Eiffel: An Introduction

Author: Bertrand Meyer.
Presented by: Philip Hucklesby.

Société des Outils du Logiciel
14 rue Jean Rey

75015 Paris

France

Abstract

The Eiffcl language and environment apply the concepis of object-oriented design and
programming to the construction of high quality software.

As a language, Eiffcl provides a range of features for the construction of rcusable and
reliable software components: classes, multiple inhcritance, polymorphism and dynamic binding,
genericity, strict static type checking, a disciplined cxception mechanism, systematic use of
assertions, invariants and other constructs for ensuring program ¢orrcctness.

Eiffel is implementcd by compilation through C, ensuring wide portability. On option, a
stand alone C package, movablc to any machine supporting C, may be generated from the text of
an Eiffel system. However the language itsclf is an original design and has no relation to C.

The cnvironment ensurcs scparale compilation of Eiffel classes; it also takes carc of
rccompilation mangagement, automatically triggering rc-compilation of modified classes without
programmer intervention. The tools of the environment include facilities for automatic
documentation (producing a class interface description from the claass texts), class browsers, an
interactive dcbugger, a system for graphical display of class hicrarchies, an optimising
postprocessor and other f{acilities. s

An important part of the environment is a set of librarics of reusable sofliware components
(classcs). They include the Data Structure Library, which covers fundamental data structures and
algorithms, Graphics library, supporting windowing and bit-mapped graphics, and the Parsing
Library, for writing compilers ad other parscr-based tools.

— 191 —



WHAT IS EIFFEL?

Eiffel addresses the soflware industry’s nced for a modemn language and development environment
supporting the analysis, design and implementation of high-quality software.

The language is based on advanced principles of object-oriented programming, with a special
emphasis on the rcliability or the resulling software components and systems,

The supporting environment, available on a number of hardware platforms, includes tools for
such tasks as automatic compilation management, C package gencration, class browsing, automatic
documentation and debugging.

A complementary component of Eiffel is the sct of libraries of pre-packaged reusable
software components covering many of the common tasks of software devclopment, from
fundamental data structures and algorithms to graphics, parsing, window management and others.

Beyond the language, environment and libraries, Eiffel is also a method of software
construction by combination of sclf-contained and flexible modules, and opens the perspective of a
true industry of reusable soltware components,

The present article is a general introduction to Eiffel. More detailed information {1, 2, 5-7] is
available. A recent book [3], explores the issucs of object-oriented soltware enginecring in depth,
and explains the Eiffel method of software design and implementation.

DESIGN PRINCIPLES

Software quality is a combination of many factors, In the current state of the industry, some of
thesc factors are in dirc nced of improvements. Onc is reusability, or the ability to produce
components that may be used in many different applications. Another is extendibility: “solt” as
software is supposed to be, it is notoriously hard to modify software systems, especially large oncs.

Among quality factors, reusability and extendibility play a special role: satisfying them
means having less software to write — and hence more time (o devote Lo the other goals (such as
efficiency, case of usc or integrity).

The third fundamental factor is reliability. Techniques such as assertions, disciplined
exception handling and static typing, cnabling devclopers to produce software with dramatically
fewer bugs, are part of the distinctive Eiffel approach to the cngincering of quality software.

Other requircments were poriability of the implementation, and efficiency of Eillcl-generated
software in both time and space, a concemn that could not be neglected in a tool aimed at practical,
medium- to large-scale industrial developments.

OBJECT-ORIENTED DESIGN

To achieve reusability and cxtendibility, the principles of object-oricnicd design scem to provide
the best known technical answer. An in-depth discussion of these principles would fall beyond the
scope of this introduction (sce [3]), but we nced a definition. Object-orientcd design is the
construction of software systems as structured collections of abstract data type
implementations. The following points are worth noting in this definition:

e The cmphasis is on structuring a system around the classes of objects it manipulates rather
than the functions it pcrforms on them, and on reusing whole data structures, together with
the associated operations, rather than isolated routines,

e Objects are described as instances of abstract data types — that is (0 say, dala structures
known from an official interface rather than through their representation.

e The basic modular unit, called the class, describes one implementation of an abstract data
type (or, in the case of “deferred” classes, studied below, a sct of possible implementations

— 192 —



of the same abstract data type).

» The word collection reflects how classes should be designed: as units which are inlcresting
and uscful on their own, independently of the systems to which they belong, and may be
reused by many dilferent sysiems. Soltware construction is viewed as the assembly of
existing classes, not as a top-down process starting from scratch.

e Finally, the word structured rellects the existence of imporiant relationships between
classes, particularly thc multiple inheritance rclation,

Eiffel results from a systematic effort to apply the full extent of object-oriented technology,
without the compromises that have marred previous object-oricnted language designs.

Eiffel as a language includes morc than presented in this introduction, but not much more; it
is a small language, comparable in size (by such a mcasure as the number of keywords) to Pascal.
It was meant 10 be a member of the class of languages which programmers can master entirely — as
opposed to languages of which most programmers know only a subsct. Yet it is appropriate for the
development of industrial software systems, as has by now bcen shown by a number of full-scale
projects, some in the hundreds of thousands of lings, in a number of companies,

CLASSES

A class, it was said above, represents an implementation of an abstract dala type, that is to say a
set of run-time objects characterized by the operations available on them (the same for all instances
of a given class), and the propertics of these operations. These objects are called the instances of
the class. Classcs and objects should not be confuscd: “class™ is a compile-time notion, whereas
objects only exist at run-time, This is similar to the dilference that exists in classical programming
between a program and one cxecution of that program.

A simple cxample is a class ACCOUNT describing bank accounts. Before presenting the
class itsclf, it is uscful to illustrate how it may be used by other classes, called its clients.

A class X becomes a client of ACCOUNT by dcclaring one or more cntitics of type
ACCOUNT, Such a dcclaration is of the form:

accl: ACCOUNT

Bank Account object J

Figure 1: Entity and associated object

The term “cntity™ gencralizes the more common notion of “variable”, An cntity declarcd of
a class type, such as accl, may at any time during excculion become attached to an object; the
type rules imply that this object must be an instance of ACCOUNT (or, as scen below, of a
“descendant” of that class). An entity which is not attached (o any object is said to be void. By
default (at initialization) cntitics arc void; an object is crcated by an instruction

accl.Create
which attachcs accl to the newly created object. Create is a predefined “fcature™ of the language.

— 193 —



Once the clicnt has associated accl with an object, it may apply to it the features defined in
class ACCOUNT. Examplcs are:

accl.open ("Jill");
acel deposit (S000);

if accl .may_withdraw (3000} then
accl .withdraw (3000)

end;

accl.balance.print

Most feature applications use the dot notation: entity_name feature_name. (Prcfix and infix
form, described below, are also avaitable.) There arc two kinds of f{caturcs: routines (as open,
deposit, may_wilhdraw or withdraw), rcpresenting operations applicable to instances of the class;
and attributes, representing data items associated with these instances.

Routines arc further divided into procedures (actions, which do not return a value) and
functions (rciurning a valuc). Here may_withdraw is a function returning a boolcan result; the other
three routines invoked arc procedures.

The above extract of class X docs not show whether, in class ACCOUNT, balance is an
attribute or an argumentless function, This ambiguity is intentional, A client of ACCOUNT, such
as X, does not nced to know how a balance is obtained: it could be stored as an attribute of cvery
account object, or computed by a funclion from other attributes. Choosing between these
techniques is the business of class ACCOUNT, not anybody clse’s. Because such implementation
choices are ofien changed over the lifctime of a project, it is esscntial to protect clients against
their effects.

Here now is a first sketch of how class ACCOUNT itsclf might look. Linec segmcents
beginning with -- are comments,

class ACCOUNT export

open, deposit, may_withdraw,

withdraw, balance, minimum_balance, owner
feature

balance: INTEGER ;

minimum_balance: INTEGER is 1000 ;
owner: STRING ;

open (who: STRING) is
-- Assign the account to owncr who
do
owner = who
end; -- open

add (sum: INTEGER) is
-= Add swn to the balance
-- (Sccret procedure)
do
balance := balance + sum
end, - add
deposit (sum: INTEGER) is
-- Deposit sum into the account
do
add (sum)
end, -- deposit

194 —



withdraw (sum: INTEGER) is
-- Withdraw sunt from the account
do
add (—sum)
end; -- withdraw

may_withdraw (sum: INTEGER): BOOLEAN is
-- Is there enough to withdraw sum?
do
Result ;=
(balance >= sum + minimum_balance)
end -- may_withdraw
end -- class ACCOUNT

This class includes two clauscs: feature, which describes the fcaturcs of the class, and
export, which lists the names of features available to clients of the class. Non-¢xported features arc
said to be sccret. Here procedure add is scerct, so that accl.add (-3000) would be illegal in X.
Altribute minimum_balance is also secret.

Let us cxaminc the {catures in scquence. The is ... do ...end distinguishes routines from
attributes. So here balance has been implemented as an attribute. The clause is 1000 introduces
minimum_balance as a constant attribute, which will not occupy any physical space in objects of
the class. Non-constant attributes such as balance do use space for cach object of the class; they
arc similar to components of a rccord in Pascal,

The language definition guaranices auntomatic initialization, so that the initial balance of an
account object will be zero after a Create. The initial valucs are zcro for numeric attributes, false
for booleans, null characters for characters, and void references for entitics of class types.

The other five featurcs are straightforward routines. The first four ar¢ procedurcs, the last
onc (may_withdraw) a [unclion rcluming a boolcan value. The special variable Result denotes the
function resull; it is initialized on function entry to the default value of the appropriate type, as
defincd above.

To understand the routines f{ully, you must remember that in Eiffcl’s object-oriented
programming style any operation is rclative to a certain object. In an cxitcmal client invoking the
operation, this object is specified by writing the corresponding entity on the left of the dot, as acel
in accl.open ("Jill"). Within the class, however, the “current” instance to which operations apply
usually remains implicit, so that unqualificd fcaturc namcs, such as owner in proccdure open or add
in deposit, mecan “the owner altribute or add routine relative to the current instance”, The special
variable Current may be used, if needed, to denote this object cxplicitly. For cxample the
unqualified occurrences of add appcaring in the above class arc cquivalent to Current.add.

In some cascs, infix or prefix notation is more convenicnt. For cxample, most people will
prefer calling the addition routine of a class VECTOR under the form v + w rather than v.pius( w ).
This is indced possible if you call the routine infix "+" rather than plus. Internally, the operation is
still a routine call. Prefix operators are similarly available.

The above simple cxample has shown the basic structuring mechanism of the language: the
class. A class describcs a dala structure, accessible to clicnts through an official interface
comprising some of the class featurcs. Features are implemented as attributes or routines; the
implementation of exported features may rely on other, sccret oncs.

TYPES

Eiffcl is swrongly typed. Every cntity is declared of a certain type; a type may be cither a class type
or an ¢xpanded type.

— 195 —



A class type is simply defined by a class, such as ACCOUNT. As noted above, the run-time
value of an entity declared of a class type is a reference to potential objects (instances of the class).
Class types include such types as ARRAY and STRING, described by classcs in the Basic Eiffel
Library.

In contrast with class types, values of an cxpanded type are objects, not references to objects.
Expanded types include the basic predefined types INTEGER, REAL, DOUBLE, CIIARACTER and
BOOLEAN. Clearly, the value of an enlity declarcd of type INTEGER should be an integer, not a
reference to an object containing an integer value. Opcrations on these types are defined by prefix
or infix operators. as a result, the Eilfel type system is fully rcgular and consistent: cvery type,
including the basic types, is delined from a class, either as a class type or as an cxpanded type,
(Of course, in the case of basic types, the compiler implements the standard arithmetic and boolcan
operations dircctly, not through routine calls; but this is only an oplimization, which does not
hamper the conceptual homogencity of the type edifice.)

ASSERTIONS

Classes are defincd as abstract data typc implementations. What defines an abstract data type,
however, is not just the available operations, but also the formal properties of these operations,
which do not appcar in the above example.

Eilfel enables and encourages programmers {0 express formal properties of classes by wriling
assertions, which may in particular appcar in the following roles:

¢ Routine preconditions cxpress the requirements that clients must satisfly whenever they
call a routine, For example withdrawal might only be permitted if it keeps the account’s
balance on or above the minimum. Preconditions are introduced by the keyword require.

¢ Routine postconditions, introduced by the keyword ensure, express conditions that the
routine (the supplicr) guarantces on return, if the precondition was satisficd on entry.

o Class invariants must be satisficd by objects of the class at all times, or more precisely
after object creation and after any call to a routine of the class, They are described in the
invariant clause of the class and represent gencral consistency constraints that are imposed
on all routines of the class.

With appropriate asscrtions, the ACCOUNT class becomcs:

class ACCOUNT export ... (as belore) feature
.. Atllributes as before: balance, minimum_balance, owner

open ... -- as belore;
add ... -- as belore;

deposit (sum: INTEGER) is
-- Deposit swn into the account
require
sum >= 0
do
add (sum)
ensure
balance = old balance + sum
end, - deposit

— 196 —



withdraw (sum: INTEGER) is
-« Withdraw sum {rom the account

require

sum>=0;

sum <= balance - minimum_balance
do

add (-sum)
ensure

balance = old balance - sum
end; - withdraw

may_withdraw ... -- as before

Create (initial: INTEGER) is
require
initial >= minimum_balance
do
balance := initial
end -« Create

invariant
balance >= minimum_balance
end -- class ACCOUNT

The old atrribute_name notation may only be used in a routine postcondition. It denolcs the
value the attribute had on routine entry.,

This class now includes a specific Create procedurc, as necded when the delault
initializations are not sufficicnt. Undcr the previous scheme, an account was created by, say,
accl.Create. Because of the initialization rules, balance is then zero and the invariant is violated. If
a diffcrent initialization is rcquired, possibly requiring (as here) client-supplicd arguments, the class
should include a procedure called Create. The effect of

accl.Create (5500)

is to allocate the object (as in the dcfault Create) and to call the procedurc called Create in the
class, with the given argument. This call is correct as it satisfics the precondition and ensures the
invariant. (Procedurc Create, when provided, is recognized as special; it is antomatically exported
and should not be included in the export clause.)

Syntactically, asscrtions arc boolcan cxpressions, with a few c¢xtensions (like the old
notation). The semicolon (sce the precondilion to withdraw) is equivalent to an “and”, but permits
individual idcntification of the components, uscful for producing informative error messages when
assertions are checked at run-time,

Assertions play a central role in the Eiffel mcthod for building reliable object-criented
software. They serve to make explicit the assumptions on which programmers rely when they
write program f{ragments that they believe arc correct. Writing assertions, in particular
preconditions and postconditions, amounts to spelling out the tcrms of the contract which governs
the relationship between a routine and its callers. The precondition binds the callers; the
postcondition binds the routinc, '

The underlying thcory of programming by contract [3, 4] views soltware construction as
based on contracts between clients (callers) and supplicrs (routines), relying on mutual obligations
and advantages made explicit by the asscrtions. As will be scen below, this theory also explains
much of the mcaning of inherilance, and lies at the basis of Eiflel’s disciplined exception
mechanism.

Asscriions arc also an indispcensable ool for the documentation of reusable sofltware
components; as with hardware components, one cannot cxpect large-scale rcuse without a precise
documentation of what every component cxpects (precondition), what it guarantees in return
(postcondition) and what gencral conditions it maintains (invariant). The documcntation tools of

— 197 —



the Eiffel environment, such as short (studicd below), usc assertions (o produce information for
client programmers, describing classes in terms of observable behavior, not implemcntation.,

Assertions may be indeed be monitored at run-time; since such monitoring may penalize the
performance, it is cnabled on option, class by class, (For each class, two Icvels of monitoring are
possible: preconditions only or all asscrtions.) This provides a powerful debugging tool, in
particular because the classes of the Basic Eiffel Library, which are widcly used in Eiffel
programming, are protecled by carefully written assertions. A violated assertion will trigger an
exception, as described below; uniess the programmer has wrilten an appropriate exception handler,
the exception will cause an error message and termination,

Run-time checking, however, is only one application of asscrtions, whose role as design and
documentation aids excris a strong influcnce on the Eiffel programming style.

EXCEPTIONS

Whenever there is a contract, the risk ¢xists that somcone will break it. This is where cxceptions
come in. (Other references [3, 4, 8] doscribe the Eilfel exception mechanism in more detail.)

An exceplion may arise from onc of several causcs. When asscrtions are monitored, an
assertion violation will raisc an exception. Another cause is the occurrence of a hardware-triggered
abnormal signal, arising for example from arithmetic overflow or a failure to find the mcmory
neceded for allocating an object.

Unless a routine has made specific provision to handle cxceptions, it will fail if an exception
arises during its execution. Failure of a routine is a third cause of exception: a routine that fails
triggers an exception in its caller.

A routine may, however, handle an exception through a rescue clause. This optional clause
attempts 10 “patch things up” by bringing the current instance to a stable state (one satisfying the
class invariant). Then it can terminate in cither of two ways:

e The rescue clausc may execute a retry instruction. This will cause the routine to restart its
cxecution [rom the beginning, aliempting again to f{ulfil the routine’s contract, usually
through another strategy. This assumcs that the instructions of the rescue clause, before the
retry, have attempted o correct the cause of the exception.

e If the rescue clause docs not end with retry, then the routine fails: it rcturns to its caller,
immediately signaling an exception. (The caller’s rescuc clause will be exccuted according
10 the same rules.) .

Note that a routine with no rescue clause is considercd to have an cmpty rescue clause, so
that any cxception occurring during the exccution of the routine will cause the routine to fail
immediately.

The underlying principle is that a routine must either succeed or fail: either it fulfils its
contract, or it does not; in the latter case it must nolify its caller by triggering an exception.

This should be contrasted with the Ada cxception mechanism, which does not rcly on any
notion of contract. This encourages writing routines that will fail to achieve their purpose but do
not notify the caller because the exception is handled locally. Such examples, which may even be
found in Ada textbooks (sce cxample quoted in [4]), violate the above principle by involving
routines that neither succeed (they didn’t fulfil their job) nor fail (the caller is not notified and
continues its exccution on the false assumpltion that the call was normally completed). This is the
reason why the Ada mcchanism is so dangerous. Also note that the retry instruction must often
be implemented in Ada using intricatc control structures: goto instructions and multi-level loop
exits [4].

An example of the Eiffcl cxception mechanism is a routine attempt_transmission that
transmits a message over a phone line. The actual transmission is performed by an external, Iow-
level routine ¢ransmit; once slarled, however, fransmit may abruptly fail, triggering an cxception, if

— 198 —



the line is disconnected. Routine attempi_transmission trics the transmission at most § times;
before returning to its caller, it sets a boolean attribute successful 1o true or false depending on the
ouicome, Here is the text of the routine:

attempt_transmission (message: STRING) is
-- Allempt transmission of message,
-- at most 5 times.
-- Set successful accordingly.

local
failures: INTEGER
do

if failures < 5 then
transmit (message);
successful := true
else
successful := false
end
rescue
failures := failures + 1;
refry
end; -- altempi_transmission

The integer local variable failures is initialized (o zero on cntry.

This example shows onc of the key rcasons for the simplicity of the mechanism: the rcscue
clause never attempts to achicve the original intent of the routine; this is the sole responsibility of
the normal body (the do clausc). The only role of the rescue clause is to “patch things up” and
cither fail or retry. '

This disciplincd cxception mechanism is cssential for practicing programmers, who need a
protection against unexpected events, but cannot be expected to sacrifice safety and simplicity to
pay for this prolection.

MULTIPLE INHERITANCE

Building softwarc componcnts (classes) as implementations of abstract data types yields sysicms
with a solid architecture but docs not in itself suffice to ensure reusability and extendibility. Two
key Eiffel techniques address the problem: inheritance, studied in this scclion, and genericity,
studicd bclow,

Multiple inheritance is a key technique for reusability. The basic idea is simple: when
defining a new class, it is often fruitful to introduce it by combination and specialization of existing
classes rather than as a new entity defined from scratch.

The following simple example, {from the Basic Library, is typical. LIST, as indicated,
describes lists of any rcpresentation. One possible representation for lists with a fixed number of
elements uscs an array. Such a class will be defined by combination of LIST and ARRAY, as
follows:

class FIXED_LIST [T] export ...
inherit
LIST [T],
ARRAY [T]
feature
... Specific featurcs of fixed-size lists ...
end -- class FIXED_LIST

The inherit... clause lists all the “parents” of the new class, which is said to be their “heir”.
(The “ancestors” of a class include the class itself, its parents, grandparcnts cic.; the reverse term is

— 199 —



“descendant”.) Declaring FIXED_LIST as shown ensurcs that all the features and properties of lists
and arrays are applicable to fixed lists as well.

Another cxample is extracted [rom a windowing systcm based on a class WINDOW.
Windows have graphical fcatures: a height, a width, a position etc., with associated routincs to
scale windows, move them and so on. The system permits windows to be nested, so that a window
also has hierarchical fcatures: access to subwindows and the parent window, adding a subwindow,
deleting a subwindow, attaching to another parent and so on. Rather than writing a complex class
that would contain specific implementations for all of these {catures, it is much preferable to inherit
all hierarchical feawures from TREE (one of a number of classes in the Basic Eiffel Library
describing tree implementations), and all graphical features from a class RECTANGLE,

Multiple inheritance yiclds rematkable economies of programming effort and has a profound
effect on the software development process.

The very power of the mechanism demands adequate means to kecp it under control. In
Eiffel, no name conflict is permilted between inherited feawres. Since name conflicts inevitably
arise in practice, espccially for classes contributed by indcpendent developers, the language
provides a technique to remove them: renaming, as in

class C export.., inherit
A rename x as xI, y as yl;
B rename x as x2, y as y2
feature...

Here the inherit clause would be illegal without renaming, since both A and B have [caturcs named
xand y.

Renaming also scrves to provide more appropriate feature names in descendants, For
exampie, class WINDOW, as mentioned, inherits routines such as insert_subtree {rom TREE. For
clients of WINDOW, however, such routine names arc not appropriale. An application using this
class for window manipulation needs coherent window terminology, and should not be concerned
with the inheritance structure that led to the implementation of the class. So it is appropriate to
rename insert_subiree as add_subwindow in the inhcritance clausc of WINDOW,

As further incentive not to misuse the multiple inheritance mechanism, the invariants of all
parent classcs automalically apply to a ncwly defined class. So classes may not be combincd if
their invariants are incompatiblc.

POLYMORPHISM AND DYNAMIC BINDING

Inhcritance is not just a module combination and cnrichment mcchanism. It also cnablcs the
dcfinition of flexible program cntitics that may become attached 10 objects of various forms at run-
time (hence the term “polymorphic™),

In Eiffcl, this remarkable facility is reconciled with static typing. The underlying language
convention is simple: an assignment of the form a ;= b is permitted not only if a and b are of the
same type, but more gencrally if a and b are of class types A and B such that B is a descendant of
A.

This corresponds to the intuitive idca that a value of a more specialized type may be assigned
to an entity of a less specialized type ~ but not the reverse. (As an analogy, consider the fact that if
you request vegetables, getting green vegetables is fine, but if you ask for green vegetables,
receiving a dish labeled just “vegetables™ is not acceptable, as it could include, say, carrots.)

What makcs this possibility particularly powerful is the complementary facility: feature
redefinition. A feature of a class may be rcdefined in any descendant class; the type of the
redefined feature (if an auribule or a function) may be redefined as a descendant type of the
original feature, and, in the case of a routine, its body may also be rcplaced by a new one.

— 200 —



Assume for example a class POLYGON, describing polygons, whose fcatures include an array
of points representing the verlices and a function perimeter which computes a polygon’s perimeter
by summing the successive distances between adjacent vertices, An heir of POLYGON may be:

class RECTANGLE export ... inherit
POLYGON redefine perimeter
feature
-- Specific features of rectangles, such as:
sidel: REAL; side2: REAL;

perimeter: REAL is
-- Rectangle-specific version
do
Result := 2 star (sidel + side2)
end; -- perimeter
... other RECTANGLE features ...

Here it is appropriate to redefine perimeter for reclangles as there is a simpler and more
efficient algorithm. Note the cxplicit redefine subclause (which would come after the rename if
present),

Other descendants of POLYGON may also have their own rcdefinitions of perimeter. The
version to use in any call is determined by the run-time form of the target. Consider the following
class fragment;

p: POLYGON; r: RECTANGLE;
... p.Create; r.Creale; ...

if c then p = r end;

print (p.perimeter)

The assignment p = r is valid because of the above rule, If condition ¢ is false, p will be
attached o an object of type POLYGON for the computation of p.perimeter, which will thus use
the polygon algorithm. In the opposite case, however, p will be attached to a rectangle; then the
computation will use the version redefined for RECTANGLE. This is known as dynamic binding.
We shall sce below that it is implemented in Eiffel without negative cffccls on run-time
performance.

Dynamic binding provides a high degree of flexibility. The key advantage for clients is the
ability to request an operation (such as perimcier computation) without explicitly selecting one of
its variants; the choice only occurs at run-time. This is esscntial in large systems, where many
variants may be available; each component must be protlected against changes in other components.

This technique is particularly auractive when compared o its closest equivalent in traditional
approaches. In Pascal or Ada, you would nced records with variant components, and case
instructions to discriminate between variants, This means every client must know about all possible
cases, and that any cxtcnsion may invalidalc a large body of cxisting software. The Ada facilitics
for overloading and gencricity do not bring any improvement in this respect, since they do not
support a programming style in which a clicnt module may issuc a rcquest meaning: “compute the
perimeter of p, using the algorithm appropriate for whatever form p happens to have when the
request is exccuted”.

In contrast, dynamic binding and inhcritance support a devclopment mode in which cvery
module is open and incremental: an existing class may always be given a new descendant (with
new and/or redefined fcawres) without any change to the original. This facility is of great
importance in sofiware devclopment, an aclivity which — whether by design or by circumstance - is
invariably incremental.

Eiffel handles polymorphism and dynamic binding in a disciplined way. First, feature
redefinition, as scen above, is explicit. Sccond, because the language is typed, the compiler can
check statically whether a feature application af is correct. In contrast, languages such as Smallialk
and its descendants defer checks until run-time and hope for the best: if an object “scnds a

— 201 —



message” 1o another (that is to say, calls onc of its routines) onc just expects that the corresponding
class, or one of its ancestors, will happen to include an appropriate “method” (routine); if not, a
run-time error will occur. Such crrors may not happen during the cxccution of a corrcctly
compiled Eiffcl system. In other words, Eiffel reconciles dynamic binding with static typing.
Dynamic binding guarantces that whencver more than one version of a routine is applicable the
right version (the one most directly adapted to the target object) is automatically selected, Static
typing means that the compiler makes sure there is at least one such version,

The Eilfel policy also yiclds an important performance benefit: in contrast with the costly
run-time scarches that may be nceded in the absence of static typing (since a requested routine may
not be defined in the class of the target object but inherited {rom a possibly remote ancestor), the
Eiffcl implementation always finds the appropriale rouline in constant time,

Eiffel's assertions provide a further mechanism for controlling the power of redefinition. In
the absence of specific precautions, redefinition may be dangerous: how can a client be sure that
evaluation of p.perimeter will not in some cascs return, say, the area? Onc way to maintain the
semanlic consistency of routines throughout their redefinitions is to use preconditions and
posiconditions, which are binding on redefinitions. More precisely, any redefined version must
salisly a weaker or cqual precondition and ensure a stronger or equal postcondition than in the
original. Thus, by making the scmantic constraints explicit, routine writers may limit the amount of
freedom granted to eventual redefiners.

These rules should be understood in light of the contract thcory. Redefinition and dynamic
binding introduce subcontracting: POLYGON, for example, subcontracts the implementation of
perimeter 10 RECTANGLE when applied to any cnltity that is attached at run-time to a rectangle
object, An honest subcontractor is bound by the contract accepted by the prime contractor: it may
not impose stronger requircments on the clicnts (but may accept more general requests, which is
why the precondition may be weaker); and it must achicve at Icast as much as promised by the
original contractor (but may achieve more, which is why the postcondition may be stronger).

DEFERRED CLASSES

The inheritance mechanism includes one more major component: A deferred class is a class which
contains at least one deferred routine; a routine is declared as deferred 10 express that
implementations of the routine will only be provided in descendants. For example, a system used
by the Department of Motor Vehicles 1o register vehicles could include a class of the form

deferred class VEHICLE export
dues_paid, valid_plale, register, ...
feature
dues_paid (year: INTEGER): BOOLEAN is

end; -- dues_paid
valid_plate (year: INTEGER): BOOLEAN is

end; -- valid_plate

— 202 —



register (year: INTEGER) is
-- Register vehicle for year
require
dues_paid (year)
deferred
ensure
valid_plate (year)
end; -- register

... Other features ...
end -- class VEHICLE

This example assumes that no single registration algorithm applics to all kinds of vechicle;
passenger cars, motorcycles, trucks ctc. are all registercd differently. But the same precondition
and postcondition apply in all cascs. The solution is to treat register as a dcferred routine, making
VEHICLE a deferred class. Effective versions of the routine are given in of class VEHICLE, such
as CAR or TRUCK, They are similar to redefined versions of a routine; only herc there is no
elfective definition in the original class, only a specification in the form of a deferred routine.

Deferred classes describe a group of implementations of an abstract data type rather than just
a single implementation. A deferred class may not be instantiated: v.Create is illegal if v is an
entity declared of type VEIIICLE. But such an entity may be assigned a reference to an instance of
a non-deferred descendant of VEIICLE. For example, assuming CAR and TRUCK provide effective
definitions for all delerred routines of VEHICLE, the following will be correct:

v: VEHICLE, c: CAR; 1: TRUCK;
¢. Creale {...); t.Create (...);

if “somc test” then v ;= ¢ else v ;= 1 end;

v.register (1988)
The mechanisms of polymorphism and dynamic binding are fully exploited here: depending on the
outcome of “some test”, v will be wtreated as a car or a truck, and the appropriate registration
algorithm will bc applied. Note that “some tcst” may depend on some event whose outcome is
impossible to predict until run-time, for example the user clicking with the mouse to sclect one
among scvcral vehicle icons displayed on the screen.

Deferred classes are particularly uscful for the application of Eiffel at the analysis and design
stages. The first version of a module may be a deferred class, which will later be refined into one
or more effective (non-deferred) - classes. Particularly important for this application is the
possibility to associate a precondition and a postcondition to a routine even though it is a deferred
routine (as with regisier above), and an invariant to a class even though it is a deferred class. This
cnablcs the designer to attach a precise semantics to a module at the analysis or design stage, long
before making any implementation choices.

The combination of deferred classcs and asscrtions makes Eiffel a more appropriale tool for
high-level design than cxisting “PDLs” (Program Dcesign Languages). Common PDLs offer no
facility comparable to Eiffel assertions for describing the semantics of routincs independently of
their implementations. The further benefit with Eiffcl, of course, is that it is not just a design
language, but can be clficiently cxecuted as well, so that that no conceptual gap is introduced
between design and programming,

GENERIC CLASSES

Together with inheritance, Eilfel's gencricity is essential for writing f{lexible, parameterized classes.
Genericity allows classes o have generic parameters, representing types. The following cxamples
come from the Basic Library:

— 203 —



ARRAY [T}
LIST [T]
LINKED_LIST [T}

They respectively describe one-dimensional arrays, general lists (without commitment to a
specific representation) and lists in linked representation. Each has a formal generic parameter T
representing an arbitrary type. To usc these classes, you provide actual gencric parameters, which
may be cither simple or class types, as in the following declarations:

il: LIST [INTEGERY];
aa: ARRAY [ACCOUNT];
aal: LIST [ARRAY [ACCOUNT]] -- etc.

Without genericity, it would be impossible to obtain stalic type checking in an object-
oricnted language.

Genericity may be constrained: by indicating a class name after a formal gencric parameter,
as in VECTOR [T —> ADDABLE], you express that only descendants of that class (here ADDABLE
may be used as the corrcsponding actual gencric parameters. This makes it possible to use the
comresponding operations. Here, for example, class VECTOR may define a routine infix "+" for
adding vectors, based on the corresponding routine from ADDABLE for adding vector clements,
Then by making VECTOR itsclf inhcrit [rom ADDABLE, you make it satisfy its own gencric
constraint, enabling the definition of types such as VECTOR [VECTOR [T]].

An carlier article [2] discussed the role of genericity in comparison to inheritance and
explained their combination in Eiffel, especially in the context of strict type checking. An
important component of the solution, requircd to guarantce lype consistency, is the notion of
“declaration by association™ [2, 3, 6].

THE IMPLEMENTATION

The original Eiffcl implemcntation ran on various versions of Unix (System V, 4.3BSD, Xcnix) and
has been ported 10 more than thirty different machine architecturcs. Versions of Eiffcl are under
way for VAX-VMS, OS/2 and other architectures.

The compiler uses C as intermedialc language, making Eilfel potcntially portable to any
environment supporting C. An important consequence of this technique is the ability to use the
Eiffel compiler as a cross-development tool, generating a self-contained C package as end product;
this is explaincd in the next scction. Another advantage is the ease of interfacing Eiffel with
existing soltware written in C or other languages, as discussed below.

Although the compiler relics on C for practical purposcs, Eiffcl is in no way a C extension;
as the above discussion should suffice to show, C had no influcnce on the language design. The use
of C as implementation vchicle presents a number of advantages, but is only one possible
technique. :

Great care has been taken to provide efficicnt compilation and execution, so that the
environment would support the dovelopment of scrious software, The following points are
particularly worth noting.

* Redelinition and dynamic binding imply that a qualificd routine reference, say p.perimeter,
may have many diffcrent interpretations depending on the value of p at run-time. As noted
above, a run-time search for the appropriate routing, as implemented in many systems, would
carry a heavy performance penalty. The maximum search length grows with the depth of the
inheritance graph, putting rcusability (which tends to increase this depth) and extendibility
(which promotes redefinition) at odds with efficicncy. With multiple inheritance, run-time
scarch becomes hopcless: a complete graph of ancestor classes, not just a linear list, would
have to be scarched at run-time.

— 204 —



In contrast, the Eiffcl implementation always finds the proper routine in constant time, with
only a small penalty over the cost of procedure call, This result was difficult to achieve, but
essential in light of the previous discussion. Regardless of the amount of redefinition and
polymorphism in your system, a. f always lakes the same (small) time.

e There is almost never any code duplication. Again this was difficult o achieve with
multiple inheritance and genericity. For example, most Ada implementations duplicate code
for every instance of a gencric module.

e The run-time¢ system handles objcct creation and mcmory de-allocation. It includes an
incremental garbage collector, implemented as a coroutine which steals only negligible time
from application programs. Automatic garbage collection is esscntial to the application of
object-oricnted techniques to real developments (as opposed to toy experiments). Object-
oricnied applications, which typically crcalc many objccts, should not be polluted with
complex, crror-pron¢ memory management code,

Garbage colicction may be turned off (for cxample during inilialization); the collcctor
coroutine may also be cxplicitly activated for a certain time at points where the programmer
knows some CPU time is available (for example while awaiting user input in an interactive
application).

e Compilation is pcrformed on a class-by-class basis, so that large sysicms can be changed
and cxicnded incrementally. The Eilfel to C translation time is usually about half of the time
for the next step, C to machine code.

Also important in practice is the openness of the cnvironment. Eilfel classcs are meant to be
interfaced with code written in other languages. An environment promoting rcusability should
enable rcuse of soltware built with other approaches, in particular if it was developed prior to its
introduction.

Openncss is supported by both call-out and call-in mechanisms. Call-out is achieved through
the optional external clause of routine dcclarations, which lists nccded external subprograms. For
example, a squarc root routing might rely on an external function;
sqrt (x: REAL, eps: REAL): REAL is

-- Square root of x with precision eps

require
x>=0;eps>0
external
csqrt (x: REAL, eps: REAL): REAL
do
Result := csqrt (x, eps)
ensure
abs (Result ~ 2 — x) <= eps
end -- sqrt

It is possible with this mechanism to communicate with other languages without impacting
the conceptual consisiency of the Eiffel classcs. Note in particular how the C function sgrt is
granted a more dignified status as Eiffcl routine with the addition of a precondition and a
posicondition,

Thanks to the call-out facilitics, Eiffel can serve as an integrating mechanism for components
written in other languages. Using Eiffel classes and all the associated structuring facilitics (multiple
inhcritance, genericity, export controls, asscrtions), you may be package elements writien in other
languages, such as numecrical routines, graphics primitives, database facilitics etc., into clcan and
convenient modules.

The external interface also supports call-in: software clements written in other languages may
create Eiffel objects, call routines on these objects, and access their attributes,

— 205 —



THE ENVIRONMENT

The construction of systems in Eiffel is supported by a set of development tools.

Most important arc the facilitics for automatic compilation management integratcd in the
compilation command es (Eiffel System). When compiling a class C, es automatically looks for all
classes on which C depends directly or indirectly (as clicnt or heir), and recompiles those whose
compiled versions are obsolete. Unix programmers will recognize this facility as giving the power
of Make, but there is a fundamental difference: instcad of having to describe manually the
dependencics between modules, a tedious and error-prone process, the Eiffel programmer Icts es
take care of analyzing these dependencies automatically.

This problem is far {rom- trivial because dcpendency relations are complex (a class may be,
say, a clicnt of one of its descendants) and, in the case of the client relation, may involve cycles.
The Eiffel solution totally frces programmers {rom having to kecp track of changes to maintain the
consistency of their systems. The algorithm avoids many unnceded rccompilations by detecting
modifications of a class that do not affect its interface, so that clicnts nced not be recompiled.  This
has proved very imporiant in practice, preventing a chain reaction of recompilations in a large
system when a feature implementation is changed in a low-level class.

The possibilities offcred by Eilfel techniques for producing high-quality rcusable soltware
componcnts mean that uscrs need computerized support for finding out about available classes and
their properties. A sct of browsing facilitics is offcred for that purposc. They include a full-screen
browscr, eb (Eiffcl browser), and a graphical browscr, GOOD (Graphics for Object-Oriented
Design), which shows the information in graphical, “bubbles and arrows” form. Both make it
possible to query the cnvironment on available classes on the basis of their fcatures and other
propertics. Both eb and GOOD are human interfaces to a set of facilities which are dircctly
available 10 any Eiffel application as the exported {caturcs of a library class, E_CLASS.

GOOD is actually not just a browser but also a design aid which allows developers to enter
new syslem structurcs and class relations (client, mulliple inheritance) using a graphical, mouse-
driven interface, and will automatically gencrate the skeletons of the corresponding class texts.

The cnvironment also offers debugging tools: run-time checking of asscrtions; a tracer; a
full-screen source-level debugger, which lets programmers do their debugging in terms of object
and classes (in contrast with 1o a (raditional, function-oricnied debugger), and cnables them (o
explore the objcct structure at run-time,

A documentation tool, short, produces a summary version of a class showing the interface as
available to clicnts: the exportcd featurcs only and, in the case of routines, only the hcader,
prccondition and postcondition. The manual for the Basic Eiffel Library [S] is an example of
Eiffel documentation produced almost entircly from output generated by short.  Such
documentation is csscntially obtained “for {ree” and, even more importantly, is guarantced 1o be
consistent with the documentcd software, as it is extracted from it. This should be contrasted with
classical approaches, which view software and documentation as separatc products.

A related tool is flat, which produces inheritance-free versions of classes. When applied o a
class, flat yiclds an cquivalent class text where-all inheriled features have been expanded, taking
into account renaming and redefinition, This makes it possible to distribute a self-contained version
of the class and, in combination with short, to produce more complete documentation.

The postprocessor, part of es, performs optional optimizations: removal of unneccded
routines; application of static binding to routines for which dynamic binding is not nccessary; in-
linc expansion of routine calls satisfying appropriate critcria. All these optimizations are performed
safely without any programmer intervention, They are essential (o allow programmers to enjoy the
clegant and highly modular programming style cncouraged by Eiffel without paying an
unacceplable performance overhead.

The postprocessor doubles as cross-development tool. On option, it will gencrate from an
Eiffcl system a stand-alonc C package, complete with an automatically generated Make file and a
copy of the run-time sysicm (garbage collector-ctc.), in C form, The result may be ported to any

— 206 —



er}vironment sppporling C. This facility makes it possible to design and implement software in
Eiffel, and deliver it in C form. Eiffcl nced not be available on the targct environments.

LIBRARIES

A key part of the Eiffel approach is the ability to rely on predefined libraries of reusable classes,
collectively known as the Basic Eiffel Library,

The Data Structure Library is a repenoire of carclully designed classes covering many of the
most important data structures and algorithms of everyday programming. Use of the library is one
of the elements that give Eiffel programming its distinctive flavor, cnabling programmers to reason
ﬁtll(d write in terms of lists, trces, stacks, hash tables cic. rather than arrays, pointers, flags and the

e.

The Graphics Library cnables users (0 manipulate windows, menus, geometrical figures and
other graphical objects. The Graphics Library is internally based on the MIT X-Windows system,
but hides the lower-level X concepts from programmers, who only nced lo think of abstract
graphical concepts.

T.hc Parsing Library offers tools for building compilers, interpreters and other parser-based
tools with a clear object-oriented structure deduced naturally from grammar structure,

The Windowing Library supports the development of window-based, non-graphical
applications.

A number of new librarics are under development, The Eiffcl Sofiware Shelf, a repertory of
user-supplied libraries, allows for the quick dissemination of rcusable components developed by
Eiffel programmers the world over.

CONCLUSION

We believe that Eiffel is the first language to combine the most advanced ideas of object-oricnted
languages with the medern concepts of software engincering, and to make the result available to
practicing softwarc developers. Since its introduction in 1986, many companics have used Eilfel to
produce systems in highly diversc ficlds. This cxpericnce consistently shows Lremendous
improvements in quality and productivity. Academic uscrs have also found in Eiffel a powerful tool
for teaching courses throughout the software curriculum, from introductory programming to
algorithm design, advanced data structurcs and software cngincering.

Technically, Eiffel brought in a number of important innovations. Among the ncw
contributions are, from the language standpoint, the safe treatment of multiple inheritance through
renaming, the combination between gencricity and inheritance, disciplined polymorphism by
explicit redefinition, the asscrtion mechanism and its combination with inhcritance, a clean interface
with external routines, the introduction of [ull static typing into an objcct-oricnted language, the
disciplined approach to cxception handling bascd on thc notion of contract, the clecan dynamic
model distinguishing between class types and expanded types, the systcmatic approach (not
described in this presentation) to indexing library classcs and phasing out obsolcte library features.
From the implementation and environment viewpoint, a number ol our solutions arc also original:
constant-lime fcature access, separatc compilation with automatic recompilation, coroutine garbage
collection, object-oriented debugging and documentation, cross-development of portable C software
packages, property-bascd browsing, graphical representations of class structurcs.

Perhaps cven more important than the innovations is the coherence and completeness of the
cntire language and cnvironment design. Each facility is esscntial to the integrily of the system,
and was conceived in rclation to the others: genericity with multiple inheritance; dynamic binding
with static typing; polymorphism with the constant-time routine access mechanism and the
automatic application of stalic binding by the postprocessor whenever appropriate; asscrtions with

— 207 —



exceptions; redefinition of routines with the redefinition of assertions; asscrtions (again) with the
short and flat automatic documentation tools; and so on. Powerful as we may hope cach of these
facilities 10 be on jts own right, the whole is more than the sum of its parts.

References

Documents [3] to [7] are available from Interactive Software Engineering., [3] may also be found
in technical bookstores. A report entitled “An Eiffel Collection”, available from Interactive,
contains the major journal articles on Eiffel, including [1], [2] and [8].

References

L

Bertrand Meyer, “‘Reusability: the Case for Object-Oricnted Design,” IEEE Software, vol. 4,
no. 2, pp. 50-64, March 1987.

Bertrand Meyer, *‘Genericity, static type checking, and inheritance,’” The Journal of Pascal,
Ada and Modula-2, 1988. (Original version in OOPSLA 86 proceedings, SIGPLAN Notices,
Sept. 1986, pp. 391-405.)

Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall, 1988.

Bertrand Meyer, ‘‘Programming as Contracting,”” Technical Report TR-EI-12/CO, Interactive
Software Enginccring, Santa Barbara (Calif.), 1988,

Berirand Meyer, ‘‘Eiffel: The Libraries,’”” Technical Report TR-EI-7/LI, Interactive Software
Enginecring Inc., Sanla Barbara (Calif.), October 1986 (version 2.2, August 1989). (To be
published by Prentice-Hall in 1990.)

Bertrand Meyer, “‘Eiffcl: The Language,’”’ Technical Report TR-EI-17/RM, Interactive
Software Enginccring Inc., Santa Barbara (Calil.), 1989. (To be published by Prentice-Hall in
1990.)

Bertrand Meyer, ‘‘Eiffcl: The Environment,”’ Technical Report TR-EI-5/UM, Intcraclive
Software Engincering Inc., Santa Barbara (Calif.), 1989. (To be published by Prentice-Hall in
1990.)

Bertrand Meyer, ‘‘From Struclured Programming to Object-Oricnted Design: The Road to
Eiffel,”” Structured Programming, vol. 10, no. 1, pp. 19-39, 1989.

Trademarks: Unix (AT&T Bell Laboratories); Ada (AJPQ); Smalltalk (Xerox); Eiffel (Interactive Sofiware Engincering Inc.).

— 208 —



