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ABSTRACT

The Eiffel language addresses the problem of designing quality software in practical development
environments.

Two software quality factors were deemed essential in the design of Eiflel: reusability and
rcliability. Consideration of the technical implications of these factors led to the following
choices: language features that encourage bottom-up software design; modular structures based
on the object-based approach pioneered by Simuia 67, but including both generic parameters
and multiple inheritance (with a new extension, repetitive inheritance); highly dynamic
exccution modecl; information hiding facilities; assertions and invariants that may be monitored
at run-Lime.

" The current Eiffel system runs under Unix and uses C as an intermediate language; it also takes
care of configuration management aspects, automatically performing tasks similar to those of
the Unix Make tool.

Keywords: soltware reusability, software reliability, modularity, object-oriented design and
programming, object-oriented languages, bottom-up software design, assertions, invariants,

Eiffel.
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Eiffel: A Language for Software Engineering

Bertrand Meyer

PART 1: LANGUAGE OVERVIEW

1.1 - PRESENTATION: . . .

Our main interest is in designing software, not programming languages. But when we
looked for a language allowing the devclopment of production-quality software according to the
modern principles of software enginecring, we realized that no existing language provided the
ncedcd facilitics; this simple realization led to the design of Eiflel.

Eiffel is intended for use at both the design and implementation stages of softwarce
development. The language has been implemented and currently runs on Unix; the basic library
described in Part 2 is used as support for what constitutes our real aim: producing advanced
software tools such as Cépage, a structural and visual editor (17, 19], Winpack (a gencral-
purpose screen handling package) and other products.

This article is a general presentation of the language and the underlying design method.
Part 1 covers the fundamental concepts of the language and will allow the reader to understand
Part 2, a set of programming examples from the basic Eiffel library. The emphasis on this
library reflects the fact that a mere presentation of individual language characteristics would
not suffice to show what may be the most important aspect of the Eiffcl approach: a method of
software design and implementation which views soltware systems as structured networks of
extendible and reusable abstract data type implementations.

The rest of Part 1 reviews the language. In section 1.2, we give an overview of the design
criteria for Eiffel. Section 1.3 introduces some of the basic concepts of object-based design.
Section 1.4 describes the fundamental Eiffel structure (the class). Scction 1.5 presents the
multiple and repeated inheritance techniques that constitute the key to reusable programming
in Eiffel. We describe the typing rules in section 1.6 and the use of assertions for expressing
correctness arguments in section 1.7. Section 1.8 briefly surveys the practical aspects of Eiffel
usage and our current implementation techniques.

Part 2 is a library of Eiffel classes defining reusable software components that play an
essential role in our current developments.

Part 3 summarizes the main results and mentions some related efforts.

Although a few details may remain hazy, we hope that the reader will form a good idca of
Eifle] programming. The examples use the essential features of Eiffel, and thus provide a good
view of the language: if you understand this article, you may still have a few things to learn to
become a real Liffel programmer, but not many.

1.2 - DESIGN CRITERIA

The design of Eiffel was guided by the following concerns.

e The aim is to produce software, not to do research on languages; efficiency is thus an
important criterion, precluding the use of functional or interpreted languages.

¢ Reliability of the software we produce is another fundamental aiin, promoting such
features as strict type checking, limitations on side-effects, ete.

e Current program construction techniques, which amount to re-inventing the wheel over
and over again, sccm unacceptable to us. Software development methods and languages
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should emphasize the reusability of software components as one of their primary goals.

o Extendibility (the ease of adapting software to changes and speccifications) and
compatibility (the ease of comibining separately produced software elements) are also
essential in the long term.

o A particularly important requirement of the main type of software we develop (software
enginecring tools) is the need to manipulate complex, highly dynamic data structures. It
should be possible to create as many of these objects as needed and to rely on support
tools for automatic memory management and reclamation of unused space; programmer-

_controlled. de-allocation (in the PL/I-Pascal-Modula 2 tradition) is an awkward and
dangerous feature whose presence is unexplainable in any language whose designers have
expressed any concern for program reliability.

¢ Modular language constructs should make it posslblc to constrnct and compile systems
piecewise and to place strict controls on the flow of information between modules.

v ¢ ['inally, portability is also a scrious concern.

Of course, a solution to thesc issues must involve eclements other than programming
languages; for example, reusability raises questions of specification (to be reusable on a large
scale, software components should be formally specified), design (one needs to reuse designs, not
just codes), documentation (to rcuse elements, one must find out about them) and tools {to
retrieve and combinc components). Reusability also raises non-technical questions: training,
cconomic incentives and others.

However the role of technical aspects, and more precisely of language features, should not
be undcrestimated: all software designs must eventually be expressed in terms of programs, and
it is well known that programming languages exert a strong influence on the way software
developers think. Thus we feit that choosing a proper language was a key step towards mecting
the above criteria. But it does not take a very long analysis to realize that no widely available
language satisfies all of them.

1.3 - OBJECT-BASED DESIGN

In our experience, the general approach to software construction that best answers the
above concerns is the method known as object-based design, which may carriced over to the
implementation stage through object-based (or ‘‘object-oriented™) programming languages
applying the ideas introduced by Simula 67.

1.3.1 - Background

There are several ways to describe object-based design, depending on the individual
presenter’s background. Because Smalltalk has been so largely publicized, many current views of
objcct-based programming emphasize two aspects: the concept of messages for communicating
information between objects, and the very dynemic nature of the Smalltalk environment, which
makes it possible to defer bindings between names and their denotations until run-time and, as
in Lisp, provides programmers with great freedom. Such features are particularly useful from
the perspective of Artificial Tntelligence applications, for example, or for rapid prototyping.

Our intcrest in object-based languages comes from a more traditional software engineering
perspective. We view these languages as providing koy techniques for ensuring rcusability,
extendibility and compatibility. However in a software engincering context these qualities must
be balanced with other criteria mentioned above, such as reliability, efficicney of the gencrated

code and portability. Thus static-type checking, for cxample, and more generally static binding,
arc essential concerns.

In this respect, the author’s view was much influenced by Simula 67; I was particularly
fortunate in having for many years access to an excellent compiler for that language, developed
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for IBM/MVS systems by the Norwegian Computer Center. This experience convinced me that
object-based programming was the right approach to produce extendible and reusable software.
Eiffel improves (I hope) on the Simula concepts, but it is proper to mention my debt here.

1.3.2 - Modularizing for extendibility

With this background, ‘we may présent the definition of objcct-based design which
underlics Eiffel. Object-based design is viewed as a system modularization technique, relying
on the idea that the structure of software systems should best be patterned at the highest level,
on the ObjCCfS mampulated by the system, rather than on the system s function.

Several arguments may be used to support this approach. Here we shall only elaborate on
one: extendibility.

Obscrvation of durable programs shows that the precise tasks performed by systems vary
dramatically over their lifecycle. For example, a program may simply perform, at a certain
stage of its evolution, an input-to-output transformation, each run processing a batch of data
and producing corrcsponding results; as such programs are used and adapted, they often evolve
into systems that keep some information between successive runs, and may end up as interactive
systems accessing a comprehensive data base, with finer-grain inputs and outputs for each
individual transaction.

Studied from the standpoint of the tasks they perform, the initial and the final versions
may be very diflerent. To realize that they are versions of the same program, one has to look
closer and consider the objects handled by the system. If viewed from a sufficiently high level of
abstraction, these objects will in most cases turn out to be the same in both versions. For
example, a payroll processing program, regardless of its precise functions, will act on data
representing entities such as employees, company regulations, workload information, etc.; or a
plant monitoring system will act on data representing sensors, devices, materials and the like. In
both cascs the system’s identity is better characterized in the long term by these objects than
by the mere fluctuating functions which are applied to them.

1.3.3 - Seven steps towards object-based happiness

Th above remark is one of the main reasons for basing the module structure of the system,
at the highest level, on the data rather than the actions. The basic motto of object-based
design could thus be formulated as follows:

Principle 1 (object-based modular structure): do not ask what the system does: ask
what it does it to.

To get object-based design in its full sense, however, further steps must be taken. The next
onc takes inlo account the remark made above that ohject descriptions shonld be abstract
enough; indeed, basing the structure of systems on the physical structure of data would produce
rather dlsmtrous results with respect to extendibility. In fact, a study of soltware maintenance
costs by Licntz and Swanson [I5] shows that, out of the approximately 506 of software costs
devoted to maintenance, more than 17% arise from the need to account for changes in physical
data formats. Thus one wou]d be ill- d.dVlQ(‘d to" w1ro physical data representations into the
physical structure of programs.

The answer lics in data abstraction. The theory of abstradt data types provides a way to
deseribe classes of objo( ts by their external features rather than their physical representations.
The fealures in question are the operations applicabl¢ to objec ts of the class and the abstract

propertics of tlws(‘ op(‘mtlons Note Hmt thoso opemtmns are what was called the “functions”
above.

The duality between functions and objeets is an unescapable fact of programming; object-
based design does not contradict it, but introduces a dissymmetry by using objects, not
functions, to structure sofiware systems at the highest levels. With abstract data types,
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however, functions rcappear as the way objects (or rather object classes) are characterized, so
the loop is closed. The essential differcnce with classical techniques (based on procedural
decomposition) is that functions are attached to data structures rather than the reverse.

We thus reach our second step towards object-based happiness:

Principle 2 (data' ﬁbétractfon): Objects should be described as implementations of
abstract data types.

Most current’ programmmg languages make lt possnble t,o reach t,hls level, that is to say to
design modules that encapsulate the lmplementat,lon of ‘one or more abstract data types. Ada
and Modula-2 are obvious examplcs of such ]anguages Even Fortran may be used for this
purpose by wnt,lng subroutines with more than one entry (corre%pondmg to the various
operations on an abstract data type); however what is provided in the Fortran case is the
implementation of a fixed number of abstract objects, rather than of an abstract data type. On
the other hand, languages which do not provide any such possibility are Pascal, Cobol and
Basic.

The third step is of a less conceptual nature. It reflects an important implementation
concern: how objects are created. To be able to freely use objects, programmers should not have
to take care of their physical allocation and deallocation. Here most of our language friends
leave us; although this is in a strict sense a property of language systems rather than languages,
the language design may help or hinder the implementation of a garbage collector. Pasecal and
Modula-2 systcms do not normally include garbage collection; the Ada standard ( [1], section
4.8) defines it as an optional feature.

On the other hand, all Lisp systems provide garbage collection, which is part of the rcason
why Lisp has often been used to implement object-based languages, and has itself been subjected
to object-based extensions.

Principle 3 (agutomatic memory management): Objects should be created and
deallocated by the underlying language system, without programmer intcrvention.

The next step is the one which, in our opinion, truly distinguishes objcct-based languages
from the rest of the world. It may be understood by looking at languages which are not object-
hased even though they provide facilities for data abstraction and encapsulation, such as Ada
or Modula-2. In such languages, the module (package in Ada) is a purely syntactic construct,
used to group logically related program elements; but it is not itself a mecaningful program
elcment, such as a type, a variable or a procedure, with its own semantic denotation. In
contrast, the approach pioncered by the designers of Simula views modules as first-class citizens;
more precisely, it all but identifics the notion of module with the notion of type. We may say
that the defining equation of such languages is the identity module = type.

This fusion of two apparently distinct notions is what gives object-based design its
distinctive flavor, so disconcerting to programmers used to more classical approaches. In its
dogmatism, it has some drawbacks. But it also gives considerable conceptual integrity to the
general approach.

Principle 4 (classes): Every non-basic type is a module, and every high-level module

is a type.

The qualifier “non-basic” keeps open the possibility of having simple predefined types
(suoh as INTEGER, ete.) which are not viewed as modules, and the word “high-level” makes it
possible to have program structuring units such as procedures which are not types.

A language construct combining the module and type aspeets is called a class.

The next step is a natural consequence from principle 4: if we identify types with modules,
then it is tempting to identify the rensability mechanisms provided by both concepts: on the one
hand, the possibility for a module to direetly rely on entities defined in another (provided in
modular languages by such visibility mechanisms as the Ada “use” clause); on the other hand.
the concept of subtype, whereby a new type may be defined by adding new properties to an
existing type (as a Pascal integer range, whose clements are integers subject to some
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restrictions). In objcct-based languages, this is known as the inheritance mechanism, with which
a new class may be declared as an extension or restriction of a previously defined one. Its
realization in Eiffel is described-in scction 1.5. -

Principle 5 (inheritance): A class may be defined as an extension or restriction of
another.

We shall say in such a case that the new class is heir to the other.

The above techniques open the possibility of an advanced form of polymorphism, in which
a given program entity may at run time refer to objects belonging to' any of a set of different
classes, all of which offer an :operation with the same external specification but different
implementations. Applying an opcration to the entity will result in the appropriate
implementation being selected, depending on the particular object associated with the entity at
the time the operation is executed.. For example, an entity representing a device might become
associated at run-time with either a tape or a disk; the operation “read’™ applied to the entity
will be carried out differently in each case.

Principle 8 (polymorphism): Program entities should be permitted to refer to objects
of more than one class, and operations should be permitted to have different
realizations in different classes.

This principle is implemented in different ways according to the philosophy underlying
existing languages. In the design of Smalltalk, it is satisfied almost automatically because of the
dynamic binding policy: entities have no static “types” in the ordinary sense, so that they may
at run-time refer to objects of any class; when an operation is requested on an entity, its
dynamic state determines what realization, if any, is available for the operation.

In contrast, every Eiffel entity has a static type (class) and the dynamic types it may take
are restricted to the descendants of that class (that is to say, the class itself and its dircet and
indirect heirs). The above principle is implemented in Eiffel by permitting the redefinition of a
class operation in a descendant, and by having deferred operations whose implementation is
only given in the descendants.

Existing languages that (in our opinion) are worthy of the name “object-based” satisly all
principles above; they include Simula [10, 3, 16], C++ (24], Object Pascal [25], Objective-C [8]
and Smalltalk [12].

The next and last step extends the notion of inheritance to enable reusc of more than one
context. This is .the notion of multiple inheritance, developed in section 1.5 below. Of the
languages mentioned above, only Smalltalk, to our knowledge, offers it in its recent versions
(although the basic reference on Smalltalk, cited above, excludes this feature). Eiffel adds to this

notion the concept of repeated inheritance (reusing the same structure more than once); see
1.5.5 below.

Principle 7 (multiple and repeated inheritance): It should be possible to declare a
class as heir to more than one class, and more than once to the same class.

The reader may have noted that in our seven “principles” we have alternated between
high-level, design-related conecepts and programming language features. One particularly
intcresting benefit of the object-based approach is indeed that the same language may be used
for désign and implementation. Some language traits, such as deferred features (1.5.8) are
especially useful for the application of Eiffel to system design. ' : .

1.4 - BASIC EIFFEL CONCEPTS

We now introduce the basic elements of Eiffel programming: run-time model, objects,
classes, export controls.
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1.4.1 - Run-time model

Before introducing the syntax of the language, it is best to first present the model that
undecrlies its dynamic semantics.

Eiflel rclies on an entirely dynamic execution model: the execution of a system (a term
which is preferred to “program” for this language) may be characterized at each instant by the
presence of a certain number of objects, each of which possesses some attributes. Attributes
are either simple values (integers, booleans, real numbers or character strings) or references to
objects. -Figure 1 gives a pictorial view of such a collection of objects and their attributes.

322 |’ALPHA’ 435

-9471

false '‘BETA’

.543

true

- Figure 1: Objects

1.4.2 - Routines

Operations, or routines, may be applied to objects. Routines are divided into
procedures and functions.. One may think of procedures as commands and functions as
questions: a procedurec may change the state of the associated object but does not return a
value, whereas a function returns a value without normally modilying the object. A related
analogy would be to sce the objects as having action buttons, the procedures, and display
indicators, the functions. The features associated with an object comprise its attributes and
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the routines that are applicable to it.

The execution of an Eiffel system is started by creating an object and calling onc of its
procedure features; exccuting this procedure will usually trigger the creation of other objects
and more routine calls.

1.4.3 - Cla.éses and system structure ' TR A
e PP . S s U
An FEiffel system: consists of one or more classes, each describing a set of potential objects

with the same features (attributes and -routines); thatis to say, with the same structure and
opcrations. :

In other words, a class describes the implementation of an abstract data type.

As implied by the above principles, classes are not only types but also modules. In fact,
they constitute the only system structuring facility.

1.4.4 - Entities

The program elements that may take on values at run-time are called entities. The
notion of entity is more general than that of variable, since it includes (in Eiffel) local variables
of routines (including the predefined variable Result denoting the rcsult to be rcturned by a
function), routine parameters, and constructs denoting object attributes.

Eiflel is a strongly typed language: every entity is declared with a single static type. Four
types, called ‘“‘simple”, are predefined: BOOLEAN, CHARACTER, INTEGER and REAL. All
other types are class types.

1.4.5 - States of an entity

Let z be an entity of a class type C. At any point during system execution, z may or
may not be associated with an object. If it is, we say that z is “created”, il not, that it is
“void”. The boolean expression z.Void has value true in the latter casc only.

The following two instructions change the state of an entity: z.Forget putls z in the void
"state; z.Create puts z in the created state by creating a new object of type C and associating it
with z. Figure .2 shows the two states, the transitions between them and the allowable
operations in each. As the figure shows, there are other ways to alternate between states, for
example by assignment (see below).
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0.Create
or o .= o’ where o’ is allocated

Void state A Allocated state

o.Forget
2 2y H
or o := o’ where o’ is void

AllbWable operations: Allowable opérations:

o.Create

o.Create . (re-allocates o)

0.Clone (0’)

(re-allocates o)

0.Clone (0’)

0.Void 0.Void
(returns true) (returns false)
o0.Forget (no effect) ‘ o0.Forget
0o:=o’ 0:=o0’
o’:=o0 o'=o0

o.Eztract (o)

no other .| all other
features fcatures

Figure 2: States of a reference, permissible operations and transitions

Votd, Create and Forget are predefined features applicable to all classes. The language
inciudes two other predefined features: z.Clone (y) creates a new copy of the object referenced
by y and assigns to z a reference to the new object; procedure Eztract performs conversions
beiween objects of different classes and will be described in section 1.6.1.

1.4.8 - Initialization

[very entity has an initial value. The initialization rules are part of the language
definition: they are not implementation-dependent.

By default, numbers will initially be 0, booleans will be true, character strings will be
blank and objecct references will be void.

If a different initialization is desired for the attributes of objects of a class C, a procedure
called Create, with or without paramcters, may be defined for that class; it will then be applied
to every object of the class upon creation. This is what is done in section 2.2 for the ARRAY
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class, for which a version of Create is defined in such a way that t.Create (min, maz) will
associate with ¢ a new array with bounds min and maz.

1.4.7 - Feature declarations

A class declaration introduces a set of features associated with objects of the class:
attributes and routines, the latter comprising procédures and functions.

All parameters to a routine are protected: more precisely, a routine, whether a procedure
or a function, may not include an assignment whose target is a formal parameter of the routine.

However, a procedure may, by applying procedures to its parameters, change the attributes of
the associated objects.

1.4.8 - Expressions and instructions

The construct used to express the application of feature f to the object associated with
entity z, called a remote feature application, uses a dot notation. If f is an attribute or a
routine without parameters, the notation is

z.f
If f is a routine with parameters, actual parameters must be provided:

I-f(ply p'_’y-"-ypn) )

Fither form of remote feature application is only valid if ¢ is declared of a class type for
which f is a valid feature.

Sither form is syntactically an instruction if f is a procedure, or an expression if f is a
function or an atiribute.

Assignment is written with the Standard := operator. For class types, the semantics of
assignment is by reference, not copy: entities of class types represent references to objects, not
the objeets themselves. Thus for entity of class types the assignment z := y results in z and y
being a reference to the same object (or z being void if y was).

Control structures include the loop, the conditional, and sequencing, represented by the
. semicolon.

1.4.9 - A simple class

The example below shows the basic structure of a class. It introduces an elementary
notion of ‘point™ which could be used (with suitable extensions) in a graphics system.

Following the Ada convention, any part of a line beginning with two consecutive dashes --
is a comment.
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class POINT export

z, y, translate, scale, distance
feature

z: REAL ;

y: REAL ;

scale (factor: REAL)is- .~ -+ .
- - Scale by a ratio of factor.

do
~z = factor+z ;
y = factorxy
end ; - - scale

translate (a: REAL ; b : REAL) is
- - Translate by a horizontally, b vertically.
do ’
z:!=zt+a,
y = y+b
end ; - - translate
distance (other: POINT): REAL is
- - Distance from current point to other.
require
not other.Void

do
Result ;= sqrt ((z — other.z) ~ 2+ (y — other.y) " 2)

end - - distance
end -- class POINT

The features of this class comprisc two attributes, z and y, and three routines: two
procedurces, translate and scale, and one function, distance.

The export clause says which features are public. Here all features are public, but in
P ) )
general classes will possess “secrets”. Public features may be used by clients of the class, that is
40 say classes that include one or more entity declarations of the form
Yy

p: POINT

and may thus cxecute operations such as
p.Create ; - - Dynamic allocation of p
p.translate (8.5, 2.2) ; - - Translation

r:=pz -- Getabscissa of z

In client classes, public attributes (here z and y) are acecessible in read-only mode: an
assignment such as p.z ;= ... is not permitted; the corresponding elfeet may only be obtained in
a client class by calling a public procedure which will modily the attributes itself, such as
translate in the POINT example.

It is also possible to export a feature f to a sclected set of classes Cy, Ca,.... only, hy
listing it as f{C|, Cs,....} in the export clause.

As in other truc object-based languages, the text of an Eiflel class always refers to a
current object of Lhe class. Most of the time this current object is anonymous; in a class (like
POINT), a feature name (like &) which appears unqualified (i.e. just z, not p.z for some p of
typc POINT) denotes the corresponding feature of the current object. If one needs to refer
explicitly to the current object, the predefined entity name Current is available. Thus we may
consider a namc such as z, appearing unqualificd in class POINT, as a synonym for Current.z.
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The special variable Result is used in functions: as shown by the example of distance, it
dcnotes the result to be returned by the function in which it appears. It is considered as
implicitly declared of the right type (REAL in the case of function distance).

1.4.10 - Generic parameters

R o o s N . . )

One more basic property of classes belongs in this overview: a class may have one or more

generic parameters that represent types. For example, section 2.6 introduces a class
representing linked lists of objects of an arbitrary type T; its declaration begins with:

class LINKED_LIST [T export....

The presence of T as generic parameter allows the class to contain declaration of entities
of type T. A client of the class will then declare entities of type LINKED_LIST [INTEGER)],
LINKED_LIST [POINT), etc. ' .

The ‘“horizontal” form of genericity, as provided by class paramecters, is a useful
complement to the more powerful “vertical” reusability features offered by inheritance and
described below. Another language that combines these two approaches is LPG (Language for
Generic Programming), developed in Grenoble [2].

The power of such a combination is evidenced by the examples of Part 2. A more detailed
comparative analysis of genericity and inheritance and a rationale for their use in Eiffol may bec
found in reference [18).

1.5 - INHERITANCE: TREES ARE LISTS AND LIST ELEMENTS

1.5.1 - Principles of inheritance

-

Inheritance, introduced by Simula 67, is one of the key techniques for rcusability. [t
makes it possible to entrust a new class with the features of previously defined classes.

Inheritance as offered by Eiffel is multiple: a class may inherit from as many classcs as
nceded. The only constraint is that the inheritance graph should be acyclic.

The following example shows the whole power of this notion. If the reader remembers Just
onc idea from this article, we would like it to be this: a tree is a list and a list element. Let's
explain,

In the classes of Part 2, we define lists of various brands. One of these classes has already
been mentioned: LINKED_LIST [T| (scction 2.6), describing one-way linked lists of elements: it
itsell inherits some of its properties from a more general class, LIST [T] (scction 2.3), which
introduces propertics of arbitrary lists without commitment to a particular representation. As
may be expected, the features declared in class LINKED_LIST include routines for inserting
clements at various places into a list, removing clements, accessing elements, cte.

In order to manipulate linked lists of elements of type T, one needs a data structure for
_L:hc'in_dividual (‘:ompori‘cnlts of a linked list; such components are cells consisting of two ficlds, a
value of type T and a reference to another cell. We use the word “linkable” to refer to such
cells. Class LINKABLE [T (scction 2.5) deseribes their features, particularly two attributes:
value, of type T, and right, of type LINKABLE [T]

Now assume we need to define the notion of tree, as implemented in linked representation.
We may certainly start from serateh; programming tradition, as well as fifteen years of
propaganda for top-down design, indeed “encourage’ us to do so. But the eventual result is
assured to look very much, at least in part, like what was obtained for lists: inscrtions,
deletions, access Lo subtrees, cte. The main difference is that here these operations apply to

I Feature right is actually dectared of type like-Current for reasons explained in 1.6.2,
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subtrces rather than list elements.

But from this last remark comes the light: a tree is indeed a list (since it is made of a
number of subtrees), and also a list element (since it may be used as subtree for another tree).
Hence the solution described in section 2.8, whereby trees inherit from both lists and list
elements: '

class TREE [T} export... inherit
" LINKED_LIST [T}; ~

' LINKABLE (T).

fgature ......

Of course, this is not guite enough: one must add the specific features of trees, and the
little mutual compromises which, as in any marriage, are necessary to ensure that life together
is harmonious and prolific. But it is significant that the new data structure may essentially be
engendered as the legitimate {ruit of the union between lists and list elements.

ARRAY

BI_LINKABLE

TWO_WAY_LIST

Figure 3: Inheritance graph for the examples
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This process is exactly that used in mathematics to combine theories: a topological vector
space, for example, is a vector space that also is a topological space; here too, some connecting
axioms nced to be added to finish, up the merger.

Such is the power of multiple inheritance. Few languages have permltted it so far; it is
available in Xerox’s experimental Traits system [9] and, as mentioned above, in recent versions
of SmalILaIk

Flgure 3 glves the structure of Lhe mherltance graph for the classes in Part 2.

We use the following terminology. An heir of a class C is a class which lists C in its
inherit clause.. On ﬁgure 3, this is shown by an arrow from A to B; for example, the heirs of
LINKABLE arc BI_LINKABLE and TREE. The descendants of a class C are C itsell and
the desccndants of its heirs; .for example, the descendants of LIST are FIXED_LIST,
LINKED_LIST, TWO_WAY_LIST and TREE. The reverse notions are parent and ancestor.

1.56.2 - Inheritance and export controls

One aspect of inheritance worth noting here is that this mechanism is independent from
export controls. Notwithstanding its export clause, a class will bequecath all its features to its
descendants — lock, stock and barrel or, if you wish, the family secrets as well as the public
facade. To reject part of this heritage, specific techniques must be used, such as feature
renaming and redefinition, scen below; the export restrictions apply to clients of the class (sce
section 1.4.9 above), not to its descendants. It is even possible for a class to export a feature
inherited from another class in which that feature was secret.

We have found the orthogonality between the export and inheritance mechanisms to be a
shock to some people, but a moment’s reflection should convince the reader that this is indeed
the right decision.

As an example, consider again the relationship between linked lists and trees. The notion
of LINKABLE ccll should be of no concern to clients of the class LINKED_LIST [T}, who are
only interested in dealing with lists, of type LINKED_LIST [T], and values of list elements, of
type T. Internally, class LINKED_LIST uses a feature called active which represents the cell at
the currently active list position. This feature, of type LINKABLE [T, is naturally secret; it is
used for the implementation of exported features such as value (the value at the currently
active position), insert_right (insert a new cell of given value at the right of currently active
position), etc. The list cells themselves are none of the clients’ business.

For trees, however, the picture changes. As we saw, trees are lists and list elements; the
notion of currently active list position transposes to ‘“‘currently active child” of a tree node.
Here the child node itsell is nceded, not just its T value as returned by feature value; to
perform tree traversal operations, we must be able to go from parent to child, both considered
as tree nodes. Feature active is thus exported in class TREE [T] even though it is inhecrited
from a class where it was secret. (The renaming mechanism, described below, enables class
TREE to refer to this feature under the name child, more appropriate for the occasnon)

1.5.3 - Inheritance and reusability

Why are inheritance techniques so crucial for the production of reusable software? In our
opinion, what explains their superiority is that they make it possible to write software modules

that arc both open and usable as they stand, whercas these two aims are contradictory with
classical methods.

Let us look for example at a typical language structure used to support these methods, the
data types with “variant parts” as offered by Pascal and Ada. Surc enough, such constructs
make it possible to write software elements that may exist in several versions; but as scon as
one needs to actually use such an element (by compiling it if it is a program clement, or having
it approved by management and basclined if it is some part of the design documentation), the
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list of possible variants must be frozen; any later addition of new variants will imply that
existing software elements (which relied on the initial version) have to be modified.

Similarly, any change in the list of formal parameters to a procedure, in the set of generic
paramcters to an Ada package, or in the repertoire of operations available on an abstract data
type, will result in tricky problems of software configuration.

Tn contrast, multiple inheritance as offered by Eiffel makes it possible to use a class — to
store it, to compile it, to execute its routines, etc. — and at the same time to leave open the
possibility that the class will eventually. be used as parent for an unlimited number of
descendants, corresponding to all the cases that one did not envision initially. This may be
stated as the principle of openness, which we view as one of the esscntial laws of software
design: whatever you desjgn, keep it open for future extensions.

A further example of the application of this principle to Eiffel is the fact that the language
docs not include a construct (such as the inspect... when... instruction of Simula 67) which acts
as a case instruction to discriminate between the various heirs of a class. Were such an
instruction to cxist in Eiffel, class LIST, for example, could contain an instruction that chooses
between several actions depending on whether the current list is a FIXED_LIST, a
LINKED_LIST etc. But this would mean that LIST, as part of the knowledge it embodies, has
information on the set of its possible heirs: thus it would no longer be open for designing new
heirs without modification. To achieve the effect of inspect in Eiffel, one may unse such
mechanisms as deferred and redefined features, which preserve openness.

1.5.4 - Types of entities and objects

)

The inheritance relation may be viewed as an “is-a"” relation [4], in the sense that an
elephant “is-a’”” mammal and also “is-a” gray thing. From this remark comes the rule that a
language entity declared of a certain class type, say C, may at run-time refer to an object of
any descendant type of C. For example, an entity declared

I: LIST {INTEGER)
‘may refer to a two-way list or to a tree of integers. The reverse, however, is not true.

If we call the type with which an entity is declared its “‘static”” type and the type of the
‘object to which the entity (if not void) refers at some point during system execution its
“dynamic” type, the rule is that the dynamic type must be a descendant of the static type.
Remember that 3 class is included in its own descendants, so the two may of course be the
same. Whencver we talk about the type of an entity, without, further qualification, we always
mean its static (declared) type.

1.5.5 - Renaming and repeated inheritance

The basic Eiffel ruie for resolving name clashes is simple. Within a class, there may be no
name conflict (overloading): any unqualified name must denote one and only one feature. This,
in our view, is essential for readability and safety.

" With the emphasm on reusability and bottom- up construction, however, it is inevitable
that classes developed separately will include features with the same names; but it should still
be possible to combine such classes through the multiple inheritance mechanism. Renaming
solves the dilemma by 'Lllowmg the heir, at the point of inheritance, to resolve any name conflict
by renaming sclected features of the parent classes. The inherit clause will thus in its most

general form appear as:
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class C export ..... inherit
A
rename [, as ¢1, [y as ¢gs, .....;
B
| rename m, as n;, m, as n., ..... ;
f t
feature.
Class C will refer to the renamed features under their new names (91, 995 oy my, nay .,

cte.). "The ban ‘on overloading applies to the sct of names that arc visible in the class after
renaming has been applied. s
An interesting conscquence of the renaming policy is an Liffel concept that extends

multiple inheritance: repeated inheritance®. Repeated inheritance makes it possible to inherit
more than once from the same class, sharing some features and duplicating others,

Assume for example that a class SORTABLE_LIST [T] has been defined as a descendant
of LINKED_LIST [T}; among the features we single out the following two:

nb_elements: INTEGER;
-- The number of clements in the list
-- (this feature comes from LINKED_LIST

sort is
-- Sort the list
do ... end;

We may want to use this class to define, say, a stock inventory list of materials, kept
sorted in two different ways: from each element in the list, one may access its successors by
either unit price or available stock quantity. This is achieved simply by inheriting twice from
the sorted list class, and removing name clashes through renaming clauses, as in

class INVENTORY_LIST export ..... inherit

: SOR TABLE_LIST [MATERIAL]
rename sort as sort_by_price;

SORTABLE_LIST [MATERIAL]

rename sort as sori_by_quantity

feature ....

Here feature sort is inherited twice under different names, so sort_by_price and
sort_by_quantity are really two different features for class INVENTORY_LIST; their effect,
corresponding to their names, should indeed be different (for this to work properly, of course,
other features nccessary for the execution of sort, such as the attributes representing the
clement keys used in the comparisons and the procedure for swapping elements, should also be
renamed separately). '

2 Repeated inheritance exists in the 1M specification language associated with the M method [20]. which in
many respects may be viewed as the formal specification method associated with the use of Fiffel for design and
programming. On the other hand. the semantics given by Sannella (23] as well as Burstall and Goguen {3] for
another specification language. Clear (6. 7). use techniques designed to merge the instances of a single feature
when it has been inherited more than once: thus it seems that the designers of this language overlooked the po-
tential interest of repeated inheritance.
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On the other hand, feature nb_elements is inhcrited from both sides without being
rcnamed. This is not a violation of the “no overioading” rule, however, since no conflict is
involved: nb_elements comes in both cases from the same class (LINKED_LIST). Such a feature
inherited more than once, directly or indirectly, from the same class, is shared. Thus, as fits the
example, attribute nb_elements is unique at the INVENTORY_LIST level.

This cxample is representative of the power of the mechanisms associated with
inheritance. Achieving the same effect (that of a list kept sorted according to two different
criteria) without these techniques involves declaring complex data structures and performing
tedious and tricky pointer manipulations.

This discussion shows the two main applications of renaming;:

e to recmove potential name conflicts in normal multiple inheritance, when combining
classes with identically named features;

e to replicate a common feature in repeated inheritance, as with the sort procedure above.

A third, more ‘“cosmetic” use of renaming is to enhance clarity by providing more
appropriate feature names in a descendant: for example, the boolean function which tests
whether a list is empty is called empty for lists in the strict sense (sections 2.4 to 2.7) and
renamed is_leaf for trees (section 2.8) to conform to usual tree terminology.

1.5.6 - Feature redefinition

Another property of multiple and repecated inhcritance is the possibility to redefine a
feature of a class C in a descendant class, say D. The inheritance clause of class D may list the
C features redefined in C, under the form

inherit C
redefine f, ¢, A

allowing it to introduce new declarations of features f, g, h, ... which, for an object of type D,
will override the corresponding declarations given in C. Some constraints, of which the most
importanl arc desceribed in section 1.6.1, restrict the types that may be given to such redefined
features and (in the case of routines) to their arguments.

Feature redefinition adds yet another element of flexibility to softwarc design by
permitting a set of related classcs to provide alternative implementations of the same operation.

As a qlmplc example, conslder a set of graphic classes, including POLYGON, with
RECTANGLE among its heirs, itsclf with heir SQUARE. POLYGON may have among its
features a list of points, say vertices, giving the vertices of a polygon, and a function perimeter
which rcturns its perimcter. The lmplemcntatlon of perimeter performs a traversal of the
vertices list to compute and sum the distances between adjacent vertices. Class SQUARE, on
the other hand, has a feature side giving the length of a square’s side. It is clearly appropriate
to redefinc feature perimeter in this class to simplify the computation, which in this case just
rcturns 4 *szde ’

Assummg the dcclardmon
" p: POLYGON

entity p could at run-time, as we have scen, refer to an object of type SQUARE. The function
call p.perimeter would then result in the SQUARE version of the function being applied,
whereas the same call executed when p refers to an object of type POLYGON would have
triggered the execution of the POLYGON version.

A ‘further degree of ‘flexibility is provided by the ability to redefine a function feature
(without paramcters) as an attribute. From an information hiding viewpoint, it is uscful to
provide clients with a feature under such a form that it does not make any difference for them
whether the feature is implemented as an attribute (that is to say, stored along with each object
of Lhc class) or a function (computed when requested); the notation for remote feature
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application is indeed the same in both cases: r.f. With inheritance coming into the picture, the
idea is carried further by allowing descendants of a class to redeﬁne as an atiribute a feature
declared as a function in the ancestor.

For example,“one—way linked lists (class LINKED_LIST, section 2.5) include a function
feature last, rcturning the last value of a list; here one must traverse a list to get to its last
elecment, so a function is indeed necessary. For two-way linked lists (TWO_WAY_LIST, section
2.6),'a reference to the last element will be permanently képt, by each list, so that lest becomes
an attribute in this class. RENY : '

Legltlmatve concerns may be voiced as to the power of the redefinition mechanisms: does it
not allow dangerous manipulations? A feature application

a.f (),

where a is of a class type A could have totally unexpected results if ¢ may be assigned values
of descendant types of A where ] is redcﬁned in a manner inconsistent with the original intent
of A’s author. : !

Nothing indeed prevents the author of SQUARE to redefine perimeter so that it will
compute, say, the arca rather than the perimeter.

Although FEiffel does not provide an absolute protection against such abuses of the
redcfinition mechanism, it does address the problem. As will be expiained in section 1.7.3, a
partially formal specification may be associated with a routine feature in terms of preconditions
and postcondition. If this is the case, any redetinition of the routine must obey the initial
specification (1.7.6). '

1.5.7 - Redefinition vs. renaming

Redcfinition and renaming serve diflerent purposes and should not be confused.

Redefinition is applied to ensure that the same fcature name refers to different actual
features depending on the type of the object to which it is applied (that is to say, the dynamic
type of the corresponding entity). It is thus an important semantic mechanism for providing
the object-oriented brand of polymorphisimn.

Renaming, on the other hand, is more of a syntactic mechanism, making it possible to
rcfer to the same feature under different names in different classes.

The two techniques are indeed orthogonal; either or both may be applied (in a descendant
D of a class C) to a feature of C, say f. They address different questions: for redcfinition,
“Can we have a different implementation for f when it is applied to entities of dynamic type
D?"; for renaming, “Can we change the name under which the original (C) implementation of f
may be applicd to entities of static type D?".

The efiect of ‘combining these two mechanisms in various ways, summarized in the table
below (figure 1), follows from this discussion. We assume that entities ¢ and d are deelared of
types C and D respectively. It is important to distinguish between the name of a feature, f in
our example, and the feature itself (represented for example by the body of a routine), which we
call ¢. By rornmlng the featurc in D we associate with ¢ a new name f by redefining it we
associate with f a new feature ¢

"When ¢ is of dynamic type C, c. [ will always refer to feature f, and the notation c.f’
will alwavs be illégal. Thus the only interesting cases are the interpretations of e.f when the
dynamic type of ¢ is D, d.f and d.f’ The table shows what actual feature is associated with
cach of these notations in each legal casc. Note that “lllogal combinations are statically so and
may be caught by a compiler. :

(mw‘q 5 dnd 6 are a little more subtle than the others and also less useful in common
usage; they may be skipped on first rmdlng

1



18 < EIFFEL: A LANGUAGE FOR SOFTWARE ENGINEERING §1.5.7

# c.f d.f d.f’
f not redefined ]

! f not renamed ¢ ¢ o xlllegal
f redefined ¢’ , . . o

2 { not renamed 2 | ¢’ . | illegal

: f not redefined e B I
3 f renamed [’ ¢ iflegal ¢
' f redefined ¢’ -, SRS I L

* f renamed f’ ¢ 4 ¢
f not redefined

5 | f renamed f’ ¢ illegal ¢
f ' redefined ¢”’
f redefined ¢’

6 | f renamed f’ ¢ ¢’ 6"
f ’redefined ¢

Figure 4: Combining redefinition and renaming

(Note: in column 3, ¢ is assumed to be of dynamic type D).

All cases, with the exception of case 6, occur in the library of part 2. Note that case 4 is
interesting in particular when D provides a special implementation ¢’ of the feature, but the
implementation of ¢’ internally relies on the more general ¢; thus D must be able to refer to ¢,
which is not available to it under any name in case 3 (redefinition only).

For example, the basic insertion procedure put_between is inherited by class TREE (2.7)
from LINKABLE (2.4). To insert a new child into a tree, however, one must not only do the
pointer operations for inserting an element into a list, but also set the “parent’ ficld of the new
child so that it references the correct parent. Thus the implementation of the ncw put_between
consists of a call to the original procedure, renamed lnkable_put_between for the occasion,
followed by code to set the parent field.

1.5.8 - Deferred features

The redcfinition mechanism allows providing alternate implementations of a previously
implemented feature. In some cases, one wants to define a featurc without giving its
implementation, relying on descendants to provide implementations. Delerred feature
declarations satisfy this need.

In such a declaration occurring in a class C, the type and parameters ol the feature, if
any, must be specified in C, but not its body if it is a routinc. Syntactically, the do... part is
simply replaced by the keyword deferred.

Versions of the body, usually distinct from one another, will be given in-the descendants of
C. One may then apply the feature to an objeet of type C (under some consistency conditions),
with the understanding that the implementation used depends on the descendant to which the
object belongs at. execution time,

In keeping with the remark made in the presentation of the redelinition mechanism, the
syntax for deferred typed features without parameters, that is to say (in its simplest form)

f: Tis deferred end

does not commit the descendants to implement the feature as an attribute rather than a
function; different descendants may take different decisions in this respeet.
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As with feature redefinition, it is important to enable designers to specily properties of
features even when they are declared as deferred. The techniques for specifying preconditions
and postconditions of routines (1.7.3 and 1.7.6) indeed apply to deferred features.

An interesting application of deferred features is to provide for two-tier definition of
modules (interface and implementation) as in Ada or Modula 2. One will declare an abstract
data type implementation as two classes, the first of which contains only deferred features (with
their types, those of their arguments, as well as preconditions and postconditions), and the
second, heir to the first, provides implementations. An important advantage of the inheritance
mcchanism over ‘the techniques of non object-based languagés such as Ada or Modula 2 is that

more than onc implementation may be provided for a given interface within the same system.

Such a use of deferred features is particularly interesting when Eiffel is used as a design
language (“PDL”). The global design of the system may be expressed as a set of classes where
all non-trivial features are deferred; preconditions and postconditions should be stated whenever
possible. At the implementation stage, deferred features will be ‘expanded into actual code.
Such an approach makes the development process smoother and more continuous than when
different, languages are used for design and implementation.

1.6 - TYPE COMPATIBILITY

1.6.1 - Basic constraints

Eiffel was designed to permit strict type checking. Because of the inheritance mechanism,
the type rules are more flexible than in a language with a simpler type system. There are two
basic constraints, governing assignment and feature redefinition (the discussion only addresses
class types; the usual rules apply to simple types).

The first typing constraint is a direct consequence of the rule governing association
between entities and objects (section 1.5.4): in an assignment z :=y, the class of y must be a
deseendant of the class of z. In other words, one may assign a “more specific” value (i.e. a value
of a descendant type) to an element declared as “more general”. For example, an element of

type LIST may be assigned a valuc of type TWO_WAY_LIST.

The reverse case is prohibited. However, if the class of z is a descendant, of the class of y,
“then z.Eztract (y) will assign the values of the attributes of y common to both classes to the
corresponding attributes of z, leaving other atiributes of z untouched. This opcration is only
permitted if both z and y are created. (Eztract is the last of the predefined features of the
language, common to all class types, the others being Create, Void, Forget and Clone)

~ The sccond basic constraint applies to the redefinition of a typed feature, that is to say an
attribute or a function: if such a feature, initially declared in a class C as being of a certain
type T, is rcdefined in a descendant of C as being of another type T', then T’ must be a
descendant of T. For example, the feature representing the first linked element (“cell”) of a list,
called first_element and defined ‘as LINKABLE in class LINKED_LIST, is redefined a’s
BI_LINKABLE in TWO_WAY_LIST and as TREF in class TREE; such redefinitions are

correct since each new type is a descendant of the previous one.
' B A B o . .

1.6.2.- Declaration by association

The second typing constraint is one of the language properties that motivate declaration
by association. A declaration by association takes the form

z: like y

where y is an entity declared in the scope where this declaration appears. Il T is the type
associated with y, then the above declaration is equivalent to
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. T
with the difference that, if y is redefined in a descendant of the current class with a new type
T, then the corresponding redeclaration of z is implied. We say that y is an “anchor”, which
may be used to drag along other elements declared like y. The anchor itsell must be declared
with a “fixed” type (not by association).

This form of declaration is often needed to guarantee that a group of clements remain
consistent with each other in any descendant. [t is used in particular to ensure that the t,ypes of
functlon results are properly declared, as the followmg snmple example shows.

"t

, Assume we define a class COMPLEX to represent complex numbers. One of the features
may be a function conjugate yleldmg the conjugate of the current obJect which might be
declared as follows:

conjugate: COMPLEX is
-~ Return a copy of-the conjugate of the current complcx
do
Result.Clone (Current) ; -- Assign to Result a copy of the current complex
Result.change_y (— y) ; -- Negate the y coordinate of Result
end -- conjugate

We have assumed that another feature of COMPLEX is the procedure
change_y (new_y: REAL), which does what the name implies.

The solution shown is correct as long as we consider class COMPLEX just by itself.
However, assume COMPLEX has a descendant — say IMPEDANCE, in an electrical
engineering application whereby impedances are considered a special case of complex numbers.
Class IMPEDANCE will inherit the conjugate feature; but with declarations such as

t1: IMPEDANCE; i2: IMPEDANCE

the assignment 11 = i2.conjugate is typewise incorrect, since the type of the right-hand side,
COMPLEX, is not a descendant of the type of the left-hand side, IMPEDANCE; in fact, the

reverse holds.

The problem goes away, however, if we use a declaration by association whose anchor will
be the current clement itself. In other words, we will declare conjugate and temp to be of type

not COMPLEX but
like Current

With this declaration, c.conjugate is of type COMPLEX if ¢ is declared of type
COMPLEX, but il.conjugate will now have the type of i1, namely IMPEDANCE. In all cases
these types may be determined statically.

Declarations by association play an important role in the examples below. They ensure,
among other properties, that list elements are consistent: for example, all elements of a doubly
linked list must include two references, to their right and left neighbors; and all members of the
list of children of a tree node must themsclves be tree nodes.

[t is cssential to emphasize that, whether or not declarations by association are used, the
typing constraints are static and may be checked at compile time.

1.6.3 - Side—eﬂ‘ects; in funcfioﬁs

Onc more constraint is worth discussing here. [n section 1.4.2, we introduced procedures
as “commands” and functions as “questions™. In keeping with this definition, it would secem
wise to forbid functions from performing any operation (“side-effect”) that could alter the state
of the current object; such a restriction excludes procedure calls as well as assighment to
attributes of the current object.
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This constraint is not, however, a language rule. The reason is that a class is the
implementation of an abstract data type, not the abstract data type itself. The state of an
object of the. class should be secn as onc particular representation of a more abstract state.
What is required of Minctions is that they do not alter the abstract statc; however, the mapping
[rom concrete to abstract states is not nccessarily injective; there may be more than one
concrete representation of a given abstract state. There are indeed cases when, for efficicncy
reasons, a function will'have to change the concrete state Withotit changing the abstract state.

» As an example, assume we have a class representing complex numbers (or points).
Depending on the operations requested on a given number, we might want to alternate between
represcntations: multiplication, for example, is best done in polar coordinates, whercas addition
demands that the cartesian representation be available. If we adopt such an implementation,
which has three kinds of possible states (““cartesian representation available only”, “polar only”
and “both”), a function such as z, which returns the current abscissa, might trigger a state
change to make the cartesian representation available if it is not. From a methodological point
of view, such a change of the concrete state is acceptable, since a function call of the form z.z
will not change the underlying abstract state: even though some attributes of z may be
changed, the representation of z still corresponds to the same complex number.

Thus the prohibition of concrete side-eflects in functions, which is an easy check for a
compiler, is not part of the language definition. The theoretical rule is that functions are
barred from any change to the abstract state. Such a constraint, however, cannot be enforced
mechanically in the absence of the proper tools for formal specification. It is a methodological
guidcline, not an a language rule.

In practice, compilers may be expected to check for side-effects anyway and produce
warning messages.

1.7 - FEATURES FOR SYSTEMATIC PROGRAMMING

Much of the emphasis in the design of Eiffel has been on promoting such quality factors as
reusability, extendibility and compatibility. Of course, these qualities are meaningless unless
programs arc also correct and reliable. In fact, as techniques for the production of truly
reusable software components become a reality, the concern for correctness takes on a even
“greater importance as in a “one-shot developments” environment, since the impact of errors will
be multiplicd by the reuse factor.

Eiffel provides no revolutionary solution to the issue of program correctness but includes
language constructs that promote a systematic approach to software construction.

1.7.1 - Assertions

These constructs are based on the notion of assertion.

An assertion is a list of boolean expressions, separated by scmicolons; a semicolon is
semantically equivalent to an and here, but it allows individual identification of the components
of the assertion. The following is an assertion: .

t/=7; -- Note that /= is the “not equal” symbol
[z 9)=0; B
nb_elts > 0

We shall sce below (1.7.7) that other elements may be associated with assertion
components (labels, messages, actions).

Eiffel does not include a full-fledged assertion language, so some properties which are not,
expressible as simple boolean expressions may have to be given in part as comments, as is
frequently the case in the examples of part 2 (a related effort, the M specification method [20],
includes a specification language, LM, which may be used in conjunction with FEiffel in a fully
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formal approach).

The various uses of asscrtions will now be deseribed.

1.7.2 - Class invariants and the Create procedure

The need for class invariants arises from the already voiced remark that a class is an
amplomontatlon of an abstract data type rather than the abstract data type itself. The
1mp|(‘m(‘nt,atlon contains compononts (attnbuto ) which are ‘often too general for the purpose of
ropro:ontmg the abstract type. As a trivial example, an array representation of stacks may
contain an integer attribute, say high, which marks the topmost array position used. Although
an arbitrary integer may be positive, negative or zcro, an integer used as stack pointer may
only be non-ncgative. Thus the condition high > 0 should be a class invariant.

The notion of data type invariant is discussed in [13] and [14]. From the viewpoint of
scction 1.6.3, the class invariant characterizes the domain of the mapping from conercte to
abstract states.

A class invariant must be-satisfied after the exccution of the Create procedure of the class;
any routine of the class may be written under the assumption that the invariant is satisfied on
entry, and must ensure that it is still satisfied upon exit.

What the simplistic example of high in STACK does not show is that for intcresting
classes invariants are strong semantic properties; by stating them explicitly, one gains in-depth
insights into the fundamental properties of classes. Part 2 contains significant examples of class
invariants, for example the invariants for LIST and LINKED_LIST.

Syntactically, a class invariant is an assertion, appearing in an optional clause introduced
by the keyword keep in a class declaration, as in

class STACK |T] export... feature
high: INTEGER;

high> =0
end -- class STACK

The reader: will notice in the examples of Part 2 the constant interplay between class
invariants and routine preconditions and postconditions. In principle, the following should be

proved for each routine body B, with precondition @ and postcondition R in a class with I as
invariant:

A QB{{RAD

(where {Q} A {R} means that execution of A, starting in a state where Q is satisfied, will
terminate in a state where R is satistied). In other words, when assessing the validity of a
routine body, one may assume the class invariant, and one must, chock that it is preqcrvcd by
the routme : o

l The notion of class mvarxant is the main justification for the way object creation is
handled in Eiffcl through the Create procedure.

The conventions regarding this procedure are slightly different from those of other
routines. Fixecution of a.Create (....), where @ is of type A, triggers the allocation of storage for
an object to be associated with a, followed by the execution of the Create procedure declared in
class A if therc is one (which must be the case if the call includes paramecters). If A does not
contain a Create procedure, A is still considered to have redefined it with an empty body. Thus
Create is never inherited, since every class redefines it explicitly or implicitly.

Special conventions are always disturbing and one may wonder why Eiflel does not
separate object allocation from object initialization, with a syntax such as



§1.7.2 Features for systematic programming > 23

-- Warning: this is not correct Eiffel!
allocate a;

a.init (z, y, ...)

where allocate would be a universal allocation instruction and init some class-specific
procedure (declared in A in the case at hand).

The édvantage of the solution actﬁéll} retained is that, by tying initialization to
allocation, the designer of a class may guarantee that all objects of the class will automatically
satisfly the class invariant upon creation. The alternative solution would not enahle designers to

prohibit clicnts from omitting to call a.init after allocate @ before any other feature is applied
to a. -

From this discussion stems an important principle of Eiffel design: the purpose of Create
procedures is to ensure that every object of a class initially satisfics the class invariant.

1.7.3 - Preconditions and postconditions

Asscrtions may be associated with routines: a routine may begin with a require clause,
stating the conditions assumed be satisfied on entry, and end with an ensure clause, stating the
conditions that must be enforced by the routine implementation upon exit.

The foilowing two notations are available in ensure clauses: old z denotes the value of
entity z upon routine entry; Nochange is a boolean expression, true if and only if no attribute of
the current object has been modified since entry.

1.7.4 - Loop notation

The syntax of loops (taken from [21], chapter 3) includes room for loop initialization, a
loop invariant (true after initialization and conserved by the loop body), and a variant (a non-
negative integer expression which decreases on each iteration, guarantecing termination):

from initialization_instructions
keep invariant

decrease variant

until ezit_condition

loop loop_tnstructions end

This notation (where the keep... and decrease clauses are optional) cnables the program
reader to check that the initialization_instructions ensure the invariant, and that the
combination of this invariant and the ezit_condition ensurcs the desired effect of the loop. Note

that this loop is similar to a Pascal “while” loop, with the test reversed; it is not a Pascal
repeat...until.... '

1.7.5 - Check instruction

. An a.sservi‘,ion may also be used in a special instruction of the form

check assertion end

whose purposc 1s to express that the assertion is satisficd - whenever control reaches this
instruction. This construct {the equivalent of the Algol W' ASSERT instruction) is used in
particular in connection with routine calls, to express that a condition stronger than or equal to
the routine precondition is satisfied before the call, and that a condition weaker than or equal

to the postcondition may be assumed upon return. Part 2 eontains numerous examples of such
uses of check.
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1.7.6 - Assertions and inheritance

Using assertions, one may state the restrictions that apply whenever features are added or
redefined in descendants of a class. As pointed out in sections 1.5.6 and 1.5.8, class designers
should have some way of providing their clients with guarantees that each class will perform
according to the original contract, even if some of its features are redefined.

Such a’provision is the indispensable complement to the principle of openness: inasmuch as
one strives to produce software elements which are still open to extensions and modifications,
onc also needs a 'way to prescnbe limits within which these future changes should remain.

The following constraints apply to the inheritance mechanism in connection with the use
of assertions:

e The invariant of a class applies to all descendants of a class (thus it does not need to be
repeated in their keep... clauses except for clarity).

e Conscquently, no two classes may be combined through multiple inheritance il their
invariants are not compatible (note that they could only be incompatible if the two classes
share some fcatures and are thus themselves descendants of the same class).

o Il a routine is redefined in a descendant class (this includes the case when the original
routine was dcferred), the new precondition must be no stronger and the new
postcondition must be no weaker.

In the last rule, a condition is said to be stronger than another one il it implics it. The
rule expresses the requirement that whenever the original routine was applicable, the new one
must also be (bhut it may well be less restrictive in its precondition), and it must at lcast cnsure
the original postcondition (but it may well ensure a more restrictive one).

1.7.7 - Use of assertions

The primary aim of asscrtions is to encourage a systematic way of writing Eiffel classes
and to help reading them by requiring programmers to say explicitly what mental assumptions
have been made. Asscrtions may thus be viewed as comments of a special kind. This possibility
has been used abundantly in the examples.

LY . . . . v
It is also possible, on option, to check at run-time that asscrtions {at least thoese defined
formally) arc satisfied. Eifel systems should provide at least three compilation options:

1 ® no protection: the program text is assumed to be correet and assertions have no
influecnce at run-time. Errors are likely to result (if apparent at all) in aberrant behavior
and abnormal termination (arising for example from out-of-bounds memory references).

3 e tolal protection: all asscrtions {and the cffective decrease of loop variants through each
iteration) are checked.
2 e controlled mode: only preconditions of routines (require clauses) are checked.

.Option 3 is adequate at checkout time. Option 2 is an acceptable compromise in many
slllmhons satislaction of the precondition is essential to the proper functioning of routines (in
fact, the presence of the require clause allows a much simpler coding style in iffel than in
common languages, since internal onsistency  cheeks” may be factored out in routine
preconditions rather than scattered t.hroughouL routine texts), yet preconditions often may be
checked with reasonable cfficiency. Thus in the current Eiffel compiler option 2 is the default.

With options 2 and 3, when an assertion is found to be vielated; the Fiffel system should
react as follows. In all cases, the current routine will terminate and control will be transferred
back to ils calling routine. (Note that since function results, like all other entitics, are initiatized
by default, a function will return a well-specified result even if no programmer-defined
instruction has been executed). Before passing control back to the calling routine, the system
may produce an error message and/or perform an action; this will be the case in particular if
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the programmer has taken advantage of the possibility to associate a label, 2 message and an
action to components of the asscrtion. The syntax of assertion components, with all option
present, is illustrated by the following example from a hypothgticai function:

posttive: z > () message "Argument must be positive" do Result := 0 end;

tn.this form, the label {positive)-and the message will be used to produce an error report
should the asscrtion be violated at run-time; note that the message written by the programmer
does not mention the class and routine names, since it is the responsibility of the Eiffel system
to, identily them properly in the report actually generated. The instructions between do and
end will be executed before control is returned to the calling routine. Note that the do...end
part was probably not nccessary here since the result of the function, which the assignment
shows to be of a numecrical type, is initialized to zero anyway.

. This facility is, in our opinion, simpler and safer than a general exception handling
mechanism as offered, for example, by Ada, with its potential for remote transfer of control.
The facility does not disrupt the normal inter-routine flow of control; it allows catching errors,
dealing with them locally and producing appropriate error messages.

Assertions and the associated language constructs should not be misused. Clauses such as
require... and check... are in no way appropriate for dealing with run-time situations that fall
outside the “‘normal” cases but are nevertheless possiblc and, as such, part of the specification.
Examples of such situations include expected errors in the input to a program: if a certain kind
of input cannot be processed normally, but the program is prepared to deal with it in some
fashion, for example by outputting a message and requesting new input, then the erroncous case
belongs to the specification; such cases should be dealt with through standard language
constructs such as conditional instructions. This is not what assertions are for. Assertions
express properties that should always be satisfied when the program is executed; thus violation
ol an asscrtion signifies a program error, not a special run-time condition. The error may have
been made by the programmer who wrote the class containing the assertion; or it may be the
responsibility of the writer of a client class, resulting in a routine call that failed to observe the
advertised precondition.

Thus by writing assertions, the programmer is documenting his design and defending his
belief in its correctness; by choosing to have these assertions monitored at run-time, he is
-showing his distrust not of the system’s users, but of his clicnts and, just as importantly, of
himsclf.

This view of assertions explains why we have not included any message... or do... clause
in the library examples of part 2; such clauses are not meant to aflect the official semantics of
library classcs, and consequently do not belong in a published version.

One more note is in order with respeet to assertions. The consistency constraints on
feature redefinition, mentioned in the preceding section, could only be enforeed by a system
including a fully formal assertion language and a thcorem prover. We will have to satisfly
ourselves, for some time to come, with informal human checking.

In particular, the examples of part 2 have been tested but not formally verified and we
expect that some mistakes remain; we will be grateful to any reader reporting an error.

1.8 - MISCELLANEOUS

Two more explanations will help the

reader understand the examples and write his own
[hiffel programs. - .

Non-commutative boolean operators usc the Ada syntax: a and then b has value false

il ¢ has value Mlse, and Ol‘hOrWiS{‘ has the value of b; aor else b has value true il ¢ has value
true, and otherwise has the value of 5. The advantage
and and or (which are of course also present)
operand has enough information to determine

of these operators over the standard
is that they may be defined when the first
the result (false for and, true for or), but the
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sccond is undefined. A simple example is the boolean expression

i/=0andthenj/i=k

which might yield an undefined value if it used a simple and. The non-commutative operators
are particularly useful in assertions.

Finally, constants are described as class attnbut,es w1t,h ﬁxed va.lues The”syntax is
similar to that used for routines, for example: ' h . a

pi: REAL is 8.1415926524

It is common practice to encapsulate a group of related constants in a class, which is then
used as ancestor by all classes needing these constants. In our implementation, constant
attributes do not occupy any space at run-time, so programmers need not be concerned about
the number of such attributes. '

The above notation applies to constants of simple types. "Constants of class types are
object references of which a single copy exists in any system {(as opposed to normal attributes, of
which there is an instance for every object of a class). Such constants are treated as normal
attributes but included in the only clause of classes not yet presented, the freeze... clause,
ensuring that the corresponding object is shared over a whole system. This possibility is useful
in some application programs but less frequently in libraries and thus does not occur in the
examples of part 2.

1.9 - ON THE IMPLEMENTATION OF EIFFEL

We finish this introduction to Eiffel with a brief overview of how the language has been
implemented.

1.9.1 - Classes and systems

There is no exact notion of “program” in Eiffcl. What may be exccuted is a “system’,
which is defined by a class name and a list of actual parameters. Executing such a system
consists in allocating an object of the class and exccuting its Create procedurc, with the
parameters supplled Usually this will trigger new routine calls and the creation of other objects.

1.9.2 - Translation techniques

The current Eiffel implementation, running under the Unix system, uses C as an
intermcdiate language. This technique enhances portability without sacrificing efficiency. We
view C as a portable assembly language, the closest ever realization of the old “Uncol”
(Umvcrswl COmputer Lang\mgc) idea.

Two comm'mds are provndod

The first command, ¢, for Eiffel Class, compiles a single class into C and then object
code. Scparate compilation is of course an essential requirement for a language promoting
reusability, and extendibility. To compile a class, one needs its ancestors, if it has any; an
optional argument to ec lists the dircctories where they are to be found.

The second command, es, for Kiflel System, constructs a complete system from itls
constituent classes through a process called assembly and executes the result. This command
refers to a System Description File of the following form:

ROOT: Classname (paraml, param?2, ...)
SOURCES: dirl dir2 .....
LIBRARIES: dir’l dir’2 .....
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Such a file describes how to assemble a system whose root is an object of type Classname,
crcated with the actual parameters given (these paramcters must be of simple types); the
SOURCES directorics are used to locate all the necessary classes; the LIBRARIFS contain any
necded. external routines. (External routines are routines written in a language other than
Eiflel; examples of use of such routines may be found in class ARRA Y, section 2.2).

It should be pointed out that the use of C as intermediate language is just one possible
implementation technique; nothing in the design of Eiffel ties it to C.

1.9.3 - Binding and ty'}ie-cﬁleéking

Binding is the association of names to their denotations — for example, the association of
attribute names to memory offsets and of routine names to actual code. A related task in a
typed language is type-checking: verifying that every entity is only used in accordance with the
constraints imposed by its declared type.

As mentioned in sections 1.2 and 1.6, one of the major design criteria of Eiffel was to allow
static binding and type-checking; this is crucial for efficiency as well as safety reasons.

Almost all binding is indeed done at translation time: intra-class binding in ec, inter-class
in es. The only binding that remains to be done at execution time is the binding of names of
deferred or redefined features to the appropriate code. The techniques used make it possible to
limit the corresponding loss in efficiency to a minimal amount.

With respect to type-checking, the language definition permits all checking to be done at
compile-time; no checks are necessary at run-time (in contrast, other object-based languages
either take a lax attitude towards typing or, as in the Simula case, leave some checking to be
done at exccution time). However our system currently performs only intra-class checking.
Inter-class type-checking (to be done during assembly, by es) is under way.

1.9.4 - Configuration management

The power of the reusability techniques offered by Eiffel and the emphasis on bottom-up
system construction by combination of separately developed software components (classes) make
_it necessary to use a systematic approach to change and configuration control.

Classes are interconnected by two dependency relations: “descendant” and “client”’, with
inverses “ancestor” and “supplier”. Since a given class may be connected dircctly or indirectly
to many others, there is a serious danger that obsolcte or inadequate versions might be
inadvertently used. Some automated support should be provided to avoid this risk. Commands

ec and especially es address this concern by enforcing time consistency of the dependency
relations.

~ The optional argument to command eec specifies where to look for ancestors of a class to
be compiled separately; the SOURCES line in the System Description File used by command es
specifies where to' look for direct and indirect ancestors and supplicrs of a system’s root. In
both cases, the eommands check that every necded class has been re-compiled after any
modification of the. classes to which-it.is related; if not, they automatically trigger the necessary

re-compilations. In particular, command.es will itsclf call ec.for. classes that have been modified
but not re-compiled.

Our initial implementation of these facilities relied on the Unix Make tool [I1]. However
Make turned out to be too limited in its capabilities and we substitued specilic tools.
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1.9.5 - Run-time support

The dynamic model described in scction 1.4.1 implies adequate run-time support. Our

%iflcl implementation relics on a complete memory management system (Dynamem), which

provides both paging and garbage collection; the latter is done in parallel (“on-the-fly™) if the
op(‘ atlng system supports multiple user processes, and is otherwise called-as a coroutine.

“'Tt'is regrettable to have to resolvé such isstes just for the implementation of a design and
programming lang\ngc, the state of the art in commonly available programming environments
did not lédve us any ‘other choice.

1.9.8 - Other tools

T e i N d

This article covers the language and the associated method rather than programming
tools. lowever two categories of tools are important in practice and should be mentioned bricfly
here.

The first tool is a class abstracter that produces a summarized version of any class. A
summarized version contains the inherit and feature clauses only; the latter is abstracted so
that only exported features are shown and, for each exported routine, the body is not shown:
only the header, precondition and postcondition and the comment immediately following the
header, if any, are rcproduced. For example, the abstracted version of function indez_of in lists
(scction 2.3 below) is:

indez_of (v: T} &: INTEGER) INTEGER is

-- Index of the -i-th element of value v
- {0 if fewer than i)

require 1 > 0

deferred

ensure
-- (Result > 0 and then Result is the index
- of the t-th element of value v in the list)
-- or else (Result = 0 and there are fewer
-~ than ¢ elements of value v in the list)

end

The form shown is that produced byvour current Eiffel class abstracter, which generates
deferred routine bodics, so that the result of running the abstracter on a class is still a
syntactlmlly correct class.

The other necessary tool on which we shall not elaborate any further, is a database
system for keeping track of available classes and their I'eaturcq and cnabling Eiffel programmers
to ﬁnd Lhe classcs adaptcd to thcxr ncc‘ds
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PART 2: BASIC EIFFEL LIBRARY

2.1 - OVERVIEW

The classes given below are extracted from the basic library of classes used in our
developments. They have been somewhat simplified and some features have been omitted in the
interest of space (and of providing the reader with some.incentive to try his own hand at Fiffel
programming), but they remain faithful to the original, which serves as a basis for such
applications  as  structural (language-based) cditing and multiple-windowing display
management. '

Missing elements that the reader is invited to complete are marked ****** A

These classes iliustrate the bottom-up, modular, rcusable programming style (ef. [21],
chapter 6) encouraged by Eiffcl.

As the examples show, the details of data structure implementation may be rather
difficult, in particular when pointer manipulations are involved. This, we think, is an important
argument for taking care of these details in reusable and flexible general-purpose modules such
as the ones below, which can be thoroughly checked and optimized once and for all; the
cheeking and optimization are better done here than in application programs. Such professional
implementations of data abstractions may be used as the basis for “data structure
programming”, frec from tricky pointer manipulations, as advocated by Mills [22].

Anybody who has written software involving non-trivial data structures in languages such
as Pascal or C, and found himsell constantly fighting to avoid being swallowed in thick pointer
soup, will appreciate the availability of a library of extendible, reusable implementations for the
most common data structurcs and associated operations.

The experience of writing this library has taught us that bottom-up design, il highly
promising from the reusability standpoint, is also very difficult. Coming up with correet and
cfficicnt tools that will satislfy many different neceds is an exacting iterative process; we make no
pretense that the classes below are in their final state. Much work remains to be done to
capture the core of software engincering applications. The challenge — factoring out into truly
reusable software components as much as possible of the tedious and repetitive side of
programming — is well worth the effort.

2.2 - ARRAYS

" Arrays in Eiffel are not a primitive notion but a generic class of which an implementation
is given below. The main reason for including it here is that it is used by class FIXED_LIST
below, one of the implementations of lists.

" An array may be allocated with arbitrary bounds through the procedure Create: to access
or modify array clements, one uses the leatures entry and enter of the class ARRAY.

The implcmentation shown here relies on primitives for dynamic memory management:
allocate for dynamically allocating memory areas, dynget to access data from such arcas, dynput
to change these data. We have assumed that these primitives have been written in C, an casy
task indeed on Unix.

Similar classes exist for two- and three-dimensional arrays. Other implementations are
also possible.
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class ARRAY [T) export

lower, size, upper, -- (rcad-only)
entry, enter
-- The clements of an array are called “entries”
feature :

lower: INTEGER ; upper:l INTEGER ;
size: INTEGER ;
area: INTEGER ; -- Sceret

o
STyt .

Create (min: INTEGER, maz: INTEGER) is
-- Allocate current array with bounds min and maz;
-- no physical allocation if min > maz.
external .
allocate (length: INTEGER) : INTEGER name "allocate” language "C";
-- Allocate should allocate an arca for length integers
-- and return its address (0 if impossible)

do

lower := min; upper ;= maz;

size = maz — min + 1 ;

if maz >= min then area := allocate (size) end
end ; -- allocate

entry (1i: INTEGER): T is
-- Entry of index ¢
require
lower <= 1; 1 <= upper; area > (0 .
external .
dynget (address: INTEGER ; indez: INTEGER) : T name "dynget’ language "C" ;
-- Value of indez-th clement in the arca of address address
do
Result := dynget (area, i)
end ; -- entry

enter (i: INTEGER, t: T) is
-~ Assign the value of ¢t to the entry of index ¢
require '
lower <= 1; 1t <= upper; area > 0

external
dynput (address: INTEGER ; indez: INTEGER ; val: T) name "dynput’ language "C' ;

-- Replace with val the value of the indez-th ‘

-- ¢lement in the arca of address address

dynput (area, 1, t)
end ; -- enter

keep
stze = upper — lower + 1
-- area > 0 if and only if the array has been allocated

end -- class ARRAY [T
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2.3 - GENERAL LISTS

This scction and those that follow introduce classes corresponding to lists of various
brands:

© LIST T
17 . (General notion of list)
FIXED_LIST {T)

(lists represented by arrays; no insertion or deletion)

" LINKED. _LIST [T}
(lists in linked represcntation; insertions and deletions are possible)

TWO_WAY_LIST [T

(like LINKED_LIST but providing more efficient primitives for
right-to-left traversal thanks to a doubly linked representation).

These classes have undergone a fairly substantial change from a previous version of the
library and the present paper. A description of what happened may be of interest to readers
concerned with the methodological principles of object-based software specification and design
and, more specifically, with finding guidelines for the specification of systems.

Our initial approach was a strictly “static” one, in which we viewed lists as sequentially
ordered repositorics of information (of T type). Features available on a list [ were of the form
l.get_value_by_indez (i), (valuc of the ©-th element of 1), l.get_indez_by_value (v, j) (index of the
j-th clement of valuc v), cte.; and, for lists in linked representation, linsert_by_position (v, i)
(insert value v at position ©), Ldelete_by_position (1) (delete i-th element), ete.

As we started actually using the library, however, we were confronted with a disquicting
increase in the number of primitives. For example, it sometimes happens that onec wants to
insert, an element after the j-th element of a given value. We couid in principle use
get_indez_by_value followed by <irsert_by_position, but both features cntail a sequential
traversal of the list, which is unacceptable in practice since the first routine internally finds the
adequate inserting position.

We were thus led little by little to add features such as insert_by_value, delete_by_value,
_ete. But even that did not end our predicament. It turned out that in practical uses of list
there arc occasions in which clients need to keep a handle on a list clement, so as to usc it later
without having to traverse the list again. [t was not clear how to specify, let alone implement
such a feature at the LIST level. In lact, the handle does not even have the same type in all
cases: for a list represented as drrny, it should be an integer, the index; in linked representation,
the only usclul handle is a reference to a LINKABLE element. There is no way of lactoring out
these cases into a deferred procedure at the LIST level.

To implement the handle concept in the LINKED_LIST ecase, it scemed necessary to
return to clients the supposedly secret references to “linkable” elements. So we compromised by
having some functions return LINKABLE entities; this was still relatively safe from the
information hiding viewpoint since elass LINKABLE had all its features protected (in a fashion
somewhat similar to an Ada private type). But this decision led to yet another increase in the
number of leatures: get mdez_by_linkable, get_linkable_by_value, and so on.

The prospeet of getting a reasonably universal yet concise (‘noug,h implementation of lists
started to fade away as new features came creeping in.

Fortunately we realized our mistake, which was to treat lists as passive objects. As others
would perhaps have known right away, a list is better modelled as an abstract machine whose
instantancous state includes not only the sequence of values constituting the list, but also the
indicalion of a currently active position or “cursor” (see figure 5).
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1 2 position nb_elements
value
active .
offleft offright
cursor
. back forth. .

Figure 5: A list as machine

With this approach, the primitives becomes much simpler:
e [.value is the value of the currently active element of list I;
e l.position is the index of this element (that is to say, the cursor position);
e [.forth moves the cursor to the next position;
e l.go (¢) moves the cursor to the i-th position;
e l.search (v, 7) moves the cursor to the j-th occurrence of v;
e the cursor may move at most one position off the leftmost or rightmost elements of the
list;
® to save a position and retrieve it later (in a last-in, first-out fashion), onc will use Lmark

and l.retrieve.

And so on. For a linked list, featurc active, of type LINKABLE [T], provides access to the
active element (sce scction 2.5); this feature does not transpose to other representations (such as
by arrays), but this poses no problem since the feature is now, as it should be, a secret one. As
an added benefit of the new approach, many features that initially seemed representation-
specific may now be lifted (sometimes in deferred form) to the generic class LIST.

Apart from the author’s personal shortcomings, this experience scems to lead to two
conclusions, at the borderline between specification and design.

The first conclusion is the fact, mentioned above, that bottom-up construction of rcusable
softwarc is a dillicult, itcrative process.

The second remark is that although the abstract data type approach may scem to imply a
highly static and functional specification style, it should not preclude looking at object classes in
an opcrational way, emphasizing the notion of state and the functions that act on the state.
Some specification fanguages (such as LM) enforce a similar method by distinguishing between
“access” and ‘“‘transform™ functions. Note that this does not entail any departure from a
classical mathematical model based on functions. ’

With this background, we now introduce the LIST class.
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-- General lists, without committment as to the representation

class LIST [T) export
nb_elements, empty,
position, offright, offleft, isfirst, islast,
value, i_th, first, last,
change_value, change_i_th, swap,
start, finish, forth, back, go, search,
mark, retrieve,
indez_of, present,
duplicate

feature
-- Numbecr of list elements

nb_elements: INTEGER,

empty: BOOLEAN is
-- Is the list empty?

do

Result := (nb_elements = 0)
ensure

Result = (nb_elements = 0)
end ; -- empty

backup: like Current -- (SECRET: for marking and retrieving) ;
no_change_since_mark: BOOLEAN -- (SECRET: for marking and retricving)

-- Inquiring about the current position
position: INTEGER,

offright: BOOLEAN is

-- Is active position off right limit?
do Co

Result := empty or (position = nb_elements+1)
end; -- offright

offleft: BOOLEAN is
-- Is active position off left limit?
do : -
Result == empty or (position = 0)
-- This formulation is for symmetry with offright: empty implics (position = 0),
-- 50 the second condition is equivalent to the entire “or” expression

end; -- offleft
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1sfirst: BOOLEAN is
-- Is active position first in the list?
-- (If so, the list is not empty)
do
Result ;= position = 1
ensure :
Result = (position = 1);
) not Result or else not empty
end; -- isfirst - - o

tslast: BOOLEAN is
-- Is active position last in the list?
-- (If so, the list is not empty)
do
Result ;= not empty and (position = nb_elements)
ensure
Result = (not empty and (position = nb_elements));
not Result or not empty
end; -- islast

-- Complete symmetry between isfirst and islast would be achieved
-- by writing the result of isfirst as
-- not empty and (position = nb_elements);
-- however the first operand is redundant since it is implied by the first
-- (see second clause of the class invariant).

-- Accessing list values

value: T is . L
-- Value of active clement
require

not offleft; not offright -- These conditions imply not empty
deferred

end; -- value

i_th (i: INTEGER): T is
-- Value of «th element of the list
-- {Applicable only if ¢is a valid position for the list)

require
. i >=1; { <= nb_elements; -- These conditions imply not empty
do
mark;
go (1); Result = wvalue;
retrieve -
ensure

-- Result = value of ~th element of the list
end; --1_th
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first: Tis
-- Value of first element in the list
require
not empty
do
Result == 1_th (1)
end; ---first
last: Tis
-- Value of last element in the list
require
not empty
do

Result := i_th (nb_elements)
end; -- last : :

-- Changing list values

change_value (v: T) is
-- Assign v to value of current element
require
not offleft; not offright -- These conditions imply not empty
deferred
ensure
value = v
end; -- change_value

change_i_th (i: INTEGER, v: T) is
-- Assign v to value of #th element
-- (Applicable only if 7is a valid position for the list)
require
t >=|; { <= nb_elements; -- These conditions imply not empty
¥¥#xxx Left to the reader (see function i_th above and procedure swap below) ******
ensure
i_th(f)=v
end; -- change_i_th
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swap {t: INTEGER) is

-- Exchange value of active clement with value of clement at position 1.

- .= Active position is not changed.

- Not applicable if offlcft, offright, or position ¢ is not valid for the list.

require
not offieft; not offright, 1 >=1; 1 <= nb_elements
-- These conditions imply not empty
local
thisvalue: T, thatvalue: T
do
thisvalue := value; mark;
go (1); thatvalue := value; change_value (thisvalue);
retrieve;
change_value (thatvalue)
end; -- swap

-- Moving along the list

start is
-- Make first element active (no effect if list is empty)
deferred
ensure
(empty and Nochange) or else tsfirst
end; -- start

Jorth is ‘
-- Make next position to the right active
-- (Applicable only if not offright).
require
not offright -- This implies not empty
deferred
ensure
position = old position + 1
end; -- forth '

§2.3
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go (¢: INTEGER) is
-- Make #th position active
-- (Applicable only if 0 <= i <= nb_elements+1)
require '
1 >=0; i <= nb_elements+1
do .
if {=0 then-- . )
go_offleft
else
from
if position > ¢ then start end
keep
position > 0 ; position <= {
decrease ¢ — position until position = 1 loop
check not offright end; ’
forth
end -- loop
end -- if
ensure
position = ¢
end; -- go

back is

-- Make next position to the left active
-- (Applicable only if not offleft).
-- Warning: this version of back may be overly costly in implementations
-- that only provide for efficient left-to-right traversal

require
not offleft

do
check position >= 1 end; go (posttion — i)

end; -- back

finish is
-- Make last element active (no effect if list is emply)
do '
go (nb_elements)
ensure
(empty and Nochange) or else islast
end; -- finish

go_offleft is
-- Put the list in position offlcft
(Secret procedure; use go (0) in clients)
deferred
ensure
offieft
end; -- go_offleft

= 37
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search (v: T; 1: INTEGER) is
-- Go to t-th element of value vin the list if there are at least ¢ such elements;
-- clse go offright. o '

require
t>90
local
k: INTEGER
do
from
start; k=1
keep
position >= (;
- k — 1 elements to the left of active position have a value equal to v
decrease
nb_elements — position
until
offright or else (value = v and k = 1)
loop
if value = v then & := k+1 end;
Sforth
end -- [oop
ensure

offright or else value = v
-- offright or else active element is the i~th element of value v
end; -- search

-- Marking and retrieving list positions.
-- More than one position may be saved successively;
-- retrieval will be done in a last-in, first-out order.

mark is
-- Save current position
do
backup.Clone (Current);
end; -- mark

retrieve is -
- Make currently saved position active again
require
not backup.Void, no_change_since_mark = |true
do
Exztract (backup);
end; -- retrieve
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-- Finding information about occurrences of given elements.

indez_of (v: T, 1: INTEGER): INTEGER is
-- Index of the +-th element of value v
-- (0 if fewer than 1)

require

>0 T
do

mark;

search (v, 1);
if not offright then Result := position end;
retrieve .
ensure : '
-~ (Result > 0 and then Result is the index of the i~th element of value v in the list)
-- or else (Result = 0 and there are fewer than i elements of value vin the list)
end; -- indez_of

present (v: T): BOOLEAN is
-- Does v appear in the list?
do
Result := indez_of (v, 1} > 0
ensure
Result = (v appears in the list)
end; -- present

-- Duplicating a list

duplicate: like Current is
-- Complete clone of the list
deferred
end: -- duplicate

-- Invariant for class LIST

keep
position >= 0; position <= nb_elements + 1;
not empty or else (position = 0);
empty = (offleft and offright);
offright = (empty-or (position = nb_elements + 1));
offieft. = (empty or (position = 0)):
-~ Note that empty implics {position = 0), so that also:
offleft = {position = 0);

tsfirst = (position = 1);

islast = (not empty and (position = nb_elements))

not empty or else (not ¢sfirst and not islast);
end -- class LIST

)
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2.4 - LISTS IMPLEMENTED BY ARRAYS

Class FIXED_LIST [T] provides an array implementation of lists; only limited operations
are available (no insertions or deletions). The array is created with fixed bounds, given as
paramecters to the version of procedure Create redefined for this class.

-- Lists with a fixed number of elements

class FIXED_LIST [T) export

¥xk*x* Same exported features as in class LIST *¥****

inherit
ARRAY [T
rename Create as array_Create;

LIST [T|

redefine i_th, change_i_th, swap;
feature

Create (n: INTEGER) ¢s
-- Allocate fixed list with n elements

do
array_Create (1, n) ;
check n = size end ;
nb_elements .= n;

end ; -- Create

value: T is

-- Value of active element

do

Result := entry (position)
end; -- value

change_value (v: T) is
-- Assign v to value of current element
do
enter (position, v).
ensure
, value = v; entry (position) = v
end; -- change_value

i_th (i: INTEGER): T is
-- Vaiue of #-th element of the list
-- (Applicable only if 7is a valid position for the list)
require .
i>=1;i<= nb_elements; -- These conditions imply not empty
do
Result .= entry (1)
ensure

-- Result = value of i-th element of the ljst
end; --1_th
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change_i_th (i: INTEGER, v: T) is
- Assign v to value of +th element
-- (Applicable only if {is a valid position for the list)

require .
1 >=1; 1 <= nb_elements; -- These conditions imply not empty
do . s C i . TN
' enter (i, v)
ensure Loy

i_th(t)=v
end; -- change_1_th

swap (i: INTEGER) is .
-- Exchange value of active element with value of element at position 1.
-- Active position is not changed. .
-- Not applicable if offieft, offright, or position ¢ is not valid for the list.

require’
not offleft; not offright; i >=1; 1 <= nb_elements
-- These conditions imply not empty
local
thisvalue: T, thatvalue: T
do
thisvalue := entry (posttion) ; enter (position, entry (1)); enter (1, thisvalue)
end; -- swap

start is
-- Make first element active (no effect if list is empty)
do position := min (nb_elements, 1) end; -- start

forth is
-- Make next position to the right active
-- (Applicable only if not offright).
'require -
not offright

do
position = position + 1
ensure
 position = old position + 1
end; -- forth

go (i: INTEGER) is _
-- Make ith position active ,
== (Applicable only if 0 <= i <= nb_elements+1)

require .

t>=0; { <= nb_elements+|
do

position = §
ensure
__ position = {
end; -- go

F 41
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go_offieft is
-- Put the list in position offleft
(Secret procedurc; use go (0) in clients)
do
posttion ;= 0
ensure
offleft .
end; -- go_offieft

duplicate: like Current is
-- Complete clone of the list
- local = .-
new: like Current
do '
new.Create (nb_elements);
-- new.Clone would be inappropriate here

mark;
from

start; new.start
keep

-- position — 1 values have been copied
decrease

nb_elements — position
until

offright -- thus new.offright too
loop

new.change_value (value);
forth; new.forth
end; -- loop
retrieve; new.go (position)
end; -- duplicate
keep
-- The class invariant adds nothing to the invariant of class LIST
end -- ¢lass FIXED_LIST

2.5 - LINKED LIST ELEMENTS

This scction introduces classes LINKABLE {T| and BI_LINKABLE [T| corresponding to
“linkable” list components of two different brands: right-linked only and doubly-linked. Objects
of such types have .two fields: a value and a ‘“right” pointer to another similar object. Bi-
linkable objects also have a “left” field. Such component structures are designed for use in
connection with classes representing linked lists: LINKED_LIST [T) and TWO_WAY_LIST [T).
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-- Linked list elements
-- (for use in connection with LINKED_LIST [T) and TWO_WAY_LIST ()
class LINKABLE [T) :

export

value, change_linkable_value {LINKED_LIST},
right, change_right { LINKED_ LIST}, put_between {LINKED_LIST}

feature :
Create (t: T) is

-- Initialize with value ¢

do
"value =t
end ; -- Create
value: T ;

change_linkable_value (¢: T) is
-- Assign value of ¢ to current list element
do
value ;= ¢t
end ; -- change_linkable_value

right: like Current ;

change_right (other: like Current) is
-- Put other to the right of the Current element
do
right ;= other
end ; -- change_right

put_between (before: like Current; after: like Current) is
-- Insert current element between before and after (if it makes sensc)
-- This procedure is used in LINKED_LIST every time an insertion is performed.
do -
if not before. Void then before.change_right (Current) end;
change_right (after);
= end; -- put_between
end ; -- class LINKABLE [T}

class BI_LINKABLE (T
 -“Same as LINKABLE [T}, plus “left” ficld
expart '

value, change_bilinkable_value { TWO_WA Y_LIST),
right, change_right {BI_LINKABLE, TWO_WAY_LIST},
left, change_left {BI_LINKABLE, TWO_WA Y_LIST)}

inherit

LINKABLE [T}
rename change_linkable_value as change_bz'linlcable_ualue,
-- Renaming is to ensure consistent terminology;
-- the procedure does not need redefinition.

redefine right, change_right
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left: like Current ;
right: like Current ;

change_right {other: like Current) is
-- Put other to the right of current element

do :

right := other; o

if not other.Void then

other.change_left (Current)

end

end -- change_right ;

change_left (other: like Current) is
-- Put other to the left of the current element
do ’
left := other
if not other.Void
-- Avoid infinite recursion with change_right !
and then other.right /= Current
then
other.change_right (Current)
end
end -- change_left
keep
right. Void or else right.left = Current ;
left. Void or else left.right = Current
end ; -- class BI_LINKABLE [T)

2.6 - LINKED LISTS

Class LINKED_LIST [T] introduces singly linked lists. All operations of insertion and
deletion are possible; however, since the lists are chained one way only, operations such as back,
implying a complete traversal, will be incfficient. They are provided, however, for completeness.

The representation keeps references not only to the active element but also to its left and
right ncighbors {(active, left, right). This allows, for example, cllicient insertions both just before
and just after the active element.

TR

A note to the courageous reader: an excellent test of your understanding of the present set
of basic classes and the general principles of Eiffel design is to write two procedures patterned
after insert_right and insert_left below, namely

;ne';'ge_after (l like xC'urrent)
merge_before (I: like Current)

which inscrt a linked list [ to the right and left (réspectively) of the currently active position.
The precise conditions (require...) under which they are a.i)bli(‘ablo should be spelied out. The
guiding criteria should be simplicity (no auxiliary procedure is necessary), preservation of the
class invariant, perfect symmetry between left and right, and elegance. It will be even better if
the procedures also apply to two-way lists (next section) without redefinition.
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-- One-way linked lists
class LINKED_LIST [T] export

-- Featurcs from LIST:
nb_elements, empty, :
position, offright, offleft, isfirst, islast,
value, t_th, first, last,’
change_value, change_i_th, swap,
start, finish, forth, back, go, search,
mark, retrieve,
tndez_of, present,
duplicate,

- Plus new features permitted by linked list representation:
tnsert_right, insert_left,
delete, delete_right, delete_left,
delete_all_occurrences, wipe_out

inherit
LIST [T}
redefine first
feature

first: T, Value of first clement (redefined here as attribute)

-- Seceret attributes specific to linked list representation
first_element: LINKABLE [T);
active: like first_element,
previous: like first_element;
nezt: like first_element,

-- Linked list implementations of features deferred in LIST

o yalue: T is
-- Value of active element
require
not offleft; not offright -- These conditions imply not empty
do

Result := active.value
end; -- value

change_value (v: T) is
-- Assign v to value of current element
require
not offleft; not offright -- These conditions imply not empty
do :
active.change_value (v)
‘ensure N
value = v
‘end; -- change_value
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start is .
-- Make first element active (no eflect if list is empty)
do
if not empty then
previous.Forget; active := firsi_element,
check not active. Void end;
next = active.right; position =1
, end SO
ensure e e

empty or else tsfirst
end; -- start

forth is
: -- Make next position to the right active
-- (Applicable only if not offright).
require
not offright
do
if offleft then
check not empty end; start
else
check not active. Void end;
previous = dclive; active = nezt,
if not active. Void then nert := active.right end;
position := position + |
end
ensure
position = old position + 1
end; -- forth

go_offieft is
-- Put the list in position offleft \
(Sceret procedure; usc go (0) in clients)

do
active Forget, previous.Forget; nezt := first_element,
position =0

ensure

offleft
end; -- go_offleft

duplicale: like Current is

-- Complete clone of the tist
do

¥Rxxxx Left to the reader (go through the list, duplicating every list clement) *¥¥*#*

. rxxxxx (See the corresponding procedure for FIXED. LIST) **++k*
end; -- duplicate ’
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-- Delction and insertion procedures specific to linked lists
inseri_right (v: T) is
-- Insert an element of value v to the right of active position if there is one;
-- Active position is unchanged.
-- Applicable only if list is empty or not offright
require '
empty or else not offright "~
local
T new: like first_element
do 7 o
new.Create (v); insert_linkable_right (new)
ensure
nb_elements = old nb_elements + 1;
active = old active; position = old position;
not nezt.Void, nezt.value = v
end; -- insert_right

insert_left (v: T) is
-- Insert an element of value v to the left of active position if there is one.
-- Active position is unchanged.
-- Applicable only if list is empty or not offleft
require
empty or else not offleft
local
new: like first_element
do
new.Create (v); insert_linkable_left (new)
ensure
nb_elements = old nb_elements + 1;
active = old active; position = old position + L;
not nezt. Void;, nezt.value = v
end; -- tnsert_left
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delete is . :
-- Delete active element and make its right neighbor, if any, active
- (List becomes offright if no right neighbor) '

— Not applicable if offleflt or offright

require - J v

not offleft; not offright

do
active ;= nezt;
if not previous. Void then previous.change_right (active) end;
if not active. Void then nezt := active.right end;
-- else nezt is void already
nb_elements ;= nb_elements — 1;
no_change_since_mark := false
check .
position — 1 >= 0; position — 1 <= nb_elements;
empty or else position — 1 > 0 or else not active. Void,
end;
update_after_deletion (previous, active, position — 1);
ensure
nb_elements ;= nb_elements — 1;
empty or else (posttion = old position)
end; -- delete

delete_right is

-- Delcte element immediately to the right of active position; active position is unchanged.

-- (No effect if active position is last in list).
-- Not applicable if offright

require
not offright

do
¥X¥x%%* Left to the reader (imitate delete) ¥*****
ensure
(old islast and Nochange) or else (nb_elements := nb_elements — 1);
active = old active;
position = old position
end; -- delete_right

g A
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delete_left is

-- Delete element immediately to the left of active position;

-- aclive position is unchanged (but its index is decremented by 1).

-- (No efleet if active position is first in list)

. == Not applicable if offleft

== Inefficient, for one:way lists: included for completencss
require

not offieft
do

¥x*¥2%% Left to the reader (use back and delete) ******
ensure

active = old active;

(old isfirst and Nochange) or else

((nb_elements := nb_elements — 1) and (position = old position — 1))
end; -- delete_left

delete_all_occurrences (v: T) is

--Dclete all occurrences of v from the list
do

from start until offright loop

if value = v then delete else forth end
end ;

no_change_since_mirk = false
end; -- delete_all_occurrences

wipe_outl is
-- Empty the list

do
nb_elements := 0; position = 0;
active.Forget;, first_element.Forget; previous.Forget; nezt.Forget;
no_change_stnce_mark := false

ensure

empty
end -- wipe_out
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-- Sceret routines for implementing inscrtion and deletion

msert linkable_right (new: like first_ element) is
-- Insert new to the right of active position if there is onc;
-- Active position is unchanged.
-- Seeret procedure.
-~ Applicable only if list is cmpty or not olTrwht
require
not new. Void; empty or else not offright

do
new.put_between (active, nezt); nezt ;= new;
nb_elements := nb_elements + |;
no_change_since_mark .= false;
check )

position + | >=I; position + 1| <= nb_elements

end;
update_after_insertion (new, position + 1)

ensure

nb_elements = old nb_elements + 1; position = old position
previous = new
end; -- insert_linkable_right

insert_linkable_left (new: like first_element) is

-- Insert new to the left of active position if there is one;
-- Active position is unchanged (but its index is increased by one).
-- Seceret procedure.
-- Applicable only if list is empty or not olffleft

require
not new. Void, empty or else not offleft

do
if empty then position ;= 1 end;
new.put_between (previous, active); previous ;= new;
nb_elements ;= nb_elements + 1; position ;= position + 1;
no_change_since_mark := false
check

position — | >= 1; position — | <= nb_elements

end;
update_after_insertion (new, position — 1);

ensure
nb_elements = old nb_elements + 1; position = old position + 1;
previous = new

end; -- insert_linkable_left

update_after_tnsertion (new: like first_element; indez: INTEGER) is

-- Check conscquences of insertion of element new at position indez:

-- docs it become the first element?
require

not new. Void;, tndez >= 1; indez <= nb_elements
do

. if indez = 1 then

' first_element := new, first ;== new.value

end
end; -- update_after_insertion

§2.8
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update_after_deletion (one: like first_element; other: like first_element; indez: INTEGER) is
-- Check consequences of deletion of element between one and other,
-- where indez is the position of one.
-- Update first_element if necessary.
require :
indez >=0; indez <= nb_elements;
empty or else indez > 0 or else not other.Void;
+-- ...z the element deleted was between one and other
do .. S . :
if empty then
first_element.Forget, position := 0
elsif indez = 0 then
check not other.Void end; -- Sce precondition
first_element := other; first ;= other.value
-- else do nothing spectal
end
end; -- update_after_deletion

-- Invariant for class LINKED_LIST

keep
-- The invariant of class LIST plus the following:
empty = firsi_element. Void ;
empty or else first_element.value = first ;
active. Void = (offleft or offright);
previous. Void = (offleft or isfirst);
next. Void = (offleft or islast);

- previous. Void or else (previous.right = active);
active. Void or else (active.right = nezt);
, -- (offieft or offright) or else active is the position-th clement
end ; -- class LINKED_LIST

2.7 - TWO-WAY LISTS

Class TWO_WAY_LIST (1] introduces doubly linked lists. Features back and forth now
have the same cfficiency; in fact the whole class is alinost cntirely symmetric with respect to
“left” and “right”.

-- Two-way linked lists
class TWO_WAY_LIST [T)] export

¥X¥X¥% Same export clausc as in LINKED_LIST ******
-- Some features, however, are redefined
inherit =~ . S S - -
LINKED_LIST [T} - R
rename go as reach_from_left, wipe_out as simple_wipe_out,
redefine

first_element, last, back, go, wipe_out,
_update_after_deletion, update_after_insertion
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feature
first_element: BI_LINKABLE [T); '-- Redefined from LINKED_LIST

-- For two-way lists, we also keep a reference
"-- to the last element and its value:

last: T:
back is
-- Make next position to the left active
-- (Applicable only if not offleft).
require
not offleft
do
if offright then
check not empty end; finish
else
check not active. Void end;
next := active; active = previous;
if not active. Void then previous := active.left end;
posttion := position - |
end
ensure

position = old position - |
end; -- back
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go (i: INTEGER) is
-- Make #th position active
-- (Applicable only if 0 <= { <= nb_elements+1)
require
t>=0; { <= nb_elements+1

do N .
if 1 = nb_elements+1 then
-- Go offright
) active.Forget; nezt.Forget; previous = last_element;
position := nb_elements+1
elsif 1 <= position/2 or (i >= position and § <= (position+nb_elements)/2) then
reach_from_left (1) ' :
else '
-- Reach from the right
from
if position < i then
-- Finish (revised for two-way_lists)
active := last_element; previous .= active.left; next.Forget
end :
keep
position <= nb_elements ; position >= i
decrease position — i until position = ¢ loop
check not offieft end;
back
end -- loop
end -- if
ensure
position = ¢
end; -- go

update_after_insertion (new: like first_element; indez: INTEGER) is
-- Check consequences of insertion of clement new at position i{ndez:
-- does it become the first element?
require '
not new. Void
do
XX Redefinition loft to the reader **¥**+*
¥¥#EE® Hints: make the routine symmetric with respeet to right and left; **¥*x*
¥IFXEX last_element and last may need to be updated as well as first_element and first ¥¥+#**
end; -- update_after_insertion
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update_after_deletion (one: like first_element; other: like first_element; indez: INTEGER) is
-- Check consequences of deletion of element between one and other,
=- where tndez is the position of one.
-- Update first_element if necessary.

require

tndez >= (); indez <= nb_elements;
empty or else indez > 0 or else not other. Void;
-- the element deleted was between one and other

do o L o
¥#3%+% Redefinition left to the reader ******
**+**2¥ Hints: see update_after_insertion ******
end = :

end; -- update_after_deletion

wipe_out is
-- Empty the list
do
simple_wipe_out; last_element.Forget
ensure
empty
end -- wipe_out

-- Invariant for class TWO_WAY_LIST
keep
-- The invariant of class LINKED_LIST, plus the following:
empty = last_element.Void ;
empty or else last_element.value = last ;
active. Void or else (active.left = previous);
nezt.Void or else (nezt.left = active);
-- (offleft or offright) or else active is the position-th clement
end ; -- class TWO_WAY_LIST

2.8 - TREES AND THEIR NODES

The following class is an implementation of trees, using linked representation. Note that
no distinction is made between trees and tree nodes.

As explained in section 1.5.1, tree nodes are implemented as a combination of lists and list
clements. The list features make it possible to obtain the children of a node; the list element
features make it possible to access the value associated with each node and its right sibling (the -
class may be redefined using two-way lists and “bi-linkable” clements to allow access to the left
sibling as well). The added feature parent makes it possible to access the parent of each node.

Since each node of the tree is — among other things — a list in the sense defined above, so
it keeps a record of which of its children is the “active” one. To change the active child of a
node, procedures inherited from LIST (through LINKED_LIST) are available: back, forth, go,

cte.
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class TREE [T) export ;
position, offright, oﬁleft zsﬁrst zslast start, finish, forth back, go, mark, retrieve,
ts_leaf, arity, '
node_value, child_value, change_node_value, change_child_value,
child, change_child, right_sibling, first_child,
insert_child_right, insert_child_left,
delete_child; delete.: chtld_left delete Cht'd rtght
parent t9_root’ :

inherit
LINKABLE [T)
rename
right as sibling,
value as node_value, change_value as change_node _value,
pul_between as linkable_put_between;

redefine put_between,
LINKED_LIST [T\

rename
empty as 1s_leaf, nb_elements as arity,
value as chiid_value, change_value as change_child_value,
active as child, first_element as first_child,
insert_linkable_right as insert_child_right, insert_linkable_left as insert_ child_left,
delete as delete_child, delete_left as delete_child_left, delete _right as delete_child_right,

redefine first_child
feature
first_child: like Current,

parent: like Current ;

attach_to_parent (n: like Current) is
-- Make n the parent of current node.
. -- Sccret procedure.
do
parent ;= n
ensure
. parent=n
end ; -- attach_to_parent
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change_child (n: like Current) is
-- Replace by n the active child

‘require
not offieft; not offright; -- Thus not child. Void
not n.Void

do

~insert_child right (n); « -~ -~
check
n.parent = Current
-- Because of the redefinition of put_between

end;
delete_child
check

child=n )

-- Because of the convention for the new active element after delete

end

- A dircct implementation (not using inscrt and delete) is also possible

ensure

child = n;

n.perent = Current
end ; -- change_child

ts_rool: BOOLEAN is
-- Is current node a root?
do
Result := parent.Void
end; -- is_root

put_between (before: like Current; after: like Current) is
-- Insert current clement between before and after (if it makes sensc)
-- Redefined from class LINKED_LIST
-- to ensure that Current will have the same parent as its new siblings.
require
(before.Void or after. Void) or else (before.parent = after.parent)
do :
linkable_put_between,;
if not before.Void then attach_to_parent (before.parent) end;
if not after.Void then attach_to_parent (after.parent) end;
end; -- pul_between

keep

-- The invariants of the parent classes, plus the following;:

ts_rool = parent.Void;

sibling. Void or else sibling.parent = parent,

child. Void or else child.parent = Current,

previcus. Void or else previous.parent = Current;

nezt.Void or else nezt.parent = Current,

first_child. Void or else first_child.parent = Current;
end -- TREE [T]
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PART 3: CONCLUSION

We would like to emphasize that Eiffel is a small language (which is not the same as
“ecasy”); we feel that its sizc, to the extent that such a measure exists, is about equivalent to
that of Pascal, for much more power, flexibitity and safety.

The comparison is” not entirely fair, since the design  of Eiflel concentrated on
“programming-in-the-large” features and we are quite happy, at least in the current version of
the language, to rely on external C or Fortran routines (encapsulated in a few standardized
basic classes) for such relatively mundanc tasks as input and output. But in general paueity is
onc of the main propertics of the design, and the fanguage includes little redundancy and few, il
any, of the “bell and whistles” found in many languages.

Non-indispensable features have been avoided: for example, we do not sce any use for a
“repeat...until...” loop, for a “for” loop (except when programming an SIMD machine) or for
enumerated types (in a language that includes the notions of class and inheritance); arrays are
not part of the language proper but may be defined (sce seetion 2.2) as a basic class, relying on
external procedures for memory allocation.

Several efforts are being pursued in connection with the work deseribed in this article:

e The language and its translator (ETC) are being applied to the development of several
software products,

e The implementation is being refined and extended.
¢ The basic library sketched in this article is being expanded and its scope put to test.

e Work on specific Eiflel tools (bevond the translator and the associated configuration
management facilitics) has not yet begun, but the document constructor Cépage [19] will
have an Liflel version.

e A scparate paper (18] explores in more detail the relationship of inheritance to Ada-like
genericity; work on the formal specification of Eiffel, in particular the inheritance
mechanism, is also in progress.

e A formal specification method, M [20], relying on similar ideas at a more abstract level,
is being further investigated. :

Many (although not all) of the individual language traits present in Eiffel have appeared in
other languages. We belicve that the main contribution of Eiffel and the associated system is
that they provide a consistent combination of a range of features which, to our knowledge, had
never before been offered within a single language: object-oriented program modules based on
data abstraction, multiple and repeated inheritance, genericity, information hiding, fully static
typing, systematic use of assertions and invariants, separate compilation, dynamic allocation of
objects with automatic garbage collection, efficient compiled code, portability through the use of
a widely available intermediate target language, built-in automatic configuration management
—~“and, more generally, an overall concern to cater to the needs of serious software practitioners
in production environments.

We view Fiffel as a language for professional programmers: people who have come to
appreciate the difficultics involved in software design as well as the virtues of reusability,
modularity, data abstraction, genericity and assertion-guided programming; people who know
that an” appropriate design and programming language is a key ingredient in meeting these
challenging goals.
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