minimum_balance 
do 

balance := initial 
end -- Create 

invariant 
balance >= minimum_balance 

end -- class ACCOUNT 
The old attribute_name notation may only be used in a routine postcondition. It denotes the 

value the attribute had on routine enLry. 

This class now includes a specific Create procedure, as needed when the default 
initializations arc not sufficient. Under the previous scheme, an account was created by, say, 
aeel.Create. Because of the initialization rules, balance is then zero and the invariant is violated. If 
a different initialization is required, possibly requiring (as here) client-supplied arguments, the class 
should include a procedure called Create. The effect of 

aeel.Create (5500) 

is to allocate the object (as in the default Create) and to call the procedure called Create in the 
class, with the given argument. This call is correct as it satisfies the precondition and ensures the 
invariant. (Procedure Create, when provided, is recognized as special; it is automatically exported 
and should not be included in the export clause.) 

Syntactically, assertions are boolean expressions, with a few extensions (like the old 
notation). The semicolon (sec the precondition to withdraw) is equivalent to an "and", but permits 
individual identification of the components, useful for producing informative error messages when 
assertions are checked at run-time. 

Assertions play a central role in the Eiffel method for building reliable object-oriented 
software. They serve to make explicit the assumptions on which programmers rely when they 
write program fragments that they believe arc correct. Writing assertions, in particular 
preconditions and postconditions, amounts to spelling out the terms of the contract which governs 
the relationship between a routine and its callers. The precondition binds the callers; the 
postcondition binds the routine. 

The underlying theory of programming by contract [3, 4] views software construction as 
based on contracts between clients (callers) and suppliers (routines), relying on mutual obligations 
and advantages made explicit by the assertions: As will be seen below, this theory also explains 
much of the meaning of inheritance, and lies at the basis of Eiffel's disciplined exception 
mechanism. 

Assertions are also an indispensable Lool for the documentation of reusable software 
components: as with hardware components. one cannot expect large-scale reuse without a precise 
documentation of what every component expects (precondition), what it guarantees in return 
(postcondition) and what general conditions it maintains (invariant). The documentation tools of 
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the Eiffcl environment, such as short (studied below), use assertions to produce information for 
client programmers, describing classes in terms of observable behavior, not implementation. 

Assertions may be indeed be monitored at run-time; since such monitoring may penalize the 
performance, it is enabled on option, class by class. (For each class, two levels of monitoring are 
possible: preconditions only or all assertions.) This provides a powerful debugging tool, in 
particular because the classes of the Basic Eiffel Library, which arc widcly used in Eiffel 
programming, are protected by carefully written assertions. A violated assertion will trigger an 
exception, as described below; unless the programmer has written an appropriate exception handler, 
the exception will cause an error message and termination. 

Run-time checking, however, is only one application of assertions, whose role as design and 
documentation aids exerts a strong influence on the Eiffcl programming style. 

EXCEPTIONS 

Whenever there is a contract, the risk exists that someone will break it. This is where exceptions 
come in. (Other references [3, 4, 8] describe the Eiffel exception mechanism in more detail.) 

An exception may arise from one of several causes. When assertions are monitored, an 
assertion violation will raise an exception. Another cause is the occurrence of a hardware-triggered 
abnormal signal, arising for example from arithmetic overflow or a failure to find the memory 
needed for allocating an object. 

Unless a routine has made specific provision to handle exceptions, it will fail if an exception 
arises during its execution. Failure of a routine is a third cause of exception: a routine that fails 
triggers an exception in its calIer. 

A routine may, however, handle an exception through a rescue clause. This optional clause 
allempts to "patch things up" by bringing the current instance to a stable state (one satisfying the 
class invariant). Then it can terminate in either of two ways: 

• The rescue clause may execute a retry instruction. This will cause the routine to restart its 
execution from the beginning, aLLempting again to fulfil the routine's contract, usually 
through another strategy. This assumes that the instructions of the rescue clause, before the 
retry, have allemptcd to correct the cause of the exception . 

• If the rescue clause does not end with retry, then the routine fails: it returns to its caller, 
immediately signaling an exception. (The caller's rescue clause will be executed according 
to the same rules.) 

Note that a routine with no rescue clause is considered to have an empty rescue clause, so 
that any exception occurring during the execution of the routine will cause the routine to fail 
immediatel y. 

The underlying principle is that a routine must either succeed or fail: either it fulfils its 
contract. or it docs not; in the latter case it must notify its caller by triggering an exception. 

This should be contrasted with the Ada exception mechanism, which does not rely on any 
notion of contract. This encourages writing routines that will fail to achieve their purpose but do 
not notify the caller because the exception is handled locally. Such examples, which may even be 
found in Ada textbooks (see example quoted in [4]), violate the above principle by involving 
routines that neither succeed (they didn't fulfil their job) nor fail (the caller is not notified and 
continues its execution on the false assumption that the call was normally completed). This is the 
reason why the Ada mechanism is so dangerous. Also note 111at the retry instruction must often 
be implemented in Ada using intricate control structures: goto instructions and multi-level loop 
exits [4]. 

An example of the Eiffel exception mechanism is a routine allempUransmission that 
transmits a message over a phone line. The actual transmission is performed by an external, low­
level routine transmit; once started, however, Irqnsmit may abruptly fail, triggering an exception, if 
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the line is disconnected. Routine attempuransmission tries the transmission at most 5 times; 
before returning to its caller, it sets a boolean attribute successful La true or false depending on the 
outcome. Here is the text of the routine: 

attempuransmission (message: STRING) is 
-- Attempt transmission of message, 
-- at most 5 times. 
-- Set successful accordingly. 

local 
failures: INTEGER 

do 
if failures < 5 then 

transmit (message),' 
successful := true 

else 
successful := false 

end 
rescue 

failures := failures + I,' 
retry 

end; -- allempCtransmission 

The integer local variable failures is initialized to zero on entry. 

This example shows one of the key reasons for the simplicity of the mechanism: the rescue 
clause never attempts to achieve the original intent of the routine; this is the sole responsibility of 
the normal body (the do clause). The only role of the rescue clause is to "patch things up" and 
either fail or retry. 

This disciplined exception mechanism is essential for practicing programmers, who need a 
protection against unexpected events, but cannot be expected to sacrifice safety and simplicity to 
pay for this protection. 

MULTIPLE INHERITANCE 

Building software components (classes) as implementations of abstract data types yields systems 
with a solid architecture but does not in itself suffice to ensure reusability and extcndibility, Two 
key Eiffel tcchniques address the problem: inheritance, studied in this section, and genericity, 
studied below. 

Multiple inheritance is a key technique for reusability. The basic idea is simple: when 
defining a new class, it is often fruitful to introduce it by combination and specialization of existing 
classes rather than as a new entity defined from scratch. 

The following simple example, from the Basic Library, is typical. liST, as indicated, 
describes lists of any representation. One possible representation for lists with a fixed number of 
elements uses an array. Such a class will be defined by combination of UST and ARRAY, as 
follows: 

class FIXED _LIST [11 export ... 
inherit 

LIST [11; 
ARRAY [11 

feature 
... Specific features of fixed-size lists ... 

end -- class FIXED_LIST 
The inherit ... clause lists all the "parents" of the new class, which is said to be their "heir". 

(The "ancestors" of a class include the class itself, its parents, grandparents etc.; the reverse term is 
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"descendant".) Declaring FIXED _UST as shown ensures that all thc features and propertics of lists 
and arrays are applicable to fixed lists as well. 

Another example is extracted from a windowing system based on a class WINDOW. 
Windows have graphical features: a height. a width, a position etc., with associated routines to 
scale windows, move them and so on. Thc system permits windows to be nested, so that a window 
also has hierarchical features: aecess to subwindows and the parent window, adding a sub window , 
deleting a subwindow, attaching to another parent and so on. Rather than writing a complex class 
that would contain specific implementations for all of these featurcs, it is much preferable to inherit 
all hierarchical features from TREE (one of a number of classes in the Basic Eiffel Library 
describing tree implementations). and all graphical features from a class RECTANGLE. 

Multiple inheritance yields remarkable economies of programming effort and has a profound 
effect on the sofLware development process. 

The very power of the mechanism demands adequate means to keep it under control. In 
Eiffcl. no name connict is permitted between inherited features. Since name conflicts inevitably 
arise in practice, especially for classes contributed by independent developers, the language 
provides a technique LO remove them: renaming. as in 

class C export. .. inherit 
A rename x as xl, Y as yl,· 
E rename x as x2, y as y2 

feature ... 

Here the inherit clause would be illegal without renaming. since both A and B have features named 
x andy. 

Renaming also serves to provide more appropriate feature names in descendants. For 
example, class WINDOW, as mentioned, inherits routines such as insercsubtree from TREE. For 
clients of WINDOW. however. such routine names arc not appropriate. An application using this 
class for window manipulation needs coherent window terminology, and should not be concerned 
with the inheritance structure that led to the implementation of the class. So it is appropriate to 
rename insercsubtree as adlCsubwindow in the inheritance clause of WINDOW. 

As further incentive not to misuse the multiple inheritance mechanism. the invariants of all 
parent classes automatically apply to a newly defined class. So classes may not be combined if 
their invariants arc incompatible. 

POLYMORPHISM AND DYNAMIC BINDING 

Inheritance is not just a module combination and enrichment mechanism. It also enables the 
definition of flexible program entities that may become attached to objects of various fonns at run­
time (hence the term "polymorphic"). 

In Eiffel. this remarkable facility is reconciled with static typing. The underlying language 
convention is simple: an assignment of the form a := b is pcrmiLLed not only if a and b are of the 
same type, but more generally if a and b arc of class types A and B such that B is a descendant of 
A. 

This corresponds to thc intuitive idea that a value of a more specialized type may be assigned 
to an entity of a less specialized type - but not the reverse. (As an analogy, consider the fact that if 
you request vegetables. getting green vegetables is fine, but if you ask for green vegetables. 
receiving a dish labeled just "vegetables" is not acceptable. as it could include, say, carrots.) 

What makes this possibility particularly powerful is the complementary facility: feature 
redefinition. A feature of a class may be redefined in any descendant class; the type of the 
redefined feature (if an attribute or a function) may be redefined as a descendant type of the 
original feature. and, in the case of a routine, its body may also be replaced by a new one. 
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Asswne for example a class POLYGON, describing polygons, whose features include an array 
of points representing the vertices and a function perimeter which computes a polygon's perimeter 
by swnming the successive distances between adjacent vertices. An heir of POLYGON may be: 

class RECTANGLE export ... inherit 
POLYGON redefine perimeter 

feature 
-- Specific features of rectangles, such as: 

side1: REAL; side2: REAL,' 

perimeter: REAL is 
-- Rectangle-specific version 

do 
Result := 2 star (side! + side2) 

end,' -- perimeter 
... other RECTANGLE features ... 

Here it is appropriate to redefine perimeter for rectangles as there is a simpler and more 
efficient algorithm. Note the explicit redefine subclause (which would come after the rename if 
present). 

Other descendants of POLYGON may also have their own redefinitions of perimeter. The 
version to use in any call is determined by the run-time form of the target. Consider the following 
class fragment: 

p: POLYGON,' r: RECTANGLE,' 
... p.Create; r.Create; ... 
if c then p := rend,' 
print (p.perimeter) 

The assignment p := r is valid because of the above rule. If condition c is false, p will be 
attached to an object of type POLYGON for the computation of p.perimeter, which will thus usc 
the polygon algorithm. In the opposite case, however, p will be attached to a rectangle; then the 
computation will use the version redefined [or RECTANGLE. This is known as dynamic binding. 
We shall sec below that it is implemented in Ei[fel without negative e[fects on run-time 
performance. 

Dynamic binding provides a high degrcc of flexibility. The key advantage [or clients is the 
ability to request an operation (such as perimeter computation) without explicitly selecting one of 
its variants; the choice only occurs at run-time. This is essential in large systems, where many 
variants may be available; each component must be protected against changes in other components. 

This technique is particularly aLLractive when compared to its closest equivalent in traditional 
approaches. In Pascal or Ada, you would need records with variant components. and case 
instructions to discriminate between variants. This means every client must know about all possible 
cases, and that any extension may invalidate a large body of existing software. The Ada facilities 
[or overloading and genericity do not bring any improvement in this respect, since they do not 
support a programming style in which a client module may issue a request meaning: "compute the 
perimeter of p, using the algorithm appropriate [or whatever form p happens to have when the 
request is executcd". 

In contrast, dynamic binding and inheritance support a development mode in which every 
module is open and incremental: an existing class may always be given a new descendant (with 
new and/or redefined features) without any change to the original. This [acility is of great 
importance in software development, an activity which - whether by design or by circumsumce - is 
invariably incremental. 

Eiffcl handles polymorphism and dynamic binding in a disciplined way. First. feature 
redefinition, as seen above, is explicit. Second, beeause the language is typed, the compiler can 
check statically whether a feature application at is correct. In contrast, languages such as Smalltalk 
and its descendants de[er checks until run-Lime and hope [or the best: if an object "sends a 
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message" to another (that is to say, calls one of its routines) one just expects that the corresponding 
class, or one of its ancestors, will happen to include an appropriate "method" (routine); if not. a 
run-time error will occur. Such errors may not happen during the execution of a correctly 
compiled Eiffel system. In other words, EHfel reconciles dynamic binding with static typing. 
Dynamic binding guarantees that whenever more than one version of a routine is applicable the 
right version (the one most directly adapted to the target object) is automatically selecLCd. Static 
typing means that the compiler makes sure there is at least one such version. 

The Biffel policy also yields an important performance benefit: in contrast with the costly 
run-time searches that may be needed in the absence of static typing (since a requested routine may 
not be defined in the class of the target object but inherited from a possibly remote ancestor), the 
Eiffel implementation always finds the appropriate routine in constant time. 

Biffel's assertions provide a further mechanism for controlling the power of redefinition. In 
the absence of specific precautions, redefinition may be dangerous: how can a client be sure that 
evaluation of p.perimeler will not in some cases return, say, the area? One way to maintain the 
semantic consistency of routines throughout their redefinitions is to use preconditions and 
postconditions, which arc binding on redefinitions. More precisely, any redefined version must 
satisfy a weaker or equal precondition and ensure a stronger or equal postcondition than in the 
original. Thus. by making the semantic constraints explicit, routine writers may limit the amount of 
freedom granted to eventual redefiners. 

These rules should be understood in light of the contract theory. Redefinition and dynamic 
binding introduce subcontracting: POLYGON, for example, subcontracts the implementation of 
perimeter to RECTANGLE when applied to any entity that is attached at run-time to a rectangle 
object. An honest subcontractor is bound by the contract accepted by the prime contractor: it may 
not impose stronger requirements on the clients (but may accept more general requests, which is 
why the precondition may be weaker); and it must achieve at least as mueh as promised by the 
original contractor (but may achieve more, which is why the postcondition may be stronger). 

DEFERRED CLASSES 

The inheritance mechanism includes one mor~ major component: A deferred class is a class which 
contains at least one deferred routine; a routine is declared as deferred to express that 
implementations of the routine will only be provided in descendants. For example, a system used 
by the Department of Motor Vehicles to register vehicles could include a class of the form 

deferred class VElllCLE export 
duesyaid. valid-p/ate. register, ... 

feature 
duesyaid (year: INTEGER): BOOLEAN is 

end: -- duesyaid 

validylate (year: INTEGER): BOOLEAN is 

end; -- validylate 
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register (year: INTEGER) is 
-- Register vehicle for year 

require 
duesJ1aid (year) 

deferred 
ensure 

validJ11ate (year) 
end; -- register 

... Other features ... 
end -- class VElllCLE 

This example assumes that no single registration algorithm applies to all kinds of vehicle; 
passenger cars, motorcycles, trucks etc. arc all registered differently. But the same precondition 
and postcondition apply in all cases. The solution is to treat register as a deferred routine, making 
VEHICLE a deferred class. Effective versions of the routine arc given in of class VEJlJCLE, such 
as CAR or TR UCK. They are similar to redefined versions of a routine; only here there is no 
effective definition in the original class, only a specification in the form of a deferred routine. 

Deferred classes describe a group of implementations of an abstract data type rather than just 
a single implementation. A deferred class may not be instantiated: v.Creale is illegal if v is an 
entity declared of type VEIl/CLE. But such an entity may be assigned a refcrence to an instance of 
a non-deferred descendant of VEIlICLE. For example, assuming CAR and TRUCK provide effective 
definitions for all deferred routines of VEIJICLE, the following will be correct: 

v: VEHICLE; c: CAR,' t: TRUCK; 

c. Create ( ... ); I. Create ( ... ); 

if "some test" then v := c else v := tend,' 
v.register (1988) 

The mechanisms of polymorphism and dynamic binding arc fully exploited here: depending on the 
outcome of "some test", v will be treated as a car or a truck, and the appropriate registration 
algorithm will be applied. Note that "some test" may depend on some event whose outcome is 
impossible to predict until run-time, for example the user clicking with the mouse to select one 
among several vehicle icons displayed on the screen. 

Deferred classes arc particularly useful for the application of Eiffel at the analysis and design 
stages. The first version of a module may be a deferred class, which will later be refined into one 
or more effective (non-deferred)' classes. Particularly important for this application is tlIe 
possibility to associate a precondition and a postcondition to a routine even though it is a deferred 
routine (as with register above), and an invariant to a class even though it is a deferred class. This 
enables the designer to attach a precise semantics to a module at the analysis or design SLage, long 
before making any implementation choices. 

The combination of deferred classes and assertions makes Eiffel a more appropriate tool for 
high-level dcsign than existing "PDLs" (program Design Languages). Common PDLs offer no 
facility comparable to Eiffel assertions for describing the semantics of routines independently of 
lieir implementations. The further benefit with Eiffel, of course, is that it is not just a design 
language, but can be efficiently executed as well, so that that no conceptual gap is introduced 
between design and programming. 

GENERIC CLASSES 

Togethcr with inheritance, Eiffel's genericity is essential for writing flexible, parameterized classes. 
Genericity allows classes to have generic parameters, representing types. The following examples 
come from the Basic Library: 
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ARRAY [1] 
llST [1] 
llNKEDj./ST [1] 

They respectively describe one-dimensional arrays, general lists (without commitment to a 
specific representation) and lists in linked representation. Each has a formal generic parameter T 
representing an arbitrary type. To use these classes, you provide actual generic parameters, which 
may be eilher simple or class types, as in the following declarations: 

il: UST [INTEGER]; 
00: ARRAY [ACCOUNT]; 
oof: UST [ARRAY [ACCOUNTJ] -- etc. 

Without genericity, it would be impossible to obtain static Lype checking in an object­
oriented language. 

Genericity may be constrained: by indicating a class name afLer a formal generic parameter, 
as in VECTOR [T -> ADDABLE], you express that only descendants of that class (here ADDABLE 
may be used as the corresponding actual generic parameLers. This makes it possible to use the 
corresponding operations. Here, for example. class VECTOR may define a routine infix "+" for 
adding vectors, based on the corresponding routine from ADDABLE for adding vector elements. 
Then by making VECTOR itself inherit from ADDABLE. you make it satisfy its own generic 
constraint, enabling the definition of types such as VECTOR [VECTOR [1]]. 

An earlier article [2] discussed the role of genericity in comparison to inheritance and 
explained their combination in Eiffel, especially in the context of strict type checking. An 
important component of the solution, required to guarantee type consistency, is the notion of 
"declaration by association" [2, 3, 6]. 

THE IMPLEMENTATION 

The original Eiffel implementation ran on various versions of Unix (System V, 4.3BSD, Xenix) and 
has been ported to more than thirty different machine architectures. Versions of Eiffel are under 
way for V AX-VMS, OS/2 and other architectures. 

The compiler uses C as intermediate language, making Eiffel potentially portable to any 
environment supporting C. An important consequence of this Lechnique is the ability to use the 
Eiffel compiler as a cross-development tool, generating a self-contained C package as end product; 
this is explained in the next section. Another advantage is the ease of interfacing Eiffel with 
existing software written in C or other languages, as discussed below. 

Allhough the compiler relics on C for practical purposes, Eiffel is in no way a C extension; 
as the above discussion should suffice to show. C had no influence on the language design. The use 
of C as implementation vehicle presents a number of advantages, but is only one possible 
tcchnique. 

Great care has been taken to provide efficient compilation and execution, so Lhat the 
environment would support the development of serious software. The following points are 
particularly worth noting. 

• Redefinition and dynamic binding imply that a qualified routine reference, say p.perimeter, 
may have many different interpretations depending on the value of p at run-time. As noted 
above, a run-time search for the appropriaLe routine, as implemented in many systems, would 
carry a heavy perfonnance penally. The maximum search length grows with the depth of the 
inheritance graph, putting reusability (which Lends to increase this depth) and eXLendibility 
(which promotes redefinition) at odds with efficiency. With multiple inheritance, run-time 
search bccomes hopeless: a complete graph of ancestor classes, not just a linear list, would 
have to be searched at run-time. 
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In conLrast, the Eiffel implemenUltion always finds the proper routine in constant time, with 
only a small penalty over the cost of procedure call. This result was difficult to achieve, but 
essential in light of the previous discussion. Regardless of the amount of redefinition and 
polymorphism in your system, a. f always takes the same (small) time . 

• There is almost never any code duplication. Again this was difficult to achieve with 
multiple inheritance and genericity. For example, most Ada impiemenUltions duplicate code 
for every instance of a generic module . 

• The run-time system handles object creation and memory dc-allocation. It includes an 
incremental garbage collector, implemented as a coroutine which steals only negligible time 
from application programs. Automatic garbage collection is essential to the application of 
object-oriented techniques to real developments (as opposed to toy experiments). Object­
oriented applications, which typically create many objects, should not be polluted with 
complex, error-prone memory management code. 

Garbage collection may be turned off (for example during initialization); the collector 
coroutine may also be explicitly activated for a cerUlin time at points where the programmer 
knows some CPU time is available (for example while awaiting user input in an interactive 
application). 

• Compilation is performed on a class-by-class basis, so that large systems can be changed 
and extended incrementally. The Eiffel to C tnmslation time is usually about half of Lbe lime 
for the next step, C to machine code. 

Also important in practice is the openness of the environment Eiffel classes are meant to be 
interfaced with code written in other languages. An environment promoting reusability should 
enable reuse of software built with other approaches, in particular if it was devcloped prior to its 
inLroduction. 

Openness is supported by both call-out and call-in mechanisms. Call-out is achieved through 
the optional external clause of routine declarations, which lists needed external subprograms. For 
example, a square root routine might rely on an external function: 

sqrt (x: REAL, eps: REAL): REAL is 
-- Square root of x with precision cps 

require 
x >= 0: eps> 0 

external 
csqrt (x: REAL, eps: REAL): REAL 

do 
Result := csqrt (x. eps) 

ensure 
abs (Result A 2 - x) <= eps 

end -- sqrt 

It is possible with this mechanism to communicate with other languages without impacting 
the conceptual consistency of the Eiffel classes. Note in particular how the C function sqrt is 
granted a more dignified status as Eiffel routine with the addition of a precondition and a 
postcondition. 

Thanks to the call-out facilities, Eiffel can serve as an integrating mechanism for components 
written in other languages. Using Eiffel classes and all the associated sLructuring facilities (multiple 
inheritance, genericity, export conLrols, assertions), you may be package elements written in other 
languages, such as numerical routines, graphics primitives, daUlbase facilities etc., into clean and 
convenient modules. 

The external interface also supports call-in: software clements written in other languages may 
create Eiffel objects, call routines on these objects, and access their attributes. 
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THE ENVIRONMENT 

The consLrUction of systems in Eiffel is supported by a set of development tools. 

Most important arc the facilities for automatic compilation management integrated in the 
compilation command es (Eiffel System). When compiling a class C, es automatically looks for all 
classes on which C depends directIy or indirectly (as client or heir), and recompiles those whose 
compiled versions arc obsolete. Unix programmers will recognize tIlis facility as giving the power 
of Make. but there is a fundamental difference: instead of having to describe manually the 
dependencies between modules, a tedious and error-prone process, the EHfel programmer lets es 
take care of analyzing these dependencies automatically. 

This problem is far from· trivial because dependency relations arc complex (a class may be, 
say, a client of one of its descendants) and, in the case of the client relation, may involve cycles. 
The Eiffel solution totally frees programmers from having to keep track of changes to maintain the 
consistency of their systems. The algorithm avoids many unnecded recompilations by detecting 
modifications of a class that do not affect its interface, so that clients need not be recompiled. This 
has proved very important in practice, preventing a chain reaction of rccompilations in a large 
system when a feature implementation is changed in a low-level class. 

The possibilities offered by Eiffcl techniques for producing high-quality reusable software 
components mean that users need computerized support for finding out about available classes and 
their propcrlies. A set of browsing facilities is offered for that purpose. They include a full-screen 
browser, eb (Eiffel browser). and a graphieal browser, GOOD (Graphics for Object-Oriented 
Design), which shows the information in graphical, "bubbles and arrows" form. Both make it 
possible to query the environment on available classes on the basis of their features and otIler 
properties. Both eb and GOOD arc human interfaecs to a set of facilities which are directly 
available to any Eiffel application as ille exported features of a library class, E_CLASS. 

GOOD is actually not just a browser but also a design aid which allows developers to enter 
new sysLem StrucLures and class relations (client, multiple inheritance) using a graphical, mouse­
driven interface, and will automatically generate the skeletons of the corresponding class texts. 

The environment also offers debugging tools: run-time checking of assertions; a tracer; a 
full-screen source-level debugger, which lets programmers do their debugging in tenns of object 
and classes (in contrast with to a traditional, function-oriented debugger), and enables them to 
explore the object structure at run-time. 

A documentation tool, short, produces a summary version of a class showing ille interface as 
available to clients: the exported features only and, in the case of routines, only the header, 
precondition and postcondition. The manual for the Basic Eiffel Library [5] is an example of 
EifCel documentation produced almost entirely from output generated by short. Such 
documentation is essentially obtained "for frcc" and, even more importantly, is guaranteed to be 
consistent with the documented software, as it is extracted from it. This should be contrasted with 
classical approaches, which view software and documentation as separate products. 

A related tool is flat, which produces inheritance-free versions of classes. When applied to a 
class, flat yields an equivalent class text where all inherited features have been expanded, taking 
into account renaming and redefinition. This makes it possible to distribute a self-contained version 
of the class and, in combination with short, to produce more complete documentation. 

The postprocessor, part of es, performs optional optimizations: removal of unneeded 
routines; application of static binding to routines for which dynamic binding is not nccessary; in­
line expansion of routine calls satisfying appropriate criteria. All these optimizations are performed 
safely wiilioUl any programmer intervention. They arc essential to allow programmers to enjoy the 
elegant and highly modular programming style encouraged by Eiffel witIlOut paying an 
unacceptable performance overhead. . 

The postprocessor doubles as cross-development tool. On option, it will generate from an 
Eiffcl system a stand-alone C package, complete with an automatically generated Make file and a 
copy of the run-time system (garbage collector,etc.), in C form. The result may be ported to any 
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environment supporLing C. This facility makes it possible to design and implement software in 
Eiffel, and deliver it in C form. Eiffel need not be available on the target environments. 

LIBRARIES 

A key part of the Eiffel approach is the ability to rely on predefined libraries of reusable classes, 
collectively known as the Basic Eiffcl Library. 

The Data Structure Library is a repertoire of carefully designed classes covering many of the 
most important data structures and algorithms of everyday programming. Use of the library is one 
of the elements that give Eiffel progmmming its distinctive flavor, enabling programmers to reason 
and write in terms of lists, trees, stacks, hash tables ctc. rather than arrays, pointcrs, flags and the 
like. 

Thc Graphics Library cnables users to manipulate windows, menus, geometrical figures and 
other graphical objects. The Graphics Library is internally based on thc MIT X-Windows systcm, 
but hides the lower-level X concepts from programmers, who only need to think of abstract 
graphical concepts. 

The Parsing Library offers tools for building compilers, interpreters and other parser-based 
tools with a elear object-oriented structure dedueed naturally from grammar structure. 

The Windowing Library supports the development of window-based, non-graphical 
applications. 

A number of new libraries arc under development. The Eiffel Software Shelf, a repertory of 
user-supplied libraries, allows for the quick dissemination of reusable components developed by 
Eiffel programmers the world over. 

CONCLUSION 

We believe that Eiffel is the first language to combine the most advanced ideas of object-oriented 
languages with the modem concepts of software engineering, and to make the result available to 
practicing software developers. Since its introduction in 1986, many companies have used Eiffel to 
produce systems in highly diverse fields. This experience consistently shows tremendous 
improvcments in quality and productivity. Academic users have also found in Eiffel a powerful tool 
for teaching courses throughout the software curriculum, from introductory programming to 
algorithm design, advanced data structurcs and software engineering. 

Technically, Eiffel brought in a number of important innovations. Among the new 
contributions are, from the language standpoint, the safe treatment of multiple inlll~ritance through 
renaming, the combination betwccn genericity and inheritance, disciplincd polymorphism by 
explicit redcfinition, the asscrtion mechanism and its combination with inheritance, a clean interface 
with external routines, the introduction of full static typing into an object-oriented language, the 
disciplined approach to exception handling based on the notion of contract, the clean dynamic 
model distinguishing between class types and expanded types, the systematic approach (not 
described in this presentation) to indexing library classes and phasing out obsolete library features. 
From the implementation and environment viewpoint, a number of our solutions arc also original: 
constant-time feature access, separate compilation with automatic rccompilation, coroutine garbage 
collection, object-oriented debugging and documentation, cross-development of portable C software 
packages, property-based browsing, graphical representations of class structures. 

Perhaps even more important than the innovations is the coherence and cOinpleteness of the 
entire language and environment design. Each facility is essential to the integrity of the system, 
and was conceived in relation to the others: genericity with multiple inheritance; dynamic binding 
with static typing; polymorphism with the constant-time routine access mechanism and the 
automatic application of static binding by the postprocessor whenever appropriate; assertions with 
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exceptions; redefinition of routines with the redefinition of assertions; assertions (again) with the 
short and flat automatic documentation tools; and so on. Powerful as we may hope each of these 
facilities to be on its own right, the whole is more than the sum of its ,Parts. 
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