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The Eiffel language and environment address the prob 
lem of building quality software in practical develop- 
ment environments. 

Two software quality factors were deemed essential 
in the design of the language: reusability and reliability. 
They led to the following choices: language features 
that support the underlying bottom-up software design 
methodology; modular structures based on the object- 
oriented approach, with support for both generic param- 
eters and multiple inheritance (including a new exten- 
sion, repeated inheritance); automatic storage 
management; highly dynamic execution model; support 
for polymorphism and dynamic binding; fully static 
typing; information hiding facilities; assertions and 
invariants that may be monitored at run-time. 

The Eiffel programming environment, using C as an 
intermediate language, supports separate compilation 
of classes and achieves a good run-time performance in 
both space and time. The environment takes care of 
automatically recompiling classes as needed after a 
change, ensuring that only up-to-date versions of 
classes are used, but avoiding unnecessary recompila- 
tions. A set of tools is provided to support the develop- 
ment of sizable software systems. 

An important part of the environment is the library of 
reusable classes. Significant extracts of this library are 
given in the appendix to this article, providing a set of 
model reusable software components, carefully de- 
signed for robustness and extendibility. 

PART 1: OVERVIEW OF THE LANGUAGE AND 
ENVIRONMENT 

1 PRESENTATION 

1 .l Background 

Eiffel was initially an internal development at Interactive 
Software Engineering. The language was designed in 
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late 1985 as a tool that would enable us to develop soft- 
ware engineering tools in accordance with our overall 
goal of promoting software quality. Most of Interac- 
tive’s software is indeed now being produced with the 
Eiffel language and environment described in this 
report. 

The decision to design and implement a new language 
is a far-reaching one, and it is legitimate to ask why I 
should have undertaken such a development. Yet an 
examination of available languages and environments 
quickly showed that none was up to the standards of 
modem software engineering that our products-soft- 
ware engineering tools-were meant to enforce. I felt 
that our own developments ought to observe these 
standards. Eiffel is the result of this decision. 

The implementation of Eiffel (see Section 8) has been 
available since early 1986 for use within Interactive. The 
decision was made in December 1986 to release it as a 
commercial product, which is now installed at a number 
of industrial and academic installations in North Amer- 
ica, Canada, Europe, and the Far East. 

The system currently runs on Unix and is in the 
process of being ported to other environments, notably 
VAX-VMS. Several significant software products have 
already been implemented successfully using Eiffel and 
the basic library sketched in the appendix; applications 
developed at Interactive include the visual document 
constructor CCpage [24], the general-purpose window 
management system Winpack, and others. 

Eiffel is not just a programming language. As a 
language, it can be fruitfully applied to the crucial early 
stages of software development: specification and 
global design. (Some features of the language that help 
in this respect are described in Section 4.10.) Beyond the 
language aspects, Eiffel is also a method of software 
design and as a programming environment: 

. The method emphasizes system construction by 
combination of reusable and extendible modules, 
conceived as implementations of abstract data types; it 
is a bottom-up method, encouraging software devel- 
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opment by building on previous efforts rather than by 
starting every new effort from scratch. 
l The tools of the environment, described in Section 
8, support automatic recompilation, documentation, 
debugging, graphical design and documentation and 
other important tasks. 

The rest of the article’s main body reviews the 
language, method, and environment; it will enable the 
reader to understand the appendix, a set of programming 
examples from the basic Eiffel library. Section 1.2 gives 
an overview of the design criteria for Eiffel. Section 2 
introduces some of the basic concepts of object-oriented 
design. Section 3 describes the fundamental Eiffel 
structure (the class). Section 4 presents the multiple and 
repeated inheritance techniques that constitute the key to 
reusable programming in Eiffel. The typing rules are 
described in Section 5, and the use of assertions for 
expressing correctness arguments are described in Sec- 
tion 6. Section 8 surveys the practical aspects of Eiffel 
usage and the supporting environment tools. Section 9 
summarizes the main results, mentions some related 
efforts, and describes ongoing developments. 

The appendix is a library of basic Eiffel classes 
defining a set of reusable software components. Al- 
though this is just a collection of Eiffel texts that may at 
first appear rather boring, it has been found to be 
invaluable to Eiffel programmers-novices and experts 
alike-and indeed I hope that it will prove to be the main 
contribution of this article in the long term. Beyond their 
use as models, the classes presented play a fundamental 
role in practical Eiffel programming. A complete 
documentation on the library is given in the library 
manual [14]. 

Although this article does not constitute a complete 
reference on Eiffel, the examples and discussions 
introduce all the essential features. Thus, if you under- 
stand the article, you may still have a few things to learn 
to become a real Eiffel designer or programmer, but not 
many. 

Since this discussion will introduce a number of 
powerful language constructs, it is important to mention 
at the outset that Eiffel is by no means a complex 
language. Its size, as measured by such a criterion as the 
number of keywords (53), is only slightly higher than 
that of Pascal, for much more power. This is a result of a 
somewhat minimalist design. For example, there is no 
case instruction and only one form of loop. At a recent 
user group meeting, a speaker called the language 
“spartan” [29]; I have no quarrel with this characteriza- 
tion, although it may be more trendy to express the same 
idea by presenting Eiffel as a RISC language. 

Other references on Eiffel include a brief overview 
[23], a study of the Eiffel approach to reusability [22] 
and a comparative analysis of Ada-like generic&y with 

Eiffel-like inheritance [26]. Detailed technical documen- 
tation may be found in the user’s manual [ 151. A recent 
book [27] surveys object-oriented design and program- 
ming with special emphasis on the Eiffel approach. 

1.2 Design Criteria 

The design of Eiffel was guided by the following 
concerns. 

l The aim is to produce software, not to do research 
on languages. Efficiency of the implementation was 
thus an important criterion. 
l Reliability of the software that we produce was 
another fundamental aim, promoting such features as 
strict type checking, use of assertions, support for 
automatic configuration management, etc. 
l Current program construction techniques too often 
lead to reinventing the wheel over and over again. 
Reusability of software should be a prime emphasis. 
Software development methods and languages should 
emphasize the reusability of software components as 
one of their primary goals. 
l Extendibility of the resulting software (the ease of 
taking into account changes in specifications) is 
another essential goal if one is to take a comprehen- 
sive view of the software lifecycle. 
l Modular language constructs should make it possi- 
ble to construct and compile systems piecewise and to 
place strict controls on the flow of information 
between modules. 
l A more technical requirement is the ability to create 
dynamic data structures and to rely on support tools 
for reclamation of unused space; placing the burden of 
space reclamation on application programmers (in the 
PL/I-Pascal-Modula 2 tradition) is a dangerous pol- 
icy, the presence of which is unexplainable in any 
language whose designers have expressed concern for 
program reliability. (We shall see, however, that safe 
programmer-controlled deallocation may be provided 
in cases when automatic reclamation is too expen- 
sive.) 
l Finally, portability is also a serious concern. 

Of course, a solution to these issues must also involve 
elements that are not strictly technical. For example, the 
availability of good documentation and component 
libraries is essential to achieve reusability. However, in 
the current state of software technology, technical 
aspects such as languages are paramount. 

As a picture of the language emerges in the descrip- 
tions given below, it will become clear that Eiffel is an 
original design, not an object-oriented extension of a 
classical language such as C (cf. C + + [31], Objective- 
C [8]), Pascal (cf. Object Pascal [32]), or Lisp (cf. 
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Loops [2], Flavors [7], Ceyx [ 131). The use of a well- 
known language as stem has obvious advantages in 
terms of initial user acceptability, but it is more 
important to preserve coherence and integrity. The 
addition of object-oriented primitives to languages that 
(irrespective of their other qualities) are built on non- 
object-oriented principles can only, in my opinion, 
impair the consistency and simplicity of the result; yet 
these qualities are among the key criteria in language 
design [ 121. 

Although it is not an extension of another language, 
Eiffel is not, of course, unrelated to previous efforts. 
The clearest conscious influences have been those of 
Simula, Alphard, and Ada (the latter for the the syntax). 
Also, it will be seen in Section 8 that the implementa- 
tion of Eiffel is based on C, generates stand-alone C 
packages on option and that Eiffel software may be 
interfaced with software written in other languages. 

2 OBJECT-ORIENTED DESIGN 

The general approach to software construction that best 
addresses the above quality factors is the method 
pioneered by Simula 67 and known as object-oriented 
design and programming. 

2.1 Overview 

There are several ways to describe object-oriented 
design and programming, depending on the presenter’s 
background [3, 4, 10, 201. Because Smalltalk [lo] has 
been so largely publicized, many current views of 
object-oriented programming emphasize two aspects: 
the concept of messages for communicating information 
between objects, and the very dynamic nature of the 
Smalltalk environment, which defers bindings between 
names and their denotations until run-time. This ap- 
proach, strongly influenced by Lisp, offers much free- 
dom to programmers, and it is useful for such applica- 
tion areas as artificial intelligence or rapid prototyping. 

My interest in object-oriented languages comes from a 
more traditional software engineering perspective. I 
view these languages as providing key techniques for 
ensuring reusability, extendibility, and compatibility. 
However, in a software engineering context these 
qualities must be balanced with other criteria mentioned 
above, such as reliability, efficiency of the generated 
code, and portability. Thus, static type checking, for 
example, is an essential concern. In Eiffel, static typing 
is combined with a powerful type system, based on 
inheritance, and reconciled with dynamic binding. 

My view was much influenced by Simula; I was 
particularly fortunate in having for many years access to 
an excellent compiler for that language, developed for 

IBM/MVS systems by the Norwegian Computer Center. 
This experience (summarized in a 1979 survey article 
[20]) convinced me that object-oriented programming 
was the right approach to produce extendible and 
reusable software. Eiffel improves (I hope) on the 
Simula concepts, but it is proper to mention my debt 
here. 

2.2 Modularizing for Extendibility 

In this discussion, object-oriented design is viewed as a 
system modularization method, relying on the idea 
that the structure of any software system should best be 
patterned, at the highest level, on the objects manipu- 
lated by the system, rather than on the system’s function. 

Arguments for this approach to software construction 
may be found in the references cited above; an analysis 
of its contribution to software reusability was given in 
[22]. Without repeating these discussions, it is useful to 
elaborate on another of the key criteria that justify this 
method: extendibility. 

Observation of durable programs shows that the 
precise tasks performed by systems vary dramatically 
over their life cycle. If you take a program at a certain 
point of its evolution, you may well be able to describe 
its function as some input-to-output transformation: each 
run processes a batch of data and produces the corres- 
ponding results. But as the program is used and adapted, 
it will often evolve into a system that keeps some 
information between successive runs, and it may end up 
as an interactive system accessing a comprehensive data 
base, with finer-grain inputs and outputs for each 
individual transaction. 

If they are studied from the standpoint of the tasks 
they perform, the initial and final versions may be very 
different. To realize that they are versions of the same 
program, you must look closer and consider the objects 
handled by the system. If they are viewed from a 
sufficiently high level of abstraction, these objects will 
in most cases turn out to be the same in both versions. 
For example, a payroll processing program, regardless 
of its precise functions, will act on data representing 
entities such as employees, company regulations, work- 
load information, etc.; or a plant monitoring system will 
act on data representing sensors, devices, materials, and 
the like. In both cases, the system’s identity is better 
characterized in the long term by these objects than by 
the more fluctuating functions that are applied to them. 

2.3 Seven Steps Towards Object-Oriented 
Happiness 

Based on the preceding remarks, the basic motto of 
object-oriented design may be formulated as follows: 
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Principle 1 (object-oriented modular structure): Ask not 
what the system does: ask what it does it to. 

To get object-oriented design in its full sense, 
however, further steps must be taken. The next step 
takes into account the remark made above that object 
descriptions should be abstract enough; indeed, basing 
the structure of systems on the physical structure of data 
would produce rather disastrous results with respect to 
extendibility. A study of software maintenance costs by 
Lientz and Swanson [ 173 shows that, out of the more 
than 50% of software costs devoted to maintenance, 
about 17.5% arise from the need to account for changes 
in physical data formats. Thus, one would be ill-advised 
to hard-wire physical data representations into the 
physical structure of programs. 

The answer lies in data abstraction. The theory of 
abstract data types provides a way to describe classes of 
objects by their external features rather than by their 
physical representations. The features in question are the 
operations applicable to objects of the class and the 
abstract prbperties of these operations. Note that these 
operations are what was called the “functions” above. 

The complemen~rity between functions and objects is 
an unescapable fact of programming; object-oriented 
design does not contradict it, but introduces a dissymme- 
try by using objects, not functions, to structure software 
systems at the highest levels. With abstract data types, 
however, functions reappear as the way objects (or 
rather object classes) are characterized, so the loop is 
closed. The essential difference with classical techniques 
(based on procedural decomposition) is that functions 
are attached to data structures rather than the reverse. 

The second step of obj~t-orient~ness is reached, 
then, through the application of the following principle: 

Principie 2 (da@ a~stractjo~~~ Objects should be de- 
scribed as implementations of abstract data types. 

Most current progr~ing languages make it possi- 
ble to reach this level, i.e., to say to design modules that 
encapsulate the implementation of one or more abstract 
data types. Ada [l], CLU [18], and Modula-2 1341 are 
obvious examples of such languages. Even Fortran may 
be used for this purpose by writing subroutines with 
more than one entry (corresponding to the various 
operations on an abstract data type); however, what is 
provided in the Fortran case is the implemen~tion of a 
fixed number of abstract objects, rather than of an 
abstract data type. In languages such as Pascal, Cobol, 
or Basic, on the other hand, it is not possible to devote a 
module to the implementation of an abstract data type or 
abstract data object. 

The third step is of a less conceptual nature. It reflects 
an important implementation concern: how to manage 
space for objects. If programmers are to freely use 

dynamically created objects, they should not have to 
take care of where cells are found for newly created 
objects and, even more importantly, how cells are 
reclaimed when their objects are no longer needed. 
Although this is in a strict sense a property of implemen- 
tations rather than languages, the language design may 
help or hinder the implementation of a garbage collector. 
Pascal and Modula-2 systems do not normally include 
garbage collection; the Ada standard [l] defines it as an 
optional feature. 

On the other hand, all Lisp systems provide garbage 
collection, which is part of the reason why Lisp has 
often been used to implement object-orien~d languages 
and has itself been subjected to object-oriented exten- 
sions. 

Principle 3 (automatic memory management): It should 
be possible to let the underlying language system take care 
of automatically reclaiming unaccessible memory ele- 
ments. 

Automatic garbage collection is sometimes viewed 
with suspicion because of its effect on performance. As 
described in Section 8.8, this problem is addressed in 
Eiffel by using an incremental garbage collector imple- 
mented as a co-routine; also, the collector may be 
disabled when it is not needed. 

The next step truly distinguishes object-oriented 
languages from the rest of the flock. It may be 
understood by looking at languages that are not object- 
oriented even though they provide facilities for data 
abstraction and encaps~ation, such as Ada or Modula-2. 
In such languages, the module (package in Ada) is 
essentially a syntactic construct, used to group logically 
related program elements; but it is not itself a meaning- 
ful program element, such as a type, a variable, or a 
procedure, with its own semantic deno~tion. In con- 
trast, the approach pioneered by the designers of Simula 
views modules as first-class citizens; more precisely, it 
all but identifies the notion of module with the notion of 
type. We may say that the defining equation of such 
languages is the identity ~oduie = type. 

This fusion of two apparently distinct notions is what 
gives object-oriented design its distinctive flavor, so 
disconcerting to programmers used to more classical 
approaches. In its dogmatism, it has some drawbacks. 
But it also gives considerable conceptual integrity to the 
general approach. 

Principle 4 ~c~~es~: Every nonbasic type is a module, and 
every high-level module is a type. 

A language construct combining the module and type 
aspects is called a glass. 

The qualifier “nonbasic” keeps open the possibility 
of having simple types (such as INTEGER etc.) that are 
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not viewed as modules, and the word “high-level” 
makes it possible to have program structuring units such 
as procedures, which are not types. 

The next step is a natural consequence of Principle 4. 
If we identify types with modules, then it is tempting to 
identify the reusability mechanisms provided by both 
concepts: on the one hand, the possibility for a module 
to directly rely on entities defined in another (provided 
in modular languages by such visibility mechanisms as 
the Ada “use” clause); on the other hand, the concept of 
subtype or derived type, whereby a new type may be 
defined by adding new properties to an existing type. In 
object-oriented languages, this is known as the inheri- 
tance mechanism, with which a new class may be 
declared as an extension or restriction of a previously 
defined one. Its realization in Eiffel is described in 
section 4. 

Principle 5 (inheritance): A class may be defined as an 
extension or restriction of another. 

We shall say in such a case that the new class is heir to 
the other. 

The above techniques open the possibility of an 
advanced form of polymorphism, in which a given 
program entity may at run time refer to objects 
belonging to any of a set of different classes, all of which 
offer an operation with the same external specification 
but different implementations. The application of an 
operation to the entity will result in the appropriate 
implementation being selected, depending on the partic- 
ular object associated with the entity at the time the 
operation is executed. For example, an entity represent- 
ing a device might become associated at run-time with 
either a tape or a disk; the operation “read” applied to 
the entity will be carried out differently in each case. 

Principle 6 (polymorphism): Program entities should be 
permitted to refer to objects of more than one class, and 
operations should be permitted to have different realiza- 
tions in different classes. 

This principle is implemented in different ways 
according to the philosophy underlying existing lan- 
guages. In the design of Smalltalk, it is satisfied almost 
automatically because of the dynamic binding policy: 
Entities have no static types, so that they may at run-time 
refer to objects of any class; when an operation is 
requested on an entity, its dynamic state determines what 
realization, if any, is available for the operation. 

In contrast, every Eiffel entity has a static type that 
(except for basic entities such as integers or booleans) is 
defined by a class; the dynamic types it may take are 
restricted to the descendants of that class (that is to say, 
the class itself and its direct and indirect heirs). The 
above principle is implemented in Eiffel by permitting 

the redefinition of a class operation in a descendant and 
by having deferred operations whose implementation is 
only given in the descendants. 

The next and last step extends the notion of inheri- 
tance to enable reusing more than one context. This is 
the notion of multiple inheritance, developed in Section 
4 below. Eiffel adds to this notion the concept of 
repeated inheritance (reusing the same structure more 
than once); see 4.7 below. 

Principle 7 (multiple and repeated inheritance): It should 
be possible to declare a class as heir to more than one class, 
and more than once to the same class. 

The seven above principles have alternated between 
high-level, design-related concepts and programming 
language features. One particularly interesting benefit of 
the object-oriented approach is indeed that the same 
language may be used for design and implementation. 
Some language traits, such as deferred features (4.10) 
and assertions (6), are especially useful for the applica- 
tion of Eiffel to system design. 

2.4 Eiffel Versus Other Object-Oriented 
Languages 

It was mentioned in the introduction that no existing 
language was deemed acceptable for our purposes. As 
we are about to explore Eiffel in some detail, it is useful 
to explain this claim by previewing the combination of 
facilities that is unique to Eiffel and its implementation: 

l Multiple and repeated inheritance. Commercially 
available object-oriented languages, with the excep- 
tion of AI-oriented languages such as LOOPS and 
Flavors and recent versions of Smalltalk, support 
single inheritance only, and no language we know of 
supports repeated inheritance. 
l The renaming techniques (apparently unique to 
Eiffel) that are needed for a safe treatment of multiple 
inheritance. 
l Generically parameterized classes, necessary to 
obtain truly flexible software components in the 
presence of type checking. (The only other object- 
oriented language supporting generic@ appears to be 
Trellis-Owl [30], an internal DEC development.) 
l Static type checking (not present in other languages 
with the exception of Object Pascal, Trellis-Owl, and, 
in a limited form in C + + ). 
l Primitives for systematic program construction (not 
available in other object-oriented languages), consist- 
ent with the inheritance mechanism. 
l Automatic configuration management within the 
context of object-oriented programming. 
l Constant-time routine binding. 
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. Incremental garbage collection. 

. Class documentation facilities. 

3 BASIC EIFFEL CONCEPTS 

The basic elements of Eiffel programming will now be 
introduced: run-time model, objects, classes, and export 
controls. 

3.1 Run-Time Model 

The execution of Eiffel systems (a term that is preferred 
to “programs” for this language) relies on a dynamic 
execution model. The execution of a system may be 
characterized at every instant by the presence of a 
certain number of objects, each of which possesses 
some attributes. Attributes are either simple values 
(integers, booleans, reals, or characters) or references 
to objects. Figure 1 gives a pictorial view of such a 
collection of objects and their attributes. 

3.2 Routines 

Operations, or routines, may be applied to objects. 
Routines are divided into procedures and functions. 

You may think of procedures as commands and 
functions as queries: A procedure may change the state 
of the associated object but does not return a value, 
whereas a function returns a value without normally 
modifying the object. A related analogy would be to see 
the objects as having action buttons, the procedures, and 
display indicators, the functions. The features associ- 
ated with an object comprise its attributes and the 
routines that are applicable to it. 

The execution of an Eiffel system is started by 
creating an object and calling one of its procedures; 
executing this procedure will usually trigger the creation 
of other objects and more routine calls. 

3.3 Classes and System Structure 

Every object that may be created during the execution of 
an Eiffel system is an instance of a class. An Eiffel 
system is an assembly of classes. 

A class describes a set of potential objects (the 
instances of the class) through the features (attributes 
and routines) that are applicable to all of these objects. 

In other words, a class describes the i~plement&tion 
of an abstract dats type. 

As implied by the above principles, classes are not 

Figure 1. Objects. 
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only types but also modules. In fact, they constitute the 
only system structuring facility. 

3.4 Entities 

An Eiffel system contains entities, which may take 
values at run-time. Although close to the usual notion of 
variable, the notion of entity is more general since it 
includes not only local variables of routines (including 
the predefined variable Result denoting the result to be 
returned by a function), but also references to object 
attributes and routine arguments. 

Eiffel is a strongly typed language: every entity is 
declared with a single static type. Four types, called 
“simple,” are predefined: BOOLEAN, CHARAC- 
TER, INTEGER, and REAL. Any other type is 
defined by a class. 

3.5 States of an Entity 

Let x be an entity and C its type, assumed to be a class 
type. At any point during system execution, x may or 
‘may not be associated with an object. If it is, we say that 
x is “created,” if not, that it is “void. ” The boolean 
expression x. Void has value true in the latter case only. 

Instruction x.Create puts the entity x in the created 
state by creating a new object of type C and associating 
it with x; note that this must be done explicitly as all 
entities are initially void (initialization rules will be seen 
below). 

Conversely, x.Forget plus x in the void state. It must 
be emphasized that x. Forget does not by itself deallocate 
the object associated with x, which would be a violation 
of principle 3 above; this instruction merely suppresses 
the relationship between the entity x and the object 
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associated with it, making this object a candidate for 
automatic space reclamation if there was no other 
associated entity. 

Figure 2 shows the two states, the transitions between 
them, and the allowable operations in each. As the figure 
shows, there are other ways to alternate between states, 
for example by assignment (see below). 

Void, Create, and Forget are predefined features 
applicable to all classes. The language includes another 
predefined feature: x.Clone (y) creates a new copy of 
the object referenced by y and assigns to x a reference to 
the new object. 

3.6 Initialization 

Every entity has an initial value. The initialization rules 
are part of the language definition: they are not 
implementation-dependent. 

By default, numbers will initially be 0, booleans will 
be false, characters will be null, and object references 
will be void. 

If a different initialization is desired for the attributes 
of objects of a class C, a procedure called Create, with 
or without arguments, may be defined for that class; it 
will then be applied to every object of the class upon 
creation. This is what is done in section A.2 for the 
ARRA Y class, for which a version of Create is defined 
in such a way that a.Create (min, max) will associate 
with a a newly allocated array with bounds min and 
max. 

3.7 Feature Declarations 

A class declaration introduces a set of features associ- 
ated with objects of the class: attributes and routines, the 
latter comprising procedures and functions. 

Figure 2. States of a reference, permissible 
operations, and transitions. 

Allowable operations: 
aForget 

or o .= o’where o’ia void 
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Routines may have arguments. The arguments of a 
routine, whether a procedure or a function, are protected 
in its body: The routine may not include an assignment 
to one of its formal arguments. However the attributes of 
the object associated with a argument may be modified 
in the procedure. 

3.8 Expressions and Instructions 

The construct expressing the application of feature f 
to the object associated with entity x, called a remote 
feature application, uses a dot notation. If f is an 
attribute or a routine without arguments, the notation is 

x.f 

If f is a routine with arguments, actual arguments must 
be provided: 

Either form of remote feature application is only valid 

if x is declared of a class type for which f is a valid 
feature. Syntactically, the remote application is an 
instruction if f is a procedure, or an expression if f is a 
function or an attribute. 

Assignment is written with the standard : = operator. 
For class types, the semantics of assignment is by 
reference, not copy: Entities of class types represent 
references to objects, not the objects themselves. Thus, 
for entities of class types the assignment x : = y results 
in x and y being references to the same object (or x being 
void if y was void before the assignment). 

Control structures include the loop, the conditional, 
and sequencing, represented by the semicolon. 

3.9 A Simple Class 

The example below shows the basic structure of a class. 
It introduces an elementary notion of “point” that could 
be used (with suitable extensions) in a graphics system. 

Any part of a line beginning with two consecutive 
dashes -- is a comment. 

class POINT export 
x, y, translate, scale, distance 

feature 
x, y: REAL ; 
scale (factor: REAL) is 

__ Scale by a ratio of factor. 
do 

x : = factor*x ; 
y : = factor* y 

end ; -- scale 
translate (a, b: REAL) is 

-- Translate by a horizontally, b vertically. 
do 

x:= x+a * 
y := y+b’ 

end ; -- translate 
distance (other: POINT): REAL is 

__ Distance from current point to other. 
require 

not other. Void 
do 

Result : = sqrt ((x - other.x)^2 + (y - other.yj2) 
end -- distance 

end -- class POINT 

The features of this class comprise two attributes, x possess “secrets.” Public features may be used by 
and y, and three routines: two procedures, translate and clients of the class, i.e., to say classes that include one 
scale, and one function, distance. or more entity declarations of the form 

The export clause says which features are public. p: POINT 
Here all features are public, but in general classes will and may thus execute operations such as 
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p. Create ; 
p. translate (3.5, 2.2) ; 
r:= p.x 

-- Allocate POINT object and associate it with p 
-- Translation 
-- Get abscissa of x 

In client classes, public attributes (here x and y) are 
accessible in read-only mode: An assignment such as 
p.x := . . . is not permitted; the corresponding effect 
may only be obtained in a client class by calling a public 
procedure that will modify the attributes itself, such as 
translate in the POINT example. 

It is also possible to export a featurefto a selected set 
of classes C,, Cz, . . . . only, by listing it as f{ Ci, Cz, 
. . . . } in the export clause. 

The text of an Eiffel class always refers to a current 
instance of the class. Most of the time this current 
instance is anonymous; in a class (like POINT), a 
feature name (like x) that appears unqualified (i.e., just 
x, not p.x for some p of type POINT) denotes the 
corresponding feature of the current instance. If you 
need to refer explicitly to the current instance, the 
predefined entity name Current is available. Thus you 
may consider a name such as x, appearing unqualified in 
class POINT, as a synonym for Current.x. 

The special variable Result is used in functions: As 
shown by the example of distance, it denotes the result 
to be returned by the function in which it appears. It is 
considered as implicitly declared of the appropriate type 
(REAL in the case of function distance). 

3.10 Generic Parameters 

The basic class structure presented so far is made more 
flexible by the provision for genericity. A class may 
have one or more generic parameters that represent 
types. For example, Section A.6 introduces a class 
representing linked lists of objects of an arbitrary type 
T; its declaration begins with: 

class LINKED-LIST [Tj export.. . . 

The presence of T as generic parameter allows the 
class to contain declarations of entities of type T. A 
client of the class will then declare entities of type 

class C export 
. . . 

inherit 

PI 

LINKED- LIST [INTEGER 1, LINKED- LIST 
[POINT], etc. 

Genericity is particularly important in connection with 
static type checking. Without this facility, it would be 
impossible to define data structures such as LZNKED- 
LIST whose constituents are statically guaranteed to be 
all of the same type (INTEGER, or POINT, etc.). 

The “horizontal” form of extendibility, as provided 
by generic parameters, is a useful complement to the 
more powerful “vertical” extendibility features offered 
by inheritance and described below. 

The power of such a combination is evidenced by the 
examples of the appendix. A more detailed comparative 
analysis of genericity and inheritance and a rationale for 
the particular blend achieved in Eiffel may be found in 
another article [26]. 

4 INHERITANCE: TREES ARE LISTS AND LIST 
ELEMENTS 

4.1 Definition 

Inheritance is a key technique for reusability. 
When a new class is declared as heir to a previously 

defined one, it posseses by birth all the features of that 
parent class and their associated formal properties. The 
inherited features are not redeclared in the new class, but 
new features may be added. Both the inherited features 
and the new ones become an integral part of the class and 
may be transmitted to further classes defined by inheri- 
tance . 

This mechanism has a significant influence on the 
process of software design, as it allows software to be 
constructed through progressive accumulation of fea- 
tures rather than in a single setting. New features 
acquired in this process are passed along to descendants. 

Syntactically, inheritance is described through the 
inherit clause in class declarations, as follows: 

. . . Possible “rename” and/or “redefine” sub-clause (see 4.6-4.9 below)... ; 
PZ 

. . . Possible rename and/or redefine.. ; 

. . . Other parents . . . 
feature 

. . . . Declaration of specific features of C . . . 
end -- class C 
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As the syntax shows, inheritance as offered by Eiffel 
is multiple: a class may inherit from as many classes as 
needed. The only constraint is that the inheritance graph 
should be acyclic. 

We rely on the following terminology, some of which 
has already been used above. An heir of a class P is a 
class C that lists P in its inherit clause. The descendants 
of a class P are P itself and the descendants of its heirs. 
The reverse notions are parent and ancestor. 

4.2 An Example 

The following example shows the power of multiple 
inheritance. Perhaps, if the reader remembers just one 
idea from this article, it should be this: a tree is a list 
and a list element. Let’s explain. 

The classes of the appendix describe lists of various 
brands. One of these classes has already been men- 
tioned: LINKED-LIST [T] (Section A.6), describing 
one-way linked lists of elements; it itself inherits some 
of its properties from a more general class, LIST [T] 
(Section A.3), which introduces properties of arbitrary 
lists without commitment to a particular representation. 
As may be expected, the features declared in class 
LINKED-LIST include routines for inserting ele- 
ments at various places into a list, removing elements, 
accessing elements, etc. 

To manipulate linked lists of elements of type T, you 
need a data structure for the individual components of a 
linked list; such components are cells consisting of two 
fields, a value of type T and a reference to another cell. 
Let’s use the word “linkable” to refer to such cells. 
Their description is given in class LINKABLE [T] 
(Section A.5). Among the features of “linkables” are 
two attributes: value, of type T, and right, of type 
LINKABLE [T] . ’ 

Now assume you need to define the notion of tree, as 
implemented in linked representation. You may cer- 
tainly start from scratch; programming tradition, as well 
as fifteen years of propaganda for top-down design, 
indeed encourage you to do so. But the eventual result is 
assured to look very much, at least in part, like what was 
obtained for lists: insertions, deletions, access to sub- 
trees, etc. The main difference is that here these 
operations apply to subtrees rather than list elements. 

But from this last remark comes the light: A tree is 
indeed a list (since it is made of a number of subtrees), 
and also a list element (since it may be used as subtree 
for another tree). Hence the solution described in 

’ Feature right is actually declared of type like Current for reasons 
explained in 5.2. 

Section A.8, whereby trees inherit from both lists and 
list elements: 

class TREE [T] export.. . inherit 
LINKED-LIST [T]; 
LINKABLE [T] 
feature . . . 

Of course, this is not quite enough: you must add the 
specific features of trees, and the little mutual compro- 
mises that, as in any marriage, are necessary to ensure 
that life together is harmonious and prolific. But it is 
significant that the new data structure may essentially be 
engendered as the legitimate fruit of the union between 
lists and list elements. 

This process is exactly that used in mathematics to 
combine theories: a topological vector space, for 
example, is a vector space that also is a topological 
space; here too, some connecting axioms need to be 
added to finish up the merger. 

Multiple inheritance is a fundamental tool in our daily 
practice of Eiffel. Many classes have four or five 
parents. The following four examples of double inheri- 
tance are typical: 

l Our windowing system uses a class WIND0 W. 
Windows have graphical features: A height, a width, 
a position, etc., with associated routines to scale 
windows, move them and so on. Our system permits 
windows to be nested, so that a window also has 
hierarchical features: subwindows, a parent window, 
routines to add a subwindow, delete a subwindow, 
attach to another parent and so on. Rather than writing 
a complex class that would contain specific implemen- 
tations for all of these features, it is much preferable 
to inherit all hierarchical features from the above 
TREE class, and all graphical features from a 
RECTANGLE class. 
l In the basic library, class FIXED-LIST [T] 
(Section A.4) describes lists with a fixed number of 
elements, implemented using arrays. It is simply 
defined as heir to both LIST [T] (general lists, 
without commitment as to a specific representation) 
and ARRAY [T] (arrays). We call this form of 
multiple inheritance the “marriage of convenience”: 
One parent brings the functionality, the other brings 
the implementation. 
l Another class of the basic library, TEST, defines 
an environment for software testing. To test a class X, 
one may define a new class, say X- TEST, as heir to 
X and TEST, gaining access to primitives from both 
classes. Without multiple inheritance, this would be 
impossible, as X-TEST would have to choose 



between inheriting from test and from X’s own 
ancestor. 
l A basic problem in programming with complex 
data structure is how to store such structures in long- 
term memory (files). In object-oriented program- 
ming, this is the problem of persistent objects. In the 
Eiffel environment, a class STORABLE is defined, 
with routines store and retrieve; a whole data 
structure may be stored and retrieved using these 
routines if the root of the structure is an object whose 
type is a descendant of STORABLE. 
Figure 3 gives the structure of the inheritance graph 

for the classes in the Appendix. Arrows show the 
inheritance relation. 

4.3 Inheritance and Reusability 

Why are inheritance techniques so crucial for the 
production of reusable software? One of the reasons for 
their superiority is that they make it possible to write 
software modules that are both open and usable as they 
stand, whereas these two aims are contradictory with 
classical methods. 

Consider the typical language structure used to 
support these methods, the data types with “variant 
parts” as offered by Pascal and Ada. Such constructs do 
make it possible to write software elements that may 

exist in several versions; but as soon as you need to 
actually use such an element (by compiling it if it is a 
program element), the list of possible variants must be 
frozen; any later addition of new variants will imply that 
existing software elements, which relied on the initial 
version, have to be modified. 

Similarly, any change in the list of formal arguments 
to a routine, in the set of generic parameters to an Ada 
package, or in the repertoire of operations available on 
an abstract data type, will result in tricky problems of 
software configuration. 

In contrast, multiple inheritance makes it possible to 
use a class-to store it, to compile it, to execute its 
routines, etc.-and at the same time to leave open the 
possibility that the class will eventually be used as parent 
for an unlimited number of descendants, corresponding 
to all the cases that you did not envision initially. This 
may be stated as the principle of openness: Any 
software element, even if it is in a directly usable form, 
should remain amenable to future extensions. 

A further example of the application of this principle 
to Eiffel is the fact that the language does not include an 
instruction (such as the inspect.. . when.. . instruction of 
Simula 67) to discriminate between the various heirs of a 
class. Were such an instruction to exist in Eiffel, class 
LIST, for example, could contain an instruction that 
chooses between several actions depending on whether 

Figure 3. Inheritance graph for the examples. 
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the current list is a FIXED-LIST, a LINKED-LIST 
etc. But this would mean that LIST, as part of the 
knowledge it embodies, has information on the set of its 
possible heirs: thus it would no longer be open for 
designing new heirs without modification. To achieve 
the effect of inspect in Eiffel, you may use such 
mechanisms as deferred and redefined features (pre- 
sented below), which preserve openness. 

4.4 Inheritance and Export Controls 

The Eiffel inheritance mechanism is orthogonal to the 
information hiding mechanism provided by export con- 
trols. Notwi~s~n~ng its export clause, a class will 
bequeath all its features to its descendants-the family 
secrets as well as the public facade. To reject part of this 
heritage, specific torques must be used, such as 
feature renaming and redefinition, seen below; the 
export restrictions apply to clients of the class (see 
Section 3.9 above), not to its descendants. It is even 
possible for a class to export a feature inherited from 
another class in which that feature was secret. 

I have found the orthogonality between the export and 
inheritance mechanisms to be a shock to some people, 
but a moment’s reflection should convince the reader 
that this is indeed a correct decision. 

The following example shows a case in which a 
feature that is secret in a class needs to be reexported in a 
descendant. Consider again the relationship between 
linked lists and trees. The notion of LINmBLE cell 
should be of no concern to clients of the class 
LINKED-LIST [T], which only need to deal with 
lists, of type LINKED-LIST [T], and values of list 
elements, of type T. Internally, class LINKED-LIST 
uses a feature called active, which represents the cell at 
the current cursor position. (A list has an associated 
cursor, which points to the currently active position; this 
is discussed in A.3.) Feature active, of type LINKA- 
BLE [T] , it naturally secret; it is used for the implemen- 
tation of exported features such as value (the value of the 
element at cursor position), insert-right (insert a new 
cell of given value at the right of cursor position) etc. 
The list cells themselves are none of the clients’ 
business. 

For trees, however, the picture changes. As we saw, 
trees are lists and list elements; the notion of cursor 
position transposes to that of a currently active child of a 
tree node. Here the child node itself is needed, not just 
its T value as returned by feature value; to perform tree 
traversal operations, you must be able to go from parent 
to child, both considered as tree nodes. Feature active is 
thus exported in class TREE [T], even though it is 

inherited from a class where it was secret. (The 
ren~ng m~hanism, described below, enables class 
TREE to refer to this feature under the name child, 
more appropriate for the occasion.) 

Restricting descendants’ access to any of the features 
defined in a class would be a direct violation of the 
openness of classes, which has been presented above as 
a fundamental aspect of inheritance. Long after a class 
has been written, a software developer may reuse it 
through inheritance, with any extensions and adaptations 
that are needed for a new application. The power of 
i~eri~nce comes from the ~ssibili~ of mooing 
these extensions and adaptations without impacting the 
original class or any of the other software elements that 
depended on it. This means that the original designer has 
no way of knowing what new uses will later be found for 
the class. Accordingly, the designer does not know 
which features a descendant may need to export and 
which it will need to hide. 

To understand the relationship between inheritance 
and export controls, you may note that the two main 
reusability mechanisms of Eiffel are complementary: 
When class A is a client of class B, A only uses B’s 
specification; on the other hand, by inheriting from B, A 
may directly rely on B’s implemen~tion, and informa- 
tion hiding does not apply to it. These two ways of 
reusing existing a software component-through its 
interface and through its implemen~tion-are equally 
important in practice; care should be exercized to 
determine which one is appropriate in any given case. 

4.5 Types of Entities and Objects 

The inheritance relation may be viewed as an “is-a” 
relation [6], in the sense that a window “is-a” rectangle 
and also “is-a” tree, From this remark comes the rule 
that a language entity declared of a certain class type, 
say C, may at run-time refer to an object of any 
descendant type of C. For example, an entity declared 

I: LIST [INTEGER] 

may refer to a two-way list or to a tree of integers. The 
reverse, however, is not true. 

If we call the type with which an entity is declared its 
“static” type and the type of the object to which the 
entity (if not void) refers at some point during system 
execution its “dynamic” type, the rule is that the 
dynamic type must be one of the descendants of the static 
type (which include the static type itself). Whenever we 
talk about the type of an entity, without further 
qualification, we always mean its static type. 
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4.6 Renaming 

The availability of multiple inheritance raises the prob- 
lem of name clashes: What happens when two or more 
parent classes have a feature with the same name? 

The basic rule is simple. Within a class, there may be 
no name conflict (overloading): Any unqualified name 
must denote one and only one feature. This is essential 
for read 
ability and safety. (In contrast, languages such as Loops 
resolve conflicts on the basis of the order in which 
parents are listed, a rather unsafe convention.) 

Of course, it is inevitable that classes developed 
separately will include features with the same names; but 
it should still be possible to combine such classes 
through multiple inheritance. Renaming solves the 
dilemma by allowing the heir, at the point of inheritance, 
to resolve any name conflict by renaming selected 
features of the parent classes. The inherit clause will 
appear as: 

class C export . . . . . inherit 
A 

rename ml as nl, m2 as 4, . . . . . . 
B 

feature 

rename pI as ql, p2 as q2, . . . . . . 
. . . . . . . . . . . . . . . . . . . . . . . 

Within the rest of class C, the renamed features will be 
known by their new names (nl, n2, . . . . ql, q2, . . . etc.). 

The ban on overloading applies to the set of names 
that are visible in the class after renaming has been 
applied and may be expressed as the following renaming 
principle: 

If two parents of a class possess identically named features, 
the inheritance clause of the class must remove any name 
conflicts through renaming. 

Renaming also has another important application: to 
enhance clarity by providing more appropriate feature 
names in a descendant. For example: 

l Class WIND0 W inherits routine add-child from 
TREE, but renames it add-subwindow to provide 
consistent “window” terminology to its clients. The 
writer of, say, a text editor (say) needs a good window 
abstraction but has no business knowing that this 
abstraction was implemented by inheriting from a 
particular set of parents. 
l The boolean function which tests whether a list is 
empty is called empty for lists in the strict sense 
(Sections A.4-A.7) and renamed is-leaf for trees 

(section A.8) to conform to usual tree terminology. 
Saying that a tree node is a leaf is the same as saying 
that, viewed as the list of its subtrees, it is empty. 

4.7 Repeated Inheritance 

An interesting consequence of the renaming policy is an 
Eiffel concept that extends multiple inheritance: re- 
peated inheritance. 

Repeated inheritance occurs whenever a class inherits 
more than once from a given ancestor. The ancestor may 
be a parent, or it may be a more remoteancestor (see 
Fig. 4). Below is an example of the second case (indirect 
repeated inheritance), which occurs whenever a class 
has two parents with a common ancestor (see part (b) of 
the figure). 

Assume for example a class TAXPAYER with 
attributes such as 

age: INTEGER; 
address: S TRING;2 
bank-account: ACCOUNT; 
taxpayer_ id: INTEGER; 

and routines such as 

birthday is do age : = age + I end; 
pay- taxes is . . . . . ; 
deposit- to-account (sum: INTEGER) is . . . . . ; 

etc. 
An heir of TAXPAYER, taking into account the 

specific characteristics of U.S. tax rules, may be US- 
TAXPA YER. Another may be FRENCH- TAX- 
PAYER (with reference to places where taxes are 
payed, not citizenship). 

Now we may want to consider people who pay taxes 
in both France and the United States, perhaps because 
they reside in each country for some part of the year. 
The natural way to express this is to use multiple 
inheritance: class FRENCH- US- TAXPA YER will 
be declared as heir to both US- TAXPAYER and 
FRENCH- TAXPAYER . This is the scheme of 
Figure 4 (b). 

What happens with the features that are inherited 
twice from the common ancestor TAXPA YER such as 
address, age, taxpayer-id, etc.? Applied strictly, the 
renaming principle of in the previous section would 
force the programmer to rename these features in the 
new class. 

But the principle does not seem justified here, as there 

2 Strings in Eiffel are instances of a predefined library class 
STRING. 
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is no real name clash: The apparently conflicting 
features are in fact the same feature, coming from the 
common ancestor TAXPAYER. The two versions of 
age, for example, are really the same (unless you are 
trying to hide something, you should declare the same 
age to both the U.S. and French treasuries). On the other 
hand, the taxpuyer_id attributes inherited from both 
parents should remain distinct. This will be achieved 
simply by renaming them at the inheritance point, as 
us.__ tmpuyer-id and french-taxpuyer-id. 

The Eiffel convention for repeated i~e~~~e follows 
from this discussion: 

In repeated inheritance, any feature from the common 

Figure 4. Repeated inheritance-direct (a) or indirect (b). 

parent is considered shared if it has not been renamed along 
any of the inheritance paths. Any feature that has been 
renamed at least once along any of the inheritance paths is 
considered replicated. 

This rule applies to attributes as well as routines; a 
consequence is that it is a compile-time error for the 
body of a nonrenamed routine (which would thus be 
shared) to contain references to one or more renamed 
attributes or routines (which would be duplicated, 
leaving the meaning of the shared routine ambiguous). 

This rule yields the desired flexibility in combining 
classes. For example the inherit clause of class 
FRENCH_ US_ TAXPA YER might look like: 

inherit 
FRENCH_ TAXPA YER 

rename 
address as french_address, 
taxpayer-id as french_taxpayer_id, 
pay- taxes as pay__french- taxes, 
bank-account as french_bank_account, 
deposit_to_account as deposit_tofrench_account, 
. . . . . . . . . . . . . . . . . . . . 

US- TAXPA YER 
rename 

address as us_ address, 
taxpayer-id as us- taxpayer_ id, 
pay- taxes as pay- us- taxes, 
bank-account as us-back-account, 
deposit-to_accou~t 115 deposit- to_us_aecount, 

Note that features age and birthday, which have not 
been renamed along any of the inheritance paths, witi be 
shared, which is indeed the desired effect. 

With this rule, the renaming principle may be 
qualified by adding that the presence of identically 

named features in parents of a class is not considered a 
name conflict if the features come from a colon 
ancestor and neither has been renamed at any point in the 
inheritance process. 

The Eiffel implementation (see Section 8) achieves 
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sharing or duplication of attributes according to the 
above rule; no space is lost (that is to say, no space needs 
to be reserved in class instances for unaccessible 
attributes). The same effect is achieved for routines. For 
shared routines, no code is duplicated; for routines 
which must be replicated according to the above rules, 
code must be duplicated. This is the only case in the 
Eiffel implementation in which code is ever duplicated. 

4.8 Feature Redefinition 

Another property of multiple and repeated inheritance is 
the possibility to redefine a feature of a class C in a 
descendant class, say D. The inheritance clause of class 
D may list some of the C features as being redefined in 
C, under the form 

class D export . . 
inherit 

c 
redefine f, g, h . . 

In this case, the feature clause of D must include new 
declarations for the features f, g, h . . . listed in the 
redefine clause. These declarations override those of C: 
a feature application of the form 

xf 

(possibly with arguments if f is a routine) will refer to 
the D version if x is of dynamic type D. This applies 
both when x is declared of type D and, more interest- 
ingly, when x is declared of type C but happens at run- 
time to be of dynamic type D (because of previous 
assignments) when feature f is applied to it. 

Some constraints, of which the most important are 
described in Section 5.1, restrict the types that may be 
given to redefined features and (in the case of routines) 
to their arguments. 

Feature redefinition is the basic mechanism for 
achieving polymorphism in Eiffel. It adds yet another 
element of flexibility to software design by permitting a 
set of related classes to provide alternative implementa- 
tions of the same operation. 

As a simple example, consider a set of graphic 
classes, including POLYGON, with RECTANGLE 
among its heirs, itself with heir SQUARE. POLYGON 
may have among its features a list of points, say 
vertices, giving the vertices of a polygon, and a function 
perimeter that returns its perimeter. The implementa- 
tion of perimeter performs a traversal of the vertices list 
to compute and sum the distances between adjacent 
vertices. Class SQUARE, on the other hand, has a 
feature side giving the length of a square’s side. It is 
clearly appropriate to redefine feature perimeter in this 
class to simplify the computation, which in this case just 
returns 4 *side. 

Assuming the declaration 

p: POL YGON 

entity p could at run-time, as we have seen, refer to an 
object of type SQUARE. The function call p.perimeter 
would then result in the SQUARE version of the 
function being applied, whereas the same call executed 
when p refers to an object of type POLYGON would 
have triggered the execution of the POL YGON version. 

A further degree of flexibility is provided by the 
ability to redefine a function feature (without arguments) 
as an attribute. From an information hiding viewpoint, it 
is useful to provide clients with a feature under such a 
form that it does not make any difference for them 
whether the feature is implemented as an attribute (that 
is to say, stored along with each object of the class) or a 
function (computed when requested); the notation for 
remote feature application is indeed the same in both 
cases: x.f. With inheritance coming into the picture, the 
idea is carried further by allowing descendants of a class 
to redefine as an attribute a feature declared as a function 
in the ancestor. 

For example, one-way linked lists (class LINKED_ 
LIST, Section A.5) include a function feature fast, 
returning the last value of a list; here you must traverse a 
list to get to its last element, so a function is indeed 
necessary. For two-way linked lists (TWO_ WA Y_ 
LIST, Section A.6), a reference to the last element will 
be permanently kept by each list, so that last becomes an 
attribute in this class. 

Legitimate concerns may be voiced as to the power of 
the redefinition mechanism: does it not allow dangerous 
manipulations? A feature application 

af(....), 

where the type of a is a class type, say A, could have 
totally unexpected results if a may be assigned values of 
descendant types of A where f is redefined in a manner 
inconsistent with the original intent of A’s author. 

Nothing indeed prevents the author of SQUARE to 
redefine perimeter so that it will compute, say, the area 
rather than the perimeter. 

Although Eiffel does not provide an absolute protec- 
tion against such abuses of the redefinition mechanism, 
it does address the problem. As will be explained in 
Section 6.3, a partially formal specification may be 
associated with a routine feature in terms of precondi- 
tions and postconditions. If this is the case, any 
redefinition of the routine must obey the initial spccitica- 
tion (6.6). 

4.9 Redefinition Versus Renaming 

Redefinition and renaming serve different purposes and 
should not be confused. 
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Redefinition is applied to ensure that the Same feature 
name refers to different actual features depending on 
the type of the object to which it is applied (that is to say, 
the dynamic type of the corresponding entity). It is thus 
an important semantic mechanism for providing the 
object-oriented brand of polymorphism. 

Renaming, on the other hand, is more of a syntactic 
mechanism, making it possible to refer to the same 
feature under different names in different classes. 

The two techniques are indeed orthogonal; either or 
both may be applied (in a descendant D of a class C) to a 
feature of C, say f. They address different questions: 

l Redefinition corresponds to the question “can we 
have a different implementation for f when it is 
applied to entities of dynamic type If?“. 
l Renaming corresponds to “can we change the name 
under which the original (C) implementation off may 
be applied to entities of static type D?” 

The effect of combining these two mechanisms in 
various ways, summarized in the table below (Table I), 
follows from this discussion. Assume that entities c and 
d are declared of types C and D respectively. It is 
important to distinguish between the name of a feature, f 
in the example, and the feature itself (represented for 
example by the body of a routine), which we call $. By 
renaming the feature in D we associate with d, a new 
name f’ ; by r~e~ning it we associate with f a new 
feature d, ’ . 

When c is of dynamic type C, cfwill always refer to 
feature f, and the notation c.f’ will always be illegal. 
Thus there are only three nontrivial cases: cf for c of 
dynamic type D; d.f; and d.f’. The table shows what 
actual feature is associated with each of these notations 
in each legal case. Note that combinations marked as 
illegal may be caught statically by a compiler. 

Cases 5 and 6 are a little more subtle than the others 
and also less useful in common usage; they may be 
skipped on first reading. 

All cases, with the exception of case 6, occur in the 
library of the Appendix. Note that case 4 is interesting in 
particular when D provides a special implementation d, ’ 
of the feature, but the implementation of 4 ’ internally 
relies on the more general #; thus D must be able to 
refer to #, which is not available to it under any name in 
case 3 (redefinition only). 

For example, the basic insertion procedure pui- 
between is inherited by class TREE (A.7) from LINK- 
ABLE (A.4). To insert a new child into a tree, however, 
you must not only do the pointer operations for inserting 
an element into a list, but also set the “parent” field of 
the new child so that it references the correct parent. 
Thus, the implementation of the new put-between 
consists of a call to the original procedure, renamed 

Table 1. Combining Redefinition and Renaming 

No. c.f d.f df 

, f not redefined 
f not renamed 

2 f redefined 4 
f not renamed 

3 f not redefined 
f renamedf’ 

4 fredetintxi$’ 
f renamed f 
f not redefined 

5 f renamedf 
f’ redefined #” 

f redefined 4 ‘ 
6 f renamedf 

f’ redefined (b” 

Note: IO column 3, c is assumed to be of dynamic type D. 

linkable-put-between for the occasion, followed by 
instructions to set the parent field. 

4.10 Deferred Features-Eiffel as a Language for 
Analysis and Global Design 

With redefinition, programmers can provide alternate 
implementations of a previously implemented feature. In 
some cases, you may want to define a feature without 
giving its implementation, passing on to the descendants 
the task of providing such implementations. Deferred 
feature declarations satisfy this need. 

In such a declaration occurring in a class C, the type 
and arguments of the feature, if any, must be specified in 
C, but not its body if it is a routine. Syntactically, the 
do.. . part is simply replaced by the keyword deferred. 

Various versions will be given for the body in the 
descendants of C. You may then apply the feature to an 
entity of type C (under some consistency conditions), 
with the understanding that the implementation used 
depends on the dynamic type of the entity, which will 
always be one of the descendants. 

The syntax for deferred typed features without argu- 
ments, that is to say (in its simplest form) 

f: T is deferred end 

does not commit the descendants to implement the 
feature as an attribute rather than a function; different 
descendants may take different decisions in this respect. 

A class that contain one or more deferred features is 
itself called a deferred class and must be declared as 
deferred class rather than just class. 

As with feature redefinition, it is important to enable 
designers to specify properties of features even when 
they are declared as deferred. The techniques for 
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specifying preconditions and postconditions of routines 
(6.3 and 6.6) indeed apply to deferred features. 

An interesting application of deferred classes is the 
two-tier definition of modules (interface and implemen- 
tation) as in Ada or Modula 2. You will declare an 
abstract data type implementation as two classes, the 
first of which contains deferred features (with their 
types, those of their arguments, as well as preconditions 
and postconditions), and the second, heir to the first, 
provides implementations. An important advantage of 
this technique over the method used in non-object- 
oriented languages such as Ada or Modula 2 is that more 
than one implementation may be provided for a given 
interface within the same system. 

Deferred classes are important in connection with one 
of the uses for Eiffel: as a language and method for high- 
level analysis and design of software systems, as 
opposed to implementation only. The object-oriented 
approach is indeed particularly fruitful at these stages, 
where the results of classical functional methods often 
suffer from insufficient flexibility and reusability. 
Through the use of Eiffel, you may abstractly describe a 
system as a set of deferred classes. Note that even 
though implementations are not given, the routines’ 
effects may be specified by preconditions and postcondi- 
tions, and the abstract semantic properties of classes 
may be expressed by class invariants (see 6.2 below). 

A deferred class describes not just one implementa- 
tion of an abstract data type, but a set of implementa- 
tions. In the extreme case where all features are 
deferred, the class is in fact close to a pure abstract data 
type specification. 

A deferred class may not be instantiated (as the 
corresponding objects would not have implementations 
for some of their features), but it may be used as type of 
entities, to be associated at run-time with instances of 
descendant, nondeferred classes. 

Furthermore, a deferred class is compilable, so that 
the Eiffel compiler may perform a number of verifica- 
tions on it. To go from such a set of nonexecutable 
classes, viewed as a high- level system description, to an 
executable version, you write descendant classes, con- 
taining actual implementations of the previously de- 
ferred routines. This approach yields a much smoother 
development process than when a strict separation is 
maintained between the formalisms used at successive 
stages of the software development lifecycle. 

5. TYPE COMPATIBILITY 

5.1 Basic Constraints 

Eiffel is a typed language that was designed to permit 
completely static (compile-time) type checking. Because 

of the inheritance mechanism, the type system is richer 
than in a language with a simpler type system. There are 
two basic constraints, governing assignment and feature 
redefinition (the discussion only addresses class types; 
the usual rules apply to simple types). 

The first typing constraint is a direct consequence of 
the rule governing association between entities and 
objects (Section 4.5): in an assignment x : = y, the type 
of y must be a descendant of the type of x (if these are 
class types). In other words, you may assign a “more 
specific” value (i.e., a value of a descendant type) to an 
element declared as “more general. ” For example, an 
element of type LIST may be assigned a value of type 
TWO- WA Y-LIST. The reverse case is prohibited. 

The second basic constraint applies to the redefinition 
of a typed feature, i.e., an attribute or a function: If such 
a feature, initially declared in a class C as being of a 
certain type T, is redefined in a descendant of C as being 
of another type T' , then T’ must be a descendant of T. 
For example, the feature representing the first linked 
element (“cell”) of a list, called first-element and 
defined as LZNKABLE in class LINKED-LIST, is 
redefined as BZ-LZNKABLE in TWO_ WAY_ 
LZST and as TREE in class TREE; such redefinitions 
are correct since each new type is a descendant of the 
previous one. 

5.2 Declaration by Association 

The second typing constraint is one of the language 
properties that motivate declaration by association. A 
declaration by association takes the form 

x: like y 

where y is an entity declared in the scope where this 
declaration appears. If T is the type associated with y, 
then the above declaration is equivalent to 

x: T 

with the difference that if y is redefined in a descendant 
of the current class with a new type T' , then the 
corresponding redeclaration of x is implied. We say that 
y is an “anchor,” which may be used to drag along 
other elements declared like y. The anchor itself must be 
declared with a “fixed” type (not by association). 

This form of declaration is often needed to guarantee 
that a group of elements remain consistent with each 
other in any descendant. It is used in particular to ensure 
that the types of function results are properly declared, 
as the following simple example shows. 

Assume you want to define a class COMPLEX to 
represent complex numbers. One of the features may be 
a function conjugate yielding the conjugate of the 
current instance, which you might declare as follows: 
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conjugate: COMPLEX is 

d0 

-- Return a copy of the conjugate of the current complex 

Result. Clone (Current) ; -- Assign to Result a copy of the current complex 
Result.change_y ( -y) ; -- Negate the y coordinate of Result 

end -- conjugate 

It has been assumed that another feature of COMPLEX 
is the procedure change-y (new-y: REAL), which 
does what the name implies. 

The solution shown is correct as along as you consider 
class COMPLEX just by itself. However, assume 
COMPLEX has a descendant-say IMPEDANCE, in 
an electrical engineering application whereby impe- 
dances are considered a special case of complex num- 
bers. Class IMPEDANCE will inherit the conjugate 
feature; but with declarations such as 

il, i2: IMPEDANCE 

The problem goes away, however, if you use a 
declaration by association whose anchor will be the 
current element itself. In other words, you will declare 
conjugate to be of type not COMPLEX but 

the assignment il : = i2xonjugate is typewise incor- 
rect, since the type of the right-hand side, COMPLEX, 
is not a descendant of the type of the left-hand side, 
IMPEDANCE; in fact, the reverse holds. 

With this declaration, cxonjugate is of type COM- 
PLEX if c is declared of type COMPLEX> but 
ilxonjugafe will now have the type of il, namely 
IMPEDANCE. In all cases these types may be deter- 
mined statically. 

Declarations by association play an im~~nt role in 
the examples below. They ensure, among other proper- 
ties, that list elements are consistent: for example, all 
elements of a doubly linked 3ist (see class BI-. 
LINKABLE, Section A-5) must include two references, 
to their right and left neighbors; and all members of the 
list of children of a tree node must themselves be tree 
nodes (A.@. 

It is essential to emphasize that, whether or not 
declarations by association are used, the typing con- 
straints are static and may be checked at compile time. 

6. FEATURES FOR SYSTEMATIC 
PROGRAMMING 

Much of the emphasis in the design of Eiffel has been on 
promoting such quality factors as reusability, extendibil- 
ity, and compatibility. But these qualities are meaning- 
less unless programs are also correct and robust. In fact, 
as techniques for the production of truly reusable 

software components become a reality, the concern for 
correctness takes on a even greater importance than in a 
“one-shot developments” environment, since the im- 
pact of errors will be multiplied by the reuse factor. 

Eiffel includes language constmcts that promote a 
systematic approach to software construction. The regu- 
lar use of these constructs, and the general attitude they 
imply towards program const~ction, have proved ex- 
tremely beneficial as to the correctness and robustness of 
software built with Eiffel. 

6.1 Assertions 

Syntactically, an assertion is a boolean expression, 
expressing some property that should be satisfied by 
certain entities at designated stages during a the execu- 
tion of a system. Examples of assertions are: 

The Eiffel constructs aimed at enhancing a lucid 
approach to software correctness are based on the notion 
of assertion. 

i/=j -- Note that I = is the “not equal” symbol 

f&7 Y) = 0 
notempty: nb_elts > 0 

As the last example shows, an assertion may have an 
associated label. An assertion may have more than one 
clause, separated by semicolons; the semicolon is 
semantic~ly ~uivalent to an and here, but it allows 
individual identification of the components of the list, 
especially if they are labelled. 

Eiffel does not include a all-wedged assertion lan- 
guage, so some properties that are not expressible as 
simple boolean expressions may have to be given in part 
as comments, as is frequently the case in the examples of 
the appendix. (A effort in progress, the M specification 
method [21], includes a specification language, LM, 
which might be used in conjunction with Eiffel in a fully 
formal approach. ) 

The various uses of assertions will now be described. 

6.2 Class invariants and the Create Procedure 

The need for class invariants arises from the already 
voice remark that a class is in general an implemen~tion 
of an abstract data type rather than the abstract data type 
itself (except in the case of a class with deferred features 
only). The implemen~tion contains components (attrib- 
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utes) that are often too general for the purpose of 
representing the abstract type. As a trivial example, an 
array representation of stacks might contain an integer 
attributes, say high, which marks the topmost array 
position used. Although an arbitrary integer may be 
positive, negative or zero, an integer used as stack 
pointer may only be nonnegative. Thus the condition 
high 1 0 should be a class invariant. 

The notion of data type invariant is discussed in [ 1 l] 
and [16]. 

A class invariant must be satisfied after the execution 
of the Create procedure of the class; any routine of the 
class may be written under the assumption that the 
invariant is satisfied on entry, and must ensure that it is 
still satisfied upon exit. 

For nontrivial classes invariants are strong semantic 
properties; by stating them explicitly, you gain in-depth 
insights into the fundamental properties of classes. The 
appendix contains significant examples of class invari- 
ants, for example the invariants for LIST and 
LINKED- LZS T. 

Syntactically, a class invariant is an assertion list, 
appearing in an optional clause introduced by the 
keyword invariant in a class declaration, as in 

class ARRA Y-STACK [T] export.. . feature 
high: INTEGER; 
. . . . . . . . . . . . . . . . . 

invariant 
high > = 0 

end -- class ARRAY-STACK 

The reader will notice in the examples of the 
Appendix the constant interplay between class invariants 
and routine preconditions and postconditions. In princi- 
ple, the following should be proved for each routine 
body B, with precondition Q and postcondition R in a 
class with Z as invariant: 

where {Q} A {R) means that execution of A, starting 
in a state where Q is satisfied, will terminate in a state 
where R is satisfied). In other words, when assessing the 
validity of a routine body, you may assume the class 
invariant, and you must check that it is preserved by the 
routine. 

The notion of class invariant is the main justification 
for the way object creation is handled in Eiffel through 
the Create procedure. 

The conventions regarding this procedure are slightly 
different from those of other routines. Execution of 
a.Create (.... ), where a is of type A, triggers the 
allocation of storage for an object of type A, to be 
associated with a, followed by the execution of the 
Create procedure declared in class A if there is one 

(which must be the case if the call includes arguments). 
If A does not contain a Create procedure, A is still 
considered to have declared it with an empty body. Thus 
Create is never inherited, since every class redefines it 
explicitly or implicitly. 

Special conventions are always disturbing and one 
may wonder why Eiffel does not separate object 
allocation from object initialization, with a syntax such 

as 

-- Warning: this is not correct Eiffel! 
allocate a; 
a.init (x, y, . ..) 

where allocate would be a universal allocation instruc- 
tion and init some class-specific procedure (declared in 
A in the case at hand). 

The advantage of the solution actually retained is that 
by tying initialization to allocation the designer of a class 
may guarantee that all objects of the class will automati- 
cally satisfy the class invariant upon creation. The 
alternative solution would not enable designers to 
prohibit clients from omitting to call a. init after allocate 

a before any other feature is applied to a. 
From a formal viewpoint, then, the purpose of Create 

procedures is to ensure that every object of a class 
initially satisfies the class invariant. 

6.3 Preconditions and Postconditions 

Assertion lists may be associated with routines: a routine 
may begin with a require clause, stating the conditions 
assumed to be satisfied on entry, and end with an ensure 
clause, stating the conditions that must be enforced by 
the routine implementation upon exit. 

The following two notations are available in ensure 
clauses: old x denotes the value of entity x upon routine 
entry; Nochange is a boolean expression, true if and 
only if no attribute of the current instance has been 
modified since entry. 

The precondition and postcondition of a routine may 
be viewed as an explicit contract between the class 
implementer and the authors of client classes. The 
precondition binds the clients: a call that does not satisfy 
it is not valid, and the class may do what it pleases with 
it. The postcondition binds the class: If the precondition 
is satisfied, the client is entitled to expect that the routine 
will terminate in a state that satisfies the postcondition. 
An approach to software construction based on this 
notion of contract is developed [25]. 

6.4 Loop Notation 

The syntax of loops includes room for loop initializa- 
tion, a loop invariant (true after initialization and 
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conserved by the loop body), and a variant (a nonnega- 
tive integer expression that decreases on each iteration, 
guaranteeing termination): 

from initia&ation_instructions 
invariant invariant 
variant variant 
until exit-condition 
loop loop_instructions end 

This no~tion (where the invariant... and variant 
clauses are optional) enables the program reader to 
check that the initiaIization_instructions ensure the 
invariant, and that the combination of this invariant and 
the exit-condition ensures the desired effect of the 
loop. Note that this loop is similar to a classical “while” 
loop, with the test reversed; it is not a repeaLuntil... 
since the number of iterations will be zero if the exit_ 
condition is false on entry. 

6.5 Check instruction 

Assertions may also be used in a special instruction of 
the form 

check assertion_fist end 

whose purpose is to express that the assertion-list is 
satisfied whenever control reaches this instruction. This 
construct (the equivalent of the Algol W ASSERT 
inst~ction) is used in particular in connection with 
routine calls, express that a condition stronger than or 
equal to the routine precondition is satisfied before the 
call, and that a condition weaker than or equal to the 
~stcondition may be assumed upon return. The Appen- 
dix contains numerous examples of such uses of check. 

6.6 Assertions and Inheritance 

You may use assertions to state the restrictions that 
apply whenever features are added or redefined in 
descendants of a class. As pointed out in Sections 4.8 
and 4.10, class designers should have some way of 
providing their clients with guarantees that each class 
will perform according to the original contract, even if 
some of its features are redefined. 

Such a provision is the indispensable complement to 
the principle of openness: Inasmuch as you strive to 
produce software elements that are still open to exten- 
sions and modifications, you also need a way to 
prescribe limits within which these future changes 
should remain. 

The following constraints apply to the i~e~tance 
mechanism in connection with the use of assertions: 

l The invariant of a class applies to all descendants of 
a class (thus it does not need to be repeated in their 
invariant.. . clauses except for cIarity). 

l Cons~uently, no two classes may be combined 
through multiple inheritance if their invariants are not 
compatible. 
l If a routine is redefined in a descendant class (this 
includes the case when the original routine was 
deferred), the new precondition must be no stronger 
and the new postcondition must be no weaker. 

In the last rule, a condition is said to be stronger than 
another one if it implies it. The rule expresses the 
requirement that whenever the original routine was 
applicable, the new one must also be (but it may well be 
less restrictive in its precondition), and it must at least 
ensure the original postcondition (but it may well ensure 
a more restrictive one). 

These consistency constraints are essential for a 
proper use of inheritance and redefinition. They express 
in particular that redefinition is not arbitrary, but must 
instead be viewed as a semantics-prese~ing transforma- 
tion. Further details are given in [27] and [25]. 

Note that these constraints could only be enforced by 
a system that includes a fully formal assertion language 
and a theorem prover. We will have to satisfy ourselves, 
for some time to come, with informal human verification 
and run-time checking. 

In particular, the examples reproduced in the Appen- 
dix have been tested extensively but not formally 
verified and some mistakes may remain; I will be 
grateful to any reader reporting an error. 

6.7 Use of Assertions 

The primary aim of assertions is to encourage a 
systematic way of writing Eiffel classes and to help 
reading them by requiring programmers to say explic- 
itly what mental assumptions have been made. Asser- 
tions may thus be viewed as comments of a special kind. 
This possibility has been used abund~tly in the exam- 
ples . 

It is also possible, on option, to check at run-time that 
assertions (at least those defined formally) are satisfied. 
The Eiffel environment provides three compilation 
options for each class: 

(0) l No protection: The program text is assumed to 
be correct and assertions have no influence at run- 
time. Errors are likely to result (if apparent at all) 
in aberrant behavior and abnormal te~ination 
(arising for example from out-of-bounds memory 
references). 

(1) l Controlled mode: Only preconditions of routines 
(require clauses) are checked. 

(2) l Total protection: All assertions (and the effec- 
tive decrease of loop variants through each itera- 
tion) are checked. 

Option 2 is adequate at checkout time. Option 1 is an 
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acceptable compromise in many situations; satisfaction 
of the precondition is essential to the proper functioning 
of routines (in fact, the presence of the require clause 
allows a much simpler coding style in Eiffel than in 
common languages, since internal consistency checks 
may be factored out in routine preconditions rather than 
scattered throughout routine texts), yet preconditions 
often may be checked with reasonable efficiency. Thus, 
option 1 is the default. 

6.6 Exceptions 

In its original form, Eiffel did not have any exception 
handling mechanism. In particular, violation of an 
assertion (monitored as described above) would produce 
a message and halt the execution. The original version of 
this article reflected this decision. 

This policy was based on an analysis of the limitations 
and dangers of exceptions as offered by such languages 
as CLU and Ada. Ada exceptions, in particular, are 
undisciplined interprocedural goto instructions. They 
encourage an irresponsible, “buck-passing” approach 
to the treatment of abnormal cases. 

Recent research at Interactive Software Engineering 
has led to the design of a simple and safe exception 
mechanism which is currently (spring 1988) being 
integrated with the rest of the implementation. The 
following is a brief overview of this mechanism, 
described further in [27] and [25]. 

The Eiffel exception mechanism is based on the 
notion of “programming by contract,” mentioned 
above. An exception is any event that prevents a routine 
from fulfilling its contract. This includes assertion 
violations when assertions are monitored, but also 
externally triggered events such as arithmetic overflow, 
memory exhaustion, or user interrupts. 

When an exception occurs, only two responses make 
sense: 

l Resumption: Attempt to fix the reason for the 
exception and retry the routine execution. 
l “Organized panic”: Concede failure, put all con- 
cerned objects back into a state satisfying the invari- 
ant, and signal the failure to the routine’s caller by 
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triggering a new exception (which the caller will have 
to handle in one of the same two ways). 

The policy made possible by Ada of performing some 
instructions and returning to the caller without signaling 
that something wrong has happened is dangerous and 
must be banned. 

To handle exceptions, an Eiffel routine may have a 
rescue clause that will be triggered whenever an 
exception occurs during the execution of the routine. 
The aim of the rescue clause is to bring the object back 
to a stable state. Unless the clause terminates by 
executing a retry instruction, the routine as a whole will 
be considered to have failed, and an exception will be 
triggered in the calling routine. (If there is no caller, that 
is to say at the root level, the system execution as a 
whole terminates with an appropriate message). The 
rescue clause may, however, terminate with a retry, in 
which case the routine execution is attempted again from 
the beginning. 

A routine without a rescue clause is considered to 
have an empty one, so that any exception will make it 
fail and signal an exception to the caller. 

The language extension for exceptions is limited to the 
mechanism just described, and to the two keywords 
rescue and retry. In addition, a library class EXCEP- 

TIONS defines some useful features for dealing with 
exceptions, in particular the attribute exception, which 
gives the code of the last exception that has occurred (to 
enable treating various exceptions differently). Note that 
a programmer who wishes to explicitly trigger an 
exception does not need a special raise instruction; a 
routine raise, with precondition false, will do the job. 

As an example of the exception mechanism, consider 
a routine attempt_ transmission that transmits a mes- 
sage over a phone line. It is assumed that the actual 
transmission is performed by a routine transmit; once 
started, however, transmit may abruptly fail if the line 
is disconnected, and will then trigger an exception. 

Routine attempt_ transmission tries the transmis- 
sion at most five times; before returning to its caller, it 
sets a boolean attribute transmission-successful to 
true or false depending on the outcome. Here is the text 
of the routine: 

attempt_transmission (message: STRING) is 
__ Attempt transmission of message at most five times. 
__ Set transmission-successful accordingly. 

local 
failures: INTEGER 

d0 

if failures < 5 then 
transmit (message); 
transmission_successful : = true 

else 
transmission_successful : = false 

end 
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rescue 
failure : = failures + i; 
retry 

end; -- attempt_ transmission 

Note that the integer local variable faff~re~ is initi~ized to zero on routine entry. 
This example shows one of the key reasons for the simplicity of the mechanism: The rescue clause never attempts to 

achieve the original intent of the routine; this is the sole responsibility of the normal body (the do clause). Its only role 
is to “patch things up” and either fail or retry. 

The above version never fails; it signals its inability to perform the transmission by setting an attribute. The 
following slightly simpler version will fail if it is unable to perform the transmission, triggering an exception in the 
caller, which is then charged with the responsibility of handling it in its own rescue clause: 

attempt- transmission (message: STRING) is 
-- Attempt transmission of message at most five times. 
-- If impossible, signal failure by raising an exception. 

local 
failures: INTEGER 

do 
transmit (message); 

rescue 
faiiures : = failures + I; 
if failures < 5 then 

retry 
end 

-- If control reaches this point, the routine wili fail. 
end; -- attempt-tra~mi~ion 

7 OTHER CONSTRUCTS 

Two more language notions are needed to understand the 
details of the examples in the Appendix and to write 
software in Eiffel. 

Noncommutative boolean operators use the Ada 
syntax: a and then B has value false if a has value false, 
and otherwise has the value of b; a or else b has value 
true if a has value true, and otherwise has the value of 6. 
The advantage of these operators over the standard and 
and or (which are of course also present) is that they 
may be defined when the first operand gives enough 
information to determine the result (false for and, true 
for or), but the second is undefined. A simple example is 
the boolean expression 

i/= Oandthenj/i = k 

which might yield an undefined value if it used a simple 
and. The noncommu~tive operators are pa~icul~ly 
useful in assertions. 

Finally, constants are described as class attributes 
with fixed values. The syntax is similar to that used for 
routines, for example: 

pi: REAL is 3.1415926524 

It is common practice to encapsulate a group of 

related constants in a class, which is then used as 
ancestor by all classes needing these constants. In the 
Eiffel implemen~tion, constant a~ributes do not occupy 
any space at run-time, so programmers need not be 
concerned about the number of such attributes. 

The above notation applies to constants whose types 
are simple. Constants of class types are expressed as 
“once” functions, i.e., functions that are evaluated only 
once in a given system; subsequent calls will always 
return the same value. “Once” functions are distin- 
guished by the keyword once appearing instead of do. 
For example, a class COMPLEX might include a 
declaration of the constant complex i (real part 0, 
imagina~ part 1) as 

i: COMPLEX is 
__ Pure imaginary number of modulus 1 

once 
Result. Create (0, 1) 

end -- i 

assuming the proper Create procedure. “Once” proce- 
dures, as well as functions, are also permitted; any call 
to such a procedure beyond the first has no effect. (An 
example might be an open_input procedure, which 
every client might call to make sure the input has been 
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opened; however the open operation must be executed 
only once during a given system’s execution.) 

8 IMPLEMENTATION: THE EIFFEL 
PROGRAMMING ENVIRONMENT 

For the programmer, a programming language is no 
better than its implementation. We thus finish this 
introduction to Eiffel with a description of how the 
language has been implemented. Rather than just an 
implementation, it is appropriate to describe the set of 
Eiffel-related facilities as a programming environment. 

8.1 Classes and Systems 

There is no exact notion of “program” in Eiffel. What 
may be executed is a “system,” defined by the name of 
a class, called the root, and a list of actual arguments. 
Executing such a system consists of allocating an object 
of the root class and executing its Create procedure, 
with the arguments supplied. Usually this will trigger 
new routine calls and the creation of other objects. 

In keeping with the goals of reusability and extendibil- 
ity, the primary focus of Eiffel programming is on 
classes rather than systems. An Eiffel class is the 
implementation of a useful data abstraction, but good 
classes should not be tied to a specific system; rather, 
systems should be constructed by combining existing 
classes and, if necessary, complementing them with new 
ones, again designed with generality and reusability in 
mind. 

This concept is reflected in the implementation: 
Nothing binds a class to a particular system. The concept 
of system does not in fact belong to the language proper, 
but rather to the operating system level. 

8.2 Implementation Policy 

The current Eiffel implementation, running under the 
Unix system, uses C as an intermediate language. This 
technique enhances portability without sacrificing effi- 
ciency. C is a portable assembly language, the closest- 
ever realization of the old “Uncol” (Universal COm- 
puter Language) idea. 

It should be pointed out that the use of C as 
intermediate language is just one possible implementa- 
tion technique; nothing in the design of Eiffel ties it to C. 

8.3 Compilation and Assembly 

Two commands are provided. 
The first command, ec, Lor Eiffel Class, compiles a 

single class into C and then to object code. Separate 
compilation is of course an essential requirement for a 
language promoting reusability and extendibility. To 

compile a class, you need its ancestors, if it has any; an 
optional argument to ec lists the directories where they 
are to be found. 

The second command, es, for Eiffel System, con- 
structs a complete system from its constituent classes 
through a process called assembly and executes the 
result. This command refers to a System Description 
File of the following form: 

ROOT: Classname 
SOURCE: . . . list of directories . . . 
EXTERNAL: . . . list of files . . . 
NO_ ASSER TION_ CHECKING : , . . list of classes . . . 
PRECONDITIONS: . . . list of classes . . . 
ALL-ASSERTIONS: . . . list of classes . . . 
DEBUG: . . . list of classes . . 
TRACE: . . list of classes . . . 
PAGING (YIN) 
GARBAGE-COLLECTION (Yl N) 

Such a tile describes how to assemble a system whose 
root is an object of type Classname. The SOURCE 
directories are used to locate all the necessary classes; 
the EXTERNAL files contain any needed external 
routines (see below). 

The following lines give compilation options: list of 
classes to be compiled with various levels of run-time 
assertion checking (see Section 6.7); classes to be 
compiled in debug mode; classes to be traced. The 
keyword ALL may appear in lieu of a list of classes. 

The last two lines of the System Description File 
allow selection or deselection of the built-in virtual 
memory and garbage collection facilities (see 8.8 be- 
low). 

The format of the System Description File is gener- 
ated by the first call to es in a given directory, so that 
programmers do not need to remember the details of the 
above syntax. 

8.4 External Routines and Openness 

A programming environment emphasizing extendibility 
and reusability should lend itself to communication with 
the outside world. Eiffel was specifically designed as an 
open environment, capable of interfacing with other 
languages. In fact, this requirement has made the 
language simpler, by allowing us to rely on external 
facilities in areas where we had no specific contributions 
to make, like physical implementation of input and 
output facilities (although the packaging of such facili- 
ties, by means of basic libraries of classes, using 
inheritance and information hiding, falls definitely 
within the province of Eiffel). 

Thus routines of a class may rely on external 
primitives written in a language other than Eiffel. More 
precisely, an Eiffel routine may contain an external.. . 
clause listing primitives written in other languages, 
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which may then be used within the routine’s body. 
Examples of use of external primitives may be found in 
class ARRA Y (Section A.2). 

The design of this facility does not conflict with the 
other principles of the language. In particular, an 
external routine is not a class feature: Instead, it is local 
to au Eiffel routine that uses it for its implemen~tion 
only. Thus the facilities offered by non-Eiffel primitives 
may be made available for use in Eiffel systems, but 
only once they have been encapsulated in bona fide 
Eiffel routines, used through the standard conventions of 
the language. Eiffel techniques such as preconditions 
and ~tconditions may then be applied to them. 

8.5 C Package Gmmtion 

An aspect of the environment that has proved useful to 
many developers using Eiffel is the availability of a 
package generator. By using further options in the 
System Description File, a developer may produce a 
complete C package from an Eiffel system. The package 
contains the following elements: 

l A set of C functions generated from their Eiffel 
counterparts (routines). (In case of name clashes, 
which may occur because in Eiffel, routines belong- 
ing to different classes may have the same names, the 
package generator chooses default names for the 
duplicates; the programmer may, however, specify 
any desired name for any generated C function.) 
l A main program, generated automa~cally. 
l A copy of the run-time system (including the 
garbage collector), in C form. 
l An automatically generated Make file, allowing 
r~ompilation of the generated package in any envi- 
ronment . 

The resulting C package is thus entirely self-contained 
and ~de~ndent of any Eiffel enviro~ent. This makes 
Eiffel a powerful crass-development tool, useful for 
software developers whose customers have not (yet) 
access to an Eiffel compiler. 

8.6 Efficiency 

As I mentions in Section 1.2, we were pa~icul~ly 
concerned about efficiency of the generated code. This 
concern is reflected in the translation techniques used: 

l As regards space for objects, each object only 
carries its attributes and some control information; no 
space is ever reserved for routines in the representa- 
tion of an object (routines are associated with a class 
as a whole, not with individual objects of a class). As I 
mentioned in Section 7, constant attributes are also 

“free” in terms of run-time space. Thus the occu- 
panty of an object is little more than that of an 
equivalent record in Pascal (without the loss that 
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comes from reserving the largest possible space in a 
record with variants). This is the only acceptable 
solution; it means in particular that efficiency is not a 
serious reason for restricting the number of routines 
or symbolic constants in a class, or the number of 
parents to a class. 
l As regards space for classes, the code of routines 
inherited directly or indirectly from ancestors is not 
copied, but shared. This applies to multiple as well as 
single i~eritance: Thus, there is no need to worry 
about inheriting from many different worlds (net- 
works of existing classes) when a new class is started, 
as the overhead per inherited routine is ~gligible. 
Neither does genericity imply any code replication; 
the routines are shared between all generic instances. 
These results should be contrasted with the Smalltalk 
implementation of multiple inheritance, which (if [5] 
is to be believed) duplicates routines on i~e~~n~ 
paths other than the principal path, and with the 
implementation of genericity in most Ada environ- 
ments, which replicate code for each generic instance, 
As seen above, there is one exception to the “no 
duplication’~ rufe in the case of repeated inheritance 
with renaming (Section 4.7); however this is a special 
and rather rare occurrence, 
l As regards time, one of the serious pitfalls of 
object-o~ented programming is the potential ineffi- 
ciency of remote routine application: Since calls of the 
form x&a, b, . ..) may result in the execution of 
various versions off depending on the run-time value 
of X, there is a danger of wasting time in looking for 
the app~priate version to apply. Published descrip- 
tions of object-oriented language implementation 
seem to consider it inevitable that the deeper the 
inheritance hierarchy, the longer routine search may 
belong at run-time. ~though improvements are possi- 
ble by the use of “caching” techniques [8], this is 
unacceptable: Progr~~ers should not be forced to to 
make tradeoffs between efficiency and the qualities 
that are direct beneficiaries of inheritance-reusability 
and exte~ibili~. Fu~h~rmore, any method based on 
run-time search becomes all but unapplicable with 
multiple i~e~tance, since a whole acyclic graph of 
ancestors would have to be searched rather than just a 
linear list. (The duplication of code in the Smalltalk 
case is precisely aimed at keeping the search linear.) 

This problem has been solved in the Eiffel implemen- 
tation through the use of original data structures and 
algorithms that ensure constant-time routine search, 
Although the overhead of a call x.ffa9 6, . . .) is slightly 
higher than the overhead for a procedure call f(x, a, b, 
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. ..) in a standard programming language such as C or 
Pascal, it is bounded by a constant value. This, I believe, 
is one of the fundamental contributions of the Eiffel 
implementation. 

Beyond the systematic application of the above 
techniques, a postprocessor (integrated with the package 
generator) performs a number of important optimiza- 
tions, both in time and space. In particular: 

l As I noted above, the overhead for routine calls is 
constant; it is also reasonably small, typically amount- 
ing to about 30% more than the overhead for function 
calls in C, but even this may be to much in highly 
time-sensitive applications. Conceptually, this over- 
head is a consequence of the availability of dynamic 
binding; this means it is only justified for routines that 
are redefined at least once in a system. Usually, 
however, a large percentage of the routines of a large 
system are never redefined. The postprocessor will 
detect them and implement all calls to such routines in 
the same way they would be implemented in C, 
removing any unjustified overhead. 
l A problem that plagues many object-oriented lan- 
guage implementations is the useless loading of the 
code for all routines from ancestor classes, including 
routines that are never actually used. Even in today’s 
relatively memory-rich environments, this may be- 
come a serious obstacle to the free use of inheritance. 
{Advances in hardware technology should never be 
used as an excuse for poor software performance; 
extra MIPS and bytes are bought to be used, not 
wasted.). This problem again introduces the risk that 
programmers will have to choose between reusability/ 
extendibility and efficiency. The postprocessor solves 
the problem by removing any unneeded code, ena- 
bling programmers to use arbitrary inheritance depths 
without having to worry about the effect of unused 
routines on code size. 

With these and other optimizations, we feel that the 
Eiffel implementation techniques have achieved our 
initial goal of providing the full power of object-oriented 
programming within the efficiency constraints of soft- 
ware production in ordinary programming environ- 
ments. 

8.7 Type Checking 

Static typing was mentioned in Section 1.2 as an 
important concern. Eiffel is indeed a statically typed 
language. The language definition permits all checking 
to be done at compile-time; no checks are necessary at 
run-time. Thus if a system containing a feature applica- 
tion of the form afis accepted by the compiler, thenfis 
guaranteed to be applicable to all objects to which a may 
refer at run-time. 

This is to be contrasted with the solution taken by 
most object-oriented languages, in which such checks 
are deferred in whole or in part to run-time. 

8.8 ~~figuration management 

The power of the reusability techniques offered by Eiffel 
and the emphasis on bottom-up system construction by 
combination of separately developed software compo- 
nents (classes) make it necessary to use a systematic 
approach to change and configuration control. 

A class may depend directly or indirectly on many 
others. There are two direct dependency relations: A 
class may be the client or the heir of another. The 
interconn~tion network resulting from considering indi- 
rect dependencies as well may be quite complex. A class 
may depend on many others; the inheritance graph must 
be acyclic, but the client graph may be cyclic, Further- 
more, a class may be a client of one of its ancestors or 
descendants. 

In a development environment where classes are 
frequently updated, there is a serious danger of inconsis- 
tencies arising from the use of obsolete or inadequate 
versions. A technique that would avoid this risk would 
be to recompile everything every time; however, such a 
solution is clearly unacceptable from an efficiency 
viewpoint. 

An automatic con~guration management system has 
thus been integrated into the commands ec and es. 
Whenever a class is compiled, the system ensures that 
the classes on which it depends are up-to-date, triggering 
the necessary recompilations. 

Our initial implementation of these facilities relied on 
the Unix Make tool [9]. However, Make soon turned out 
to be too limited in its capabilities. In particular, Make 
will not support cyclic dependencies. Even if this 
problem were solved, however, a major liability of 
Make is the necessity for the programmer to manually 
describe the dependencies; this is a tedious process and 
also a dangerous approach, since there is always the risk 
that a dependency will be forgotten, causing Make to 
generate an inconsistent or incomplete version of a 
system. This is not acceptable; dependency analysis 
should be completely automatic. 

The algorithms used by ec and es will indeed perform 
this analysis automatically for Eiffel, freeing the pro- 
grammer from any need to worry about what classes 
need to be recompiled after a series of changes to a 
system. These algorithms look for a minimum set of 
classes to recompile. In particular, they will detect that 
changes to a class only affected its secret (nonexported) 
features, and hence that its clients need not be recom- 
piled. 

A system that uses these facilities, even a large one, 
can usually be brought back to a consistent state in just a 
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few minu~s after a number of changes have been made 
to it. 

8.9 Run-Time Support 

The dynamic model described in Section 3.1 implies 
adequate run-time support. The implementation relies on 
a complete memory management system (Dunamem), 
which provides both paging and garbage collection. 

Both facilities are optional, being selected at compila- 
tion time through entries in the System Description File. 
Both are by default disabled. 

Paging should usually not be selected on standard 
operating systems providing their own virtual memory 
m~agement . 

In contrast with traditional garbage collectors that are 
triggered when no memory is left and then stop all 
execution for an often long time, the Eiffel collector is a 
continuous process (implemented as a co-routine) which 
collects unused space as the application is being exe- 
cuted. It uses a self-adapting mechanism that will wake 
up at periodic intervals, the intervals being automatically 
increased if memory usage is low and decreased 
otherwise. A form of “generation scavenging” 1331 is 
also used by the algorithm. 

When selected at compilation-time, garbage collec- 
tion may be dynamically disabled and then reenabled. A 
collector cycle may also be triggered at times when the 
programmer knows that CPU time is available, for 
example while awaiting user input. 

Garbage collection may be replaced or supplemented 
by programmer-controlled management; the language 
indeed makes it possible to implement this safely, 
without the well known dangers of the Pascal dispose, 
by associating a specific policy with each class of known 
behavior and implementing it within the language itself. 

8.10 Debugging Aids 

It is important to provide programmers with proper 
debugging tools. Although C is used as an intermediate 
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language for Eiffel comp~ation, Eiffel programmers do 
not need to ever look at intermediate C code. (In fact 
they do not need to know C.) Thus, built-in C debuggers 
are of no use here. The following facilities are provided: 

l Optional run-time checking of ~se~ions (see the 
options to es in Section 8.3), which has proved an 
invaluable aid for finding logical errors if an effort is 
made to spell out correctness arguments as assertions. 
l A class and routine tracing facility (see line 
TRACE . . . in the System Description File of Section 
8.3). 
l A debug .,. end instruction, executed only if the 
class has been compiled in DE;BUG mode; 
l An interactive object viewer, which makes it 
possible to traverse interactively a system’s data 
structure at run-time, observing the objects and 
following the reference chains. 

More debugging facilities are currently being added to 
this basic framework. 

8.11 Short-The Class Abstracter 

Another tool is important to make reuse practical: short, 
a class abstracter that produces a summarized version of 
any class, enabling potential users to determine whether 
the class provides the required capabilities, without 
having to look at the whole implemen~tion of the class. 
The summarized version contains the inherit and fea- 
ture clauses only; the latter is abstracted so that only 
exported features are shown and, for each exported 
routine, the body is not shown: Only the header, 
precondition, postcondition and the comment immedi- 
ately following the header, if any, are reproduced. 

The presence of assertions is fundamental in making 
this approach work for Eiffel; well-chosen preconditions 
and postconditions go a long way towards d~umenting 
the purpose of a routine both precisely and concisely. 

For example, the abstracted version of class ARRA Y 
(Section A.2) is: 

class interface ARRA Y [T] exported features 
lower, upper, size, entry, enter 

inherit 
INDIRECT [T] 

feature s~ifi~t~on 
lower, upper: INTEGER 
size: INTEGER 

-- Array size 
Create (min: INTEGER, max: INTEGER) 

__ If min c = max, create array with bounds min and max; 
__ otherwise create empty array. 

entry(i: INTEGER): T 
-- Entry of index i 
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require 
Iower < = i; 
i < = upper 

enter(i: INTEGER, element: T) 
-- Assign value element to i-th entry 

require 
lower < = i; 
i < = upper 

invariant 
size = upper - lower + I; 
size > = 0; 

end interface -- class ARRA Y 

The 4 option of short was used to produce this 
example; this allows the use of short for generating a 
client’s manual for a class. 

Note that short will recognize a header comment at a 
conventional place in a routine (after the keyword is} and 
will keep it in the output, Other co~ents are lost. 
Assertion clauses involving only public features are 
kept, but not those involving one or more nonexported 
features. 

The official d~umen~tion for the Eiffel library [14] 
is almost entirely produced by short. 

I believe that short points towards the proper solution 
of the documentation problem in software engineering. 
Most textbooks urge programmers to write extensive 
d~umen~tion that is, viewed as separate from the 
software itself. But it is hard to make sure that this 
advice is followed when the software is initially de- 
signed, and this is almost impossible when it comes to 
migrations and enhancements. 

The only satisfactory approach is to make the software 
contain its own documentation and to rely on computer 
tools to extract the documentation when it is needed. In 
this approach, there is no clearcut boundary between 
implemen~tion and d~umen~tion; the d~umentation 
for a software component is simply a more or less 
abstract view of the component. Various levels of 
abstraction are possible, from the most abstract (which 
would only include the component’s name) to the most 
concrete (which is simply the full text of the compo- 
nent). Command short is in-between, yielding a class 
interface with the formal properties of the operations and 
associated comments, but no implementation details. 

8.12 Graphical Tools 

Beyond short, there remains a need for high-level 
documentation of interclass relationships and system 
structure. In this case, textual d~umen~tion must be 
complemented by graphical output. Graphical tools (to 
be made part of official releases of Eiffel in the spring of 
1988, on environments supporting the X Windows 

graphics package) make it possible to explore the class 
structure in a visual form. They generalize the Smalltalk 
notion of a class browser. 

8.13 Flattening 

It was previously noted (in the WINDOW example, 
section) that the inheritance structure used for the 
implementation of a particular class is usually of no 
interest to the clients of that class; what is relevant for 
the clients is the complete interface specification. Thus, 
there is a need for a tool that will produce a functionally 
equivalent class with no inheritance clause. 

The flat command is such a tool. It produces a 
“flattened” version of a class confining the actual text 
of all inherited routines; the command takes into account 
any renaming and redefinition that may have occurred 
between the original declaration of a routine and the 
current class. By applying short to the output of flat, 
one obtains the same level of documentation for all 
routines of a class, those that are declared in the class 
itself as well as those which are inherited from ances- 
tors. 

9 CONCLUSION 

9.1 Further Work 

Several efforts are being pursued in connection with the 
work described in this article: 

l The language and its translator are being applied to 
the development of several large software systems. 
l The implementation is being refined and extended. 
Implementations are in progress for systems other 
than Unix. 
l The Eiffel library sketched in this article is being 
expanded, so as to eventually cover all the data 
structures and algorithms that constitute the core of 
programming. 
l Work on new specific Eiffel tools continues; of 
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particular importance is the development of databases 
for storing and retrieving reusable software compo- 
nents. 
l An extension of Eiffei for handling concurrency 
and real time is being investigated. 
l Work also continues on the M formal specification 
method [2 11, applying similar ideas at a more abstract 
level. 
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PART 2: APPENDIX-BASIC EIFFEL LIBRARY 

A.1 OVERVIEW 

The classes given below are extracted from the basic 
library that constitutes one of the fundamental assets of 
designing software in Eiffel. They have been somewhat 
simplified and some features have been omitted in the 
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interest of space (and of providing the reader with some 

incentive to try his hand at Eiffel programming), but 

they remain faithful to the original, which serves as a 

basis for all of our software developments. (Applications 
that have been built on top of this library include 
Cepage, a language-oriented editor and document con- 

structor, and Winpack, a multi-windowing display 

management system.) 
Missing elements that the reader is invited to complete 

are marked ***.....***. 
These classes illustrate the bottom-up, modular, 

reusable programming style encouraged by Eiffel. 
As the examples show, the details of data structure 

implementation may be rather difficult, in particular 
when pointer manipulations are involved. This, we 

think, is an important argument for taking care of these 

details in reusable and flexible general-purpose mod- 
ules, which can be thoroughly checked and optimized 

once and for all; the checking and optimization are better 

done there than in application programs. Such profes- 
sional implementations of data abstractions may be used 

as the basis for “data structure programming” as 

advocated by Mills and Linger [28], enabling program- 
mers to write and think in terms of lists, stacks, trees and 

the like rather than pointers, flags, offsets, indexes, etc. 

Anybody who has written software involving nontri- 
vial data structures in languages such as Pascal or C and 

found himself constantly fighting to avoid being swal- 

lowed in thick pointer soup will appreciate the availabil- 
ity of a library of extendible, reusable implementations 

for the most common data structures and associated 

operations. 
The experience of writing this library has taught us 

that bottom-up design, if highly promising from the 
reusability standpoint, is also difficult. Coming up with 

correct and efficient tools that will satisfy many different 

needs is an exacting iterative process. Much work 
remains to be done to capture the core of software 

engineering applications. The challenge-factoring out 

into truly reusable software components as much as 
possible of the tedious and repetitive side of program- 
ming-is well worth the effort. 

A.2 ARRAYS 

One-dimensional arrays in Eiffel are not a primitive 
notion but a generic class, of which an implementation is 
given below. The main reason for including it here is 

that it is used by class FIXED-LIST below, one of the 
implementations of lists. Similar classes exist for two- 
and three-dimensional arrays. 

An array may be allocated with arbitrary bounds 
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through the procedure Create; to access or modify array 
elements, one uses the features entry and enter of the 
class ARRA Y. 

The implementation shown here relies on low-level, 
machine-dependent primitives for dynamic memory 
management: allocate for dynamically allocating mem- 
ory areas, dynget to access data from such areas, 
d’nput to change these data. We have assumed that 
these primitives are written in C, as is the case with our 
current Unix implementation. The low-level primitives 

class ARRA Y [T] export 
lower, size, upper, -- (read-only) 
entry, enter 

directly manipulate addresses; since “address” is not, 
of course, a valid Eiffel type, addresses are encoded as 
positive integers. The encoding and decoding are the 
responsibility of the low-level routines; the Eiffel level 
only sees “abstract” integers. 

The example contains little actual Eiffel code, but 
shows how an Eiffel class may be used to encapsulate a 
group of related low-level primitives and present it to the 
outside world as a coherent abstraction, complete with 
its preconditions, postconditions, and class invariant. 

feature 

-- The elements of an array are called “entries” 

lower: INTEGER ; upper: INTEGER ; 
size: INTEGER ; 
area: INTEGER; -- Secret 

Create (min: INTEGER, max: INTEGER) is 
-- Allocate current array with bounds min and max; 
__ no physical allocation if min > max. 

external 
allocate (length: INTEGER) : INTEGER name “allocate” language “C”; 

-- Allocate should allocate an area for length integers 
-- and return its address (0 if impossible) 

do 
lower : = min ; upper : = max; 
size:= max - min + 1; 
if max > = min then area : = allocate (size) end 

end; -- Create 

entry (i: INTEGER): T is 
-- Entry of index i 

require 
lower < = i; i < = upper; area > 0 

external 
dynget (address: INTEGER; index: INTEGER) : T name “dynget” language “C”; 

-_ Value of index-th element in the area of address address 
do 

Result : = dynget (area, i) 
end; -- entry 

enter (i: INTEGER, t: T) is 
-- Assign the value of t to the entry of index i 

require 
lower < = i; i < = upper; area > 0 

external 
dynpu t (address: INTEGER ; index: INTEGER ; 

-- Replace with val the value of the index& 
__ element in the area of address address 

do 
dynput (area, i, t) 

end; -- enter 
invariant 

size = upper - lower + 1 
__ area > 0 if and only if the array has been allocated 

end -- class ARRA Y [T) 

val: T) name “dynput” language “C”; 
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A.3 GENERAL LISTS 

This section and those that follow introduce classes corresponding to lists of various brands: 

LIST [?-I 
(General notion of list) 

FIXED-LIST [T] 
(lists represented by arrays: no insertion or deletion) 

LINKED-LIST [T] 
(lists in linked representation; insertions and deletions are possible) 

TWO_ WA Y-LIST [T] 
(like LINKED-LIST but providing more efficient primitives for 
right-to-left traversal thanks to a doubly linked representation). 

229 

These classes have undergone a fairly substantial 
change from a previous version of the library and the 
present paper. A description of what happened may be 
of interest to readers concerned with the methodological 
principles of object-oriented software specification and 
design and, more specifically, with finding guidelines 
for the specification of systems. 

Our initial approach was a strictly “static” one, in 
which we viewed lists as sequentially ordered reposito- 
ries of information (of T type). Features available on a 
list 1 were of the form I.get_value-by-index (i), 
(value of the i-th element of 1), l.get_index-by- 
value (u, j) (index of the j-th element of value u), etc. ; 
and, for lists in linked representation, l.insert_by_ 
position (v, i) (insert value v at position i), Ldelete- 
by-position (i ) (delete i-th element), etc. 

As we started actually using the library, however, we 
were confronted with a disquieting increase in the 
number of primitives. For example, it sometimes hap- 
pens that one wants to insert an element after the j-th 
occurrence of a given value. We could in principle use 
get-index- by- value followed by insert_ by-no- 
sition, but both features entail a sequential traversal of 
the list, which is unacceptable in practice since the first 
routine internally finds the adequate inserting position. 

We were thus led little by little to add features such as 
insert- by- value, delete_ by- value, etc. But even 
that did not end our predicament. It turned out that in 
practical uses of list, there are occasions in which clients 
need to keep a handle on a list element, so as to use it 
later without having to traverse the list again. It was not 
clear how to specify, let alone implement such a feature 
at the LIST level. In fact, the handle does not even have 
the same type in all cases: for a list represented as array, 
it should be an integer, the index; in linked representa- 
tion, the only useful handle is a reference to a LINKA- 
BLE element. There is no way of factoring out these 
cases into a deferred procedure at the LIST level. 

To implement the handle concept in the LINKED_ 
LIST case, it seemed necessary to return to clients the 
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supposedly secrete references to “linkable” elements. 
So we compromised by having some functions return 
LZNKABLE entities; this was still relatively safe from 
the information hiding viewpoint since class LZNKA- 
BLE had all its features protected (in a fashion some- 
what similar to an Ada private type). But this decision 
led to yet another increase in the number of features: 
get_index_by_linkable, get_linkable_by_ 
value, and so on. 

The prospect of getting a reasonably universal yet 
concise enough implementation of lists was fading away 
as new features came creeping in. 

At that point we realized our mistake, which was to 
treat lists as passive objects. A list is better modelled as 
an abstract machine whose instantaneous state includes 
not only the sequence of values constituting the list, but 
also the indication of a currently active position or 
“cursor” (see Figure 5). 

With this approach, the primitives becomes much 
simpler: 

l l.value is the value of the currently active element 
of list 1; 
l Lposition is the index of this element (that is to 
say, the cursor position); 
l Lforth moves the cursor to the next position; 
l I.go (i) moves the cursor to the i-th position; 
l lsearch (u, j) moves the cursor to the j-th 
occurrence of v; 
l the cursor may move at most one position off the 
leftmost or rightmost elements of the list; 
l to save a position and return to it later (in a last-in, 
first-out fashion), one will use I.mark and Lreturn. 

And so on. For a linked list, feature active, of type 
LZNKABLE [T], provides access to the active element 
(see Section AS); this feature does not transpose to 
other representations (such as by arrays), but this poses 
no problem since the feature is now, as it should be, a 
secret one. As an added benefit of the new approach, 
many features that initially seemed representation-spe- 
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next t 

Figure 5, A list as a machine. 

first_element 

cific may now be lifted (sometimes in deferred form) to 
the generic class LIST. 

This experience seems to lead to two conclusions, at 
the borderline between specification and design. 

The first conclusion is the fact, mentioned above. that 
bottom-up construction of reusable software is a diff& 
cult, iterative process. 

The second conclusion is that although the abstract 
data type approach may seem to imply a highly static and 
functional specification style, it should not preclude, 

looking at object classes in an operational way, empha- 
sizing the notion of state and the functions that act on the 
state. Some specification languages (such as LM) 
enforce a similar method by distinguishing between 
“access” and “transform” functions. Note that this 
does not entail any departure from a classical mathemati- 
cal model based on unctions. 

With this background, we now introduce the LIST 
class. 

-- General lists, without committment as to the representation 

deferred class LIS7’ [TJ export 
~~_eIe~e~~~, emp!y, 
position, offright, offleft, isfirst, islast, 
value, i-th, first, last, 
change- value, change-i- th, swap, 
start, finish, forth, back, go, search, 
mark* return, 
index-of, present, 
duplicate 

feature 

-- Number of Iist elements 

nb_elements: INTEGER ; 

empty: BOOLEAN is 
-- Is the list empty? 

do 
Result := (nb_elements = 0) 

end; -- empty 
-- Secret attributes for marking and retrieving 

backup: Ii ke Current ; 
no-change-since-mark: BOOLEAN, 

-- Inquiring about the active position 
position: INTEGER ; 

offright: B001;EAN Is 
-- Is active position off right limit? 

do 
Result : = empty or (position = nb_elements + I) 

end; -- offright 
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offleft: BOOLEAN is 
-- Is active position off left limit? 

do 
Result : = empty or (position = 0) 

-- This formulation is for symmetry with offright: empty implies (position = 0), 
__ so the second condition is equivalent to the entire “or” expression 

end; -- offleft 
isfirst: BOOLEAN is 

-- Is active position first in the list? 
-- (If so, the list is not empty) 

do 
Result : = (position = I) 

ensure 

not Result or else not empty 
end; -- isfirst 

islast: BOOLEAN is 

-- Is active position last in the list? 
-- (If so, the list is not empty) 

***Left to the reader*** 

-- Accessing list values 

value: T is 
-- Value of active element 

require 
not offleft; not offright -- These conditions imply not empty 

deferred 
end; -- value 

i_ th (i: INTEGER): T is 
-- Value of i-th element of the list 
-- (Applicable only if i is a valid position for the list) 

require 

i > = 1; i < = nb_elements; -- These conditions imply not empty 

do 
mark ; 
go (i); Result : = value; 
return 

ensure 
-- Result = value of i-th element of the list 

end; --i_ th 

first: T is 
-- Value of first element in the list 

require 
not empty 

do 
Result := i_th (I) 

end; --first 
last: T is 

-- Value of last element in the list 

***Left to the reader*** 

-- Changing list values 

change-value (u: T) is 
-- Assign u to value of active element 

require 
not offleft; not offright -- These conditions imply not empty 

deferred 
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ensure 
value = u 

end; -- change- value 

change-i_ th (i: INTEGER, v: T) is 
-- Assign v to value of i-th element 
-- (Applicable only if i is a valid position for the list) 

***Left to the reader*** 

swap (i: INTEGER) is 
-- Exchange value of active element with value of element at position i. 
-- Active position is not changed. 
-- Not applicable if offleft, offright, or position i is not valid for the list. 

require 
not offleft; not offright; 
i > = I; i < = nb_elements 

-- These conditions imply not empty 
local 

thisvalue: T, thatvalue: T 
d0 

thisvalue : = value; mark; 
go (i); thatvalue : = value; change-value (thisvalue); 
return; 
change-value (thatvalue) 

end; -- swap 

-- Moving along the list 

start is 
-- Make first element active (no effect if list is empty) 

deferred 
ensure 

(empty and Nochange) or else isfirst 
end; -- start 

forth is 
-- Make next position to the right active 
-- (Applicable only if not offright). 

require 
not offright -- This implies not empty 

deferred 
ensure 

position = old position + 1 
end; --forth 

go (i: INTEGER) is 
-- Make i-th position active 
-- (Applicable only if 0 < = i < = nb_elements + I) 

require 
i > = 0; i < = nb-elements + I 

do 
if empty or i = 0 then 

go-offleft 
else 

from 
if position > i then start end 

invariant 
position > 0; position < = i 

variant i - position until position = i loop 
check not offright end; 
forth 
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end -- loop 
end -- if 

ensure 
(i = 0 and offleft) or 
(i = nb-elements + I and offright) or 
(1 < = i and i < = nb_elements and position = i) 

end; -- go 

back is 
-- Make next position to the left active 
-- (Applicable only if not offleft). 
-- Warning: this version of back may be overly costly in implementations 
__ that only provide for efficient left-to-right traversal 

require 
not offleft 

do 
check position > = I end; go (position - I) 

end; -- back 

finish is 
-- Make last element active (no effect if list is empty) 

do 
go (nb_elements) 

ensure 
(empty and Nochange) or else isiast 

end; --finish 

go-offleft is 
-- Put the list in position offleft 
(Secret procedure; use go (0) in clients) 

deferred 
ensure 

offleft 
end; -- go_offleft 

search (u: T. i: INTEGER) is 
-- Go to i-th element of value u in the list if there are at least i such elements; 
-- else go offright. 

require 
i>O 

local 
k: INTEGER 

do 
from 

start; k := I 

invariant 
position > = 0; 
-- k - 1 elements to the left of active position have a value equal to v 

variant 
nb-elements - position 

until 
offright or else (value = v and k = i) 

loop 
if value = v then k : = k+ I end; 
forth 

end -- loop 
ensure 

offright or else value = v 
-_ offright or else active element is the i-th element of value u 

end; -- search 

-- Marking and retrieving list positions. 
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-- More than one position may be saved successively; 
__ retrieval will be done in a last-in, first-out order. 

mark is 
-- Save active position 

do 
backup. Clone (Current); 

end; -- mark 

return is 
-- Make currently saved position active again 

require 
not backup. Void; no-change-since-mark 

do 
Extract (backup); 

end; -- return 

-- Finding information about occurrences of given elements. 

index-of (v: T, i: INTEGER): INTEGER is 
-- Index of the i-th element of value u 
-- (0 if fewer than i) 

require 
i>O 

do 
mark; 
search (u, i); 
if not offright then Result : = position end; 
return 

ensure 
-- (Result > 0 and then Result is the index of the i-th element of value u in the list) 
__ or else (Result = 0 and there are fewer than i elements of value u in the list) 

end; -- index-of 

present (v: T): BOOLEAN is 
-- Does u appear in the list? 

do 
Result := index-of (u, I) > 0 

ensure 
-- Result = (u appears in the list) 

end; -- present 

-- Duplicating a list 

duplicate: like Current is 
-- Complete clone of the list 

deferred 
end; -- duplicate 

-- Invariant for class LIST 

invariant 

position > = 0; position < = nb-elements + 1; 
not empty or else (position = 0); 
empty = (offleft and offright); 
offright = (empty or (position = nb_elements + I)); 
offleft = (empty or (position = 0)); 

-- Note that empty implies (position = 0), so that also: 
offreft = (position = 0); 

isfirst = (position = 1); 
islast = (not empty and (position = nb_elements)); 
not empty or else (not isfirst and not islast); 

end -- class LIST 
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A.4 LISTS IMPLEMENTED BY ARRAYS 

Class FIXED-LIST [T] provides an array implementation of lists; only limited operations are available (no 
insertions or deletions). The array is created with fixed bounds, given as parameters to the version of procedure Create 
redefined for this class. 

-- Lists with a fixed number of elements 

class FIXED-LIST [r] export 
***Same exported features as in class LIST*** 

inherit 
ARRA Y [T] 

rename Create as array-Create; 
LIST [T] 

redefine i-th, change-i- th, swap, go; 

feature 

Create (n: INTEGER) is 
-- Allocate fixed list with n elements 

do 
array-Create (I, n); 

check n = size end; 
nb_elements : = n; 

end; -- Create 

value: T is 
-- Value of active element 

do 
Result : = entry (position) 

end; -- value 

change-value (u: T) is 
-- Assign u to value of current element 

do 
enter (position, u) 

ensure 
value = V; entry (position) = u 

end; -- change- value 

i_th (i: INTEGER): T is 
-- Value of i-th element of the list 
-- (Applicable only if i is a valid position for the list) 

***Left to the reader*** 

change_i_th (i: INTEGER, v: T) is 
-- Assign II to value of i-th element 
-- (Applicable only if i is a valid position for the list) 

***Left to the reader*** 

swap (i: INTEGER) is 
-- Exchange value of active element with value of element at position i. 
-- Active position is not changed. 
__ Not applicable if offleft, offright, or position i is not valid for the list. 

***Left to the reader *** 

start is 
-- Make first element active (no effect if list is empty) 

do position : = min (nb-elements, 1) end; -- start 

forth is 
-- Make next position to the right active 
-- (Applicable only if not offright). 

require 
not offright 
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d0 

position : = position + f 
ensure 

position = old position + I 
end; --forth 

go (i: INTEGER) is 
-- Make i-th position active 
-- (Applicable only if 0 c = i < = nb _ elements + 1) 

***Left to the reader*** 

go_offieft is 
-- Put the list in position offleft 
(Secret procedure; use go (0) in clients) 

***Left to the reader*** 
duplicate: like Current is 

-- Complete clone of the list 
d0 

Result. Create (nb_elements); 
-- Result.Clone would be inappropriate here 

mark ; 
from 

start; Result&art 
invariant 

-- position - I values have been copied 
variant 

d-elements - position 
until 

offright -- tlws Result.offright too 
loop 

Result. change_ value (value) ; 
forth; Result.forth 

end; -- ioop 
return; ResuN.go (position) 

end; -- duplicate 
invariant 

-- The class invariant adds nothing to the invariant of class LIST 
end -- class FIXED-LIST 

A.5 LINKED LIST ELEMENTS 

This section introduces classes LINKABLE [TJ and BI,LINKABLE [TJ co~es~nding to “linkab~e” fist 
components of two different brands: right-linked only and doubly-linked. Objects of such types have two fields: a value 
and a “right” pointer to another similar object. Bi-linkable objects also have a “left” field. Such component structures 
are designed for use in connection with classes representing linked lists: LINKED_LJST [T] and TWO_ WA Y_ 
LIST [T]. 

-- Linked list elements 
-- (for use in connection with LANKER-LIST [T] and TWO- WA Y-LIST [T]) 

class LINKABLE T] 
export 

value, change- linkable-value (LINKED-LIST), 
right, change-right (LICKED-LISTS, put-between (LINKED-LIST) 

feature 
Create (initial: T) is 

do 
-- Initialize with value initial 

value : = t 
end; -- Create 
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value: T, 
change_linkable-value (new: T) is 

-- Assign value new to current list element 
do 

value : = t 
end; -- change_linkable_ value 

right: like Current; 

change-right (other: like Current) is 
-- Put other to the right of the Current element 

do 
right : = other 

end; -- change-right 

put-between (before: like Current; after: like Current) is 
__ Insert current element between before and after (if it makes sense) 
-- This procedure is used in LINKED-LIST every time an insertion is performed. 

do 
if not before. Void then before.change_right (Current) end; 
change-right (after); 

end; -- put-between 
end; -- class LINKABLE [T] 

class BI_LINKABLE [T] 

-- Same as LZNKABLE [T], plus “left” field 

export 

value, change- bilinkable- value { TWO- WA Y-LIST}, 
right, change-right { BI_LINKABLE, TWO_ WA Y-LIST}, 
left, change-left ( BI-LINKABLE, TWO- WA Y-LIST) 

inherit 
LINKABLE [r] 

rename change-linkage- value as change- bilinkable- value, 
-- Renaming is only to ensure consistent terminology. 

feature 
redefine right, change-right 

left: like Current; 
right: like Current; 

change-right (other: like Current) is 
-- Put other to the right of current element 

do 
right : = other; 
if not other. Void then 

other.change_left (Current) 
end 

end -- change-right; 

change-left (other: like Current) is 
-- Put other to the left of the current element 

do 
left : = other; 
if not other. Void 

-- Avoid infinite recursion with change-right! 
and then other.right /= Current 
then 

end 
other.change_right (Current) 

end -- change-left 
invariant 

right. Void or else right.left = Current; 
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left. Void or else left.right = Current; 
end -- class BI__LINKABLE IT] 

A.6 LlNKfED LISTS 

Class LINKED-LIST /Tj introduces singly linked lists. All operations of insertion and deletion are possible; 
however, since the lists are chained one way only, operations such as back, implying a complete traversal, will be 
inefficient. They are provided, however, for completeness. 

The representation keeps references not only to the active element but also to its left and right neighbors (active, left, 
right). This allows, for example, efficient insertions both just before and just after the active element. 

A note to the courageous reader: an excellent test of your unders~nding of the present set of basic classes and the 
general principles of Eiffel design is to write two procedures patterned after insert-right and insert-left below, 
namely 

merge-after (I: like Current) 
merge-before (I: like Current) 

which insert a linked list I to the right and left (respectively) of the currently active position. The precise conditions 
@q&e. ..) under which they are applicable should be spelled out. The guiding criteria should be simplicity (no 
auxiliary procedure is necessary), preservation of the class invariant, perfect symmetry between left and right, and 
elegance. It will be even better if the procedures also apply to two-way lists (next section) without redefinition. 

-- One-way linked lists 
class LINKED-LIST [T] export 

--Featnres from LIST: 
nb_elements, empty, 
position, offright, offleft, isfirst, islast, 
value, i- th, first, last, 
change_ Pa&e, change_ i- th, swap, 
start, finish, forth, back, go, search, 
mark, retrieve, 
index-of, present, 
duplicate, 

-- Plus new features permitted by linked list representation: 
insert-right, insert-left, 
delete, delete-right, delete-left* 
deiete_Qli_occurrences, wipe-out 

inherit 
LIST [T] 

redefine first 

first: T, -- Value of tirst element (redefined here as an~bu~) 

-- Secret attributes specific to linked list representation 
first-element: LINKABLE IT]; 
active:, previous, next: like first-element; 

-- Linked list implementations of features deferred in LIST 

value: T is 
_I Value of active element 

require 
not offleft; not offright -- These conditions imply not empty 

do 
Result : = active. value 

end; -- value 

change_ value (u: T) is 
-- Assign v to value of current element 
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require 

not offleft; not offright -- These conditions imply not empty 
do 

active.change_linkable_value (v) 

ensure 
value = v 

end; -- change-value 
start is 

-- Make first element active (no effect if list is empty) 
do 

if not empty then 
previousForget; active : = first-element; 
check not active. Void end; 
next : = active.right; position : = : = I 

end 
ensure 

empty or else isfirst 
end; -- start 

forth is 
-- Make next position to the right active 
-- (Applicable only if not offright). 

require 
not offright 

do 
if offreft then 

check not empty end; start 
else 

check not active. Void end; 
previous : = active. active : = next; 
if not active. Void ben next : = active.right end; 
position : = position + 1 

end 
ensure 

position = old position + I 
end; --forth 

go_offleft is 
-- Put the list in position offleft 
(Secret procedure; use go (0) in clients) 

do 
active.Forget; previous.Forget; next : = first-element; 
position : = 0 

ensure 

offleft 
end; -- go-offleft 

duplicate: like Current is 
-- Complete clone of the list 

***Left to the reader (go through the list, duplicating every list element) *** 
***(See the corresponding procedure for FIXED-LIST)*** 

-- Deletion and insertion procedures specific to linked lists 
insert-right (v: T) is 

-- Insert au element of value u to the right of active position if there is one; 
-- Active position is unchanged. 
-- Applicable only if list is empty or not offright 

require 
empty or else not offright 

local 
new: like first-element 
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do 
new. Create (u); insert_linkable_right (new) 

ensure 
nb-elements = old nb-elements + 1; 
active = old active; position = old position; 
not next. Void; next.value = u 

end; -- insert-right 

insert-left (v: T) is 
-- Insert an element of value u to the left of active position if there is one. 
-- Active position is unchanged. 
-- Applicable only if list is empty or not offleft 

***Left to the reader*** 

delete is 
-- Delete active element and make its right neighbor, if any, active 
-- (List becomes offright if no right neighbor) 
-- Not applicable if offleft or offright 

require 
not offleft; not offright 

do 
active : = next; 
if not previous. Void then previous.change_right (active) end; 
if not active. Void then next : = active.right end; 

__ else next is void already 
nb_elements : = nb-elements - I; 
no-change-since-mark : = false; 
check 

position - I > = 0; position - I < = nb-elements; 
empty or else position - I > 0 or else not active. Void; 

end; 
update-after-deletion (previous, active, position - 1); 

ensure 
nb-elements = old nb-elements - I; 
empty or else (position = old position) 

end; -- delete 

delete-right is 
-- Delete element immediately to the right of active position; active position is unchanged. 
-- (No effect if active position is last in list). 
-- Not applicable if offright 

***Left to the reader (imitate delete) *** 
delete-left is 

-- Delete element immediately to the left of active position; 
-- active position is unchanged (but its index is decremented by 1). 
-- (No effect if active position is first in list) 
-- Not applicable if offleft 
-- Inefficient for one-way lists: included for completeness 

***Left to the reader (use back and delete) *** 

delete-all-occurrences (u: T) is 
-- Delete all occurrences of u from the list 

do 
from start until offright loop 

if value = v then delete else forth end 
end; 
no-change-since-mark : = false 

end; -- delete_all_occurrences 

wipe-out is 
-- Empty the list 
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do 
nb-elements : = 0; position : = 0; 
active.Forget; first_element.Forget; previousForget; next.Forget; 
no_change_since_mark : = false 

ensure 

ew0 
end -- wipe-out 

-- Secret routines for implementing insertion and deletion 

insert_ linkable-right (new: like first-element) is 
-- Insert new to the right of active position if there is one; 
-- Active position is unchanged. 
-- Secret procedure. 
--Applicable only if list is empty or not offright 

require 
not new. Void; empty or else not offright 

do 
new.put_between (active, next); next : = new; 
nb_elements : = nb-elements + 1; 
no_change_since_mark : = false; 
check 

position + I > = I; position + I < = nb-elements 
end ; 
update-after-insertion (new, position + 1) 

ensure 
nb_elements = old nb_elements + I; position = old position 
previous = new 

end; -- insert_linkable-right 
insert_linkable_left (new: like first-element) is 

-- Insert new to the left of active position if there is one; 
-- Active position is unchanged (but its index is increased by one). 
-- Secret procedure. 
-- Applicable only if list is empty or not offleft 

require 
not new. Void; empty or else not offleft 

do 
if empty then position : = I end; 
new.put_between (previous, active); previous : = new; 
nb_elements : = nb_elements + I; position : = position + I; 
no_change_since_mark : = false 
check 

position - I > = I; position - I < = nb_elements 
end; 
update-after-insertion (new, position - I); 

ensure 
nb_elements = old nb_elements + I; position = old position + 
previous = new 

end; -- insert_linkable-left 

update-after-insertion (new: like first-element; index: INTEGER) is 
-- Check consequences of insertion of element new at position index: 
-- does it become the first element? 

require 
not new. Void; index > = I; index < = nb-elements 

do 
if index = 1 then 

first-element : = new; first : = new. value 
end 

end; -- update-after-insertion 
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update_after_deletion (one: like first-element; other: like first-element; index: INTEGER) is 
-- Check consequences of deletion of element between one and other, 
__ where index is the position of one. 
-- Update first_element if necessary. 

require 
index > = 0; index c = nb_elements; 
empty or else index > 0 or else not other. Void; 
-- the element deleted was between one and other 

do 
if empty then 

first-element.Forget; position : = 0 
elsif index = 0 then 

check not other. Void end; -- See pr~onditiou 
first-element : = other; first : = other.vaiue 

-- else do nothing special 
end 

end; -- update-after-deletion 
-- Invariant for class LINKED-LIST 

invariant 

__ The invariant of class LIST plus the following: 
empty = first-element. Void; 
empty of else first-element. value = first; 
active. Void = ~of~eft or offrighi); 
previous. Void = (offieft or &first); 
next. Void = (offleft or islast); 
previous. Void or else @revious.right = active); 
uctive. Void or eke ~active.r~ght = next); 
-- (offleft or offright) or else active is the position-th element 

end -- class LINKED-LIST 

A.7 TWO-WAY LISTS 

Class TWO- WA Y_LIST IT] introduces doubfy linked lists. Features back and forth now have the same 
efficiency; in fact the whole class is almost entirely symmetric with respect to “left” and “right.” 

-- Two-way linked lists 
class TWO_ WA Y-LIST [T] expert 

***Same exported features as in LINKED_LZST*** 
-- Some features, however, are redefined more efficiently 

inherit 
LINKED-LIST [T] 

rename go as reach-from-left, wipe-out as simple_ wipe-out, 

redefine 

feature 

first-element, last, back, go, wipe-out, last 
update-after-deletion, update-after-insertion 

first-element: BI-LINKABLE [T]; -- Redefined from LINKED-LIST 

-- For two-way lists, we also keep a reference 
__ to the last element and its value: 

last-element: like first-element; 
last: T; 

back is 

-- Redefined here as an attribute 
-_ (It was a function in LINKED-LIST). 

-- Make next position to the left active 
-- (Appli~ble only if not offleft). 
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require 
not offreft 

do 
if offright then 

check not empty end; finish 
else 

cheek Rot active. Void end; 
next : = active; active : = previous; 
if nut active. Void then previous : = active.left end; 
position : = position - I 

end 
ensure 

position = old position - I 
ead; -- back 

go (i: INTEGER) is 
-- Make i-th position active 
-- (Applicabie only if 0 c = i < = nb_elemenrs+ I) 

require 
i > = 0; i < = nb-elements + I 

do 
if i = nb_efements+ 1 then 

-- Go offright 
active. Forget ; next. Forget; previous : = last-element ; 
positron : = no-eiements + I 

elsif i -c = position/2 or (i > = position and i < = (position + nb_elements)i2) then 
reach__$rom_lefr (i) 

else 
-- Reach from the right 

from 
if position < i then 

-- Finish (revised for two-way-lists) 
active : = last-element; previous : = active.left; next.Forget 

end 
invariant 

position < = nh_elements; position > = i 
variant position - i until position = i loop 

check not offleft end; 
back 

end -- loop 
end -- if 

ensure 
position = i 

end; -- go 
update-after-insertion (new: like first-element; index: INTEGER) is 

-- Check consequences of insertion of element new at position index: 
-- does it become the first element? 

***Redefinition left to the reader*** 
***Hints: make the routine sy~etric with respect to right and left; *** 
***fast-element and last may need to be updated as well as first-element and first*** 

update-after-deletion (one: like first-element; other: like first-element; index: INTEGER) is 
-- Check consequences of deletion of element between one and other, 
__ where index is the position of one. 
-- Update first-element if necessary. 

***Redefinition left to the reader*** 
***Hints: see u~ate-after_i~ertion *** 

wipe-out is 
-- Empty the list 
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d0 

simple_ wipe-out; last_element.Forget 
ensure 

empty 
end -- wipe-out 

-- Invariant for class TWO_ WAY-LIST 
invariant 

-- The invariant of class LINKED-LIST, plus the following: 
empty = last-element. Void; 
empty or else last_element.value = last; 
active. Void or else (active. left = previous); 
next. Void or else (next.left = active); 
-- (offleft or offright) or else active is the position4 element 

end -- class TWO_ WA Y-LIST 

A.8 TREES AND THEIR NODES 

The following class is an implementation of trees, using linked representation. Note that no distinction is made between 
trees and tree nodes. 

As explained in Section 4.2 of the main text, tree nodes are implemented as a combination of lists and list elements. 
The list features make it possible to obtain the children of a node; the list element features make it possible to access the 
value associated with each node and its right sibling (the class may be redefined using two-way lists and “bi-1inkable” 
elements to allow access to the left sibling as well). The added feature parent makes it possible to access the parent of 
each node. 

Since each node of the tree is-among other things-a list in the sense defined above; so it keeps a record of which of 
its children is the “active” one. To change the active child of a node, procedures inherited from LIST (through 
LINKED-LIST) are available: back, forth, go, etc. 

class TREE [T] export 
position, offright, offleft, isfirst, &last, start, finish, forth, back, go, mark, return, 
k-leaf, arity, 
node_ value, child_ value, change-node- value, change-child- value, 
child, change-child, right-sibling, first-child, 
insert-child-right, insert-child-left, 
delete-child, delete-child-left, delete-child-right 
parent, is-root 

inherit 
LINKABLE [T] 

rename 
right as sibling, 
value as node_ value, change_ value as change-node- value, 
put-between as linkable-put-between; 

redefine put-between; 
LINKED-LIST [T] 

rename 
empty as is-leaf, nb_elements as arity, 
value as child-value, change-value as change_child_value, 
active as child, first-element as first-child, 
insert_linkable-right as insert-child-right, insert_linkable-left as insert_child_left, 
delete as delete-child, delete-left as delete_child_left, delete-right as delete-child-right, 
update-titer_ insertion as linked_ update-after- insertion ; 

redefine first-child, update-after-insertion 

feature 

first-child: like Current; 
parent: like Current ; 
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attach_to_parent (n: like Current) is 
-- Make n the parent of current node. 
-- Secret procedure. 

do 
parent : = n 

ensure 
parent = n 

end; -- attach-to-parent 

update-after-insertion (new: like first-element; index: INTEGER) is 
-- Check consequences of insertion of element new at position index: 
-- does it become the first element? 
-- Secret procedure redefined from LINKED-LIST 

require 
not new. Void; index > = I; index < = nb-elements 

do 
linked-update-after-insertion (new, index); 
if index = I then 

new.attach_to_parent (Current) 
end 

end; -- update-after-insertion 
change-child (n: like Current) is 

-- Replace by n the active child 
require 

not offleft; not offright; -- Thus not child. Void 
not n. Void 

do 
insert-child-right (n); 
check 

n.parent = Current 
-- Because of the redefinition of put-between 

end; 
delete-child 
check 

child = n 

end 
-- Because of the convention for the new active element after delete 

-- A direct implementation (not using insert and delete) is also possible 
ensure 

child = n; 
n.parent = Current 

end; -- change-child 

is-root: BOOLEAN is 
-- Is current node a root? 

do 
Result : = parent. Void 

end; -- is-root 

put-between (before: like Current; after: like Current) is 
-- Insert current element between before and after (if it makes sense) 
-- Redefined from class LINKED-LIST 
-- to ensure that Current will have the same parent as its new siblings. 

require 
(before. Void or after. Void) or else (before.parent = after.parent) 

do 
linkable-put-between; 
if not before. Void then attach-to-parent (before.parent) end; 
if not after. Void then attach-to-parent (after.parent) end; 

end; -- put- between 
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invariant 
-- The invariants of the parent classes, plus the following: 

is-root = parent. Void; 
sibling. Void or else sibling.parent = parent; 
child. Void or else child.parent = Current; 
previous. Void or else previous.parent = Current; 
next. Void or else next.parent = Current; 
first-child. Void or else first_child.parent = Current; 

end -- TREE [T] 


