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One of the arguments for functional programming is better modular design. By analyzing publications 
advocating this approach, in particular through the example of a framework for financial contracts, we assess 
is strengths and weaknesses, and compare it with object-oriented design. The overall conclusion is that object-
oriented design, especially in a modern form supporting high-level routine objects or “agents”, subsumes the 
functional approach, retaining its benefits while providing higher-level abstractions more supportive of 
extension and reuse.

1  OVERVIEW
“Beauty”, as a slogan for a software architecture, is not strictly for the beholder to judge. Clear objective 
criteria exist [10]:
• Reliability — does the architecture help establish the correctness and robustness of the software?

• Extendibility — how easy is it to accommodate changes?

• Reusability — is the solution general, or, better yet, can we turn it into a component to be plugged 
in directly, off-the-shelf, into a new application?

The success of object technology has largely followed from the marked improvements it brings — if 
applied properly as a method, not just through the use of an object-oriented programming language — 
to the reliability, extendibility and reusability of the resulting programs.

The functional programming approach predates object-oriented thinking, going back to the Lisp 
language available for almost fifty years. To those fortunate enough to have learned it early, functional 
programming will always remain like the memory a first kiss: sweet, and the foretaste of even better 
experiences. Functional programming has made a comeback in recent years, with the introduction of 
new languages such as Scheme, Haskell, OCaml and F#, sophisticated type systems, and advanced 
language mechanisms such as monads. Functional programming even seems at times to be presented as 
an improvement over object-oriented techniques. The present discussion compares the two approaches, 
using the cited software architecture criteria. It finds that the relationship is the other way around: object-
oriented architecture, particularly if enriched with recent developments such as agents in Eiffel 
terminology (“closures” or “delegates” in other languages), subsumes functional programming, 
retaining its architectural advantages while correcting its deficiencies.

To qualify this finding, it is important to note both the study’s limitations and arguments to 
mitigate some of them. The limitations include:

• Few data points. The analysis is primarily based on two examples of functional design. This could 
cast doubts on the generality of the lessons drawn.

• Lack of detail. The source of the examples consists of an article [14] and a PowerPoint presentation 
[3] — referred to from now on as “the article” and “the presentation” —, complemented in section 
3 by ideas from a classic functional programming paper [7]. Uses of the presentation may miss some 
details and nuances that would be present in a more discursive document.

• Specific focus. We only consider the issue of modularity. The case for functional programming 
also relies on other criteria, such as the elegance of a declarative approach.

• Experimenter bias. The author of the present article is a long-time contributor to and exponent of 
object technology.

Preprint of chapter 13 (pages 315 
Beautiful Architecture, edited by 
Spinellis and Georgios Cousios, 
2009 (this is the reference to use for 

http://se.ethz.ch
http://www.eiffel.com


SOFTWARE ARCHITECTURE: OBJECT-ORIENTED VS FUNCTIONAL  §12
The following observations counterbalance some of this possible criticism:

• The functional examples come from industrial practice; specifically, a company whose business 
appears to rest on the application of functional programming techniques. The principal example 
— specifying sophisticated financial instruments — addresses complex problems faced by the 
financial industry, which current tools do not address well according to the presentation’s author, 
an expert in that industry. This suggests that it is representative of the state of the art. (The first 
example — specifying puddings — is academic, intended only as a pedagogical stepping stone.)

• One of the authors of the article (S. Peyton-Jones), also acknowledged in the presentation as co-
author of the underlying theoretical work, is the lead designer of the Haskell language and one of 
the most notable figures in functional programming, bringing considerable credibility. The paper 
used as subsidiary example in section 3 has been extremely influential and was written by another 
leading member of the functional programming community (J. Hughes).

• In spite of the reservations expressed below, the solutions described in these documents are 
elegant and clearly the result of considerable reflection.

• The examples do not exercise the notion of changeable state, which would favor an imperative 
object-oriented programming style.

We must also note that mechanisms such as agents, which provide essential ingredients of the full object-
oriented solution, were openly inspired by functional programming ideas. So the conclusion will not be 
a dismissal of the functional school’s contribution, simply the observation that the object-oriented style 
is more suited for defining the overall architecture of reliable, extendible and reusable software, while 
the building blocks may involve a combination of O-O and functional techniques.

Further observations about the following discussion:

• Object technology as used here takes the form of Eiffel. We have not attempted to analyze what 
remains if one removes mechanisms such as multiple inheritance (absent in Java and C#), 
genericity (absent in older versions of these languages), contracts (absent outside of Eifffel except 
in JML and Spec#), agent-style facilities (absent in Java); or if one adds mechanisms such as 
overloading and static functions, which threaten the power and simplicity of the O-O edifice.

• The discussion is about architecture and design. In spite of its name, functional programming is 
(like object technology) relevant to these tasks and not just to “programming” in the restricted 
sense of implementation. The Eiffel approach explicitly introduces a continuum from 
specification to design and implementation through the concept of seamless development. 
Implementation-oriented properties of either approach, while important in practice, will not be 
considered in any detail.

• Also relevant in practice are issues of expressiveness and notation. They are taken into account to 
the extent that they affect the key criteria of architecture and design. For the most part, however, 
the discussion considers semantics rather than syntax.

Two more preliminary notes. First, terminology: by default the term “contract” refers to financial 
contracts, relevant to the application domain of the article and presentation, and not to be confused with 
the software notion of Design by Contract (the idea [10] of including elements of specification such as 
preconditions, postconditions, invariants). In case of possible ambiguity the terms will be financial 
contracts and software contracts.
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Second, semi-apology: when the discussion moves to O-O territory in its second half, it includes 
more references to and repetitions from the author’s previous publications than discretion would command. 
The reason is that the wide spread of object technology has been accompanied by the loss of some of its 
more subtle but (in our opinion) critical principles, such as command-query separation (3.5); this makes 
some brief reminders necessary. For the full rationale behind these ideas, see the cited references.

2  THE FUNCTIONAL EXAMPLES

The overall goal of the article and presentation is to propose a convenient mechanism for describing and 
handling financial contracts, especially modern financial instruments that can be very complicated, as in 
this example from the presentation (in whose numerical values one can hear the nostalgic echo of a time 
when major currencies enjoyed a different relationship):

(Throughout this section, extracts in quotes are direct citations from the presentation or the article. 
Elements not in quotes are our interpretations and comments.)

As a pedagogical device to illustrate the issues, the presentation starts out with a toy example: 
puddings rather than contracts. From the precise description of a pudding, it should be possible to 
“compute the sugar content”, “estimate the time to make” the pudding, obtain “instructions to make it”. 
A “bad approach” would be to:

• “List all puddings (Trifle, lemon upside down pudding, Dutch apple cake, Christmas pudding)

• For each pudding, write down sugar content, time to make, instructions, etc.”

Although the presentation does not state why the approach is bad, we can easily surmise the reasons: as 
a collection of ad hoc descriptions, it has no reusability, since it does not take advantage of the property 
that different kinds of pudding may share the same basic parts; it has no extendibility, since any 
modification of a pudding part will require reworking all the puddings that rely on that part.

The pudding is a metaphor for the examples of real interest, contracts, but since it is easily 
understandable without specialized knowledge domain we continue with it. A “good approach” is to:

• “Define a small set of ‘pudding combinators’.

• Define all puddings in terms of these combinators. 

• Calculate sugar content from these combinators too.”

“Against the promise to pay USD 2.00 on December 27 (the price of the 
option), the holder has the right, on December 4, to choose between:

• Receiving USD 1.95 on December 29, or
• Having the right, on December 11, to choose between

- Receiving EUR 2.20 on December 28, or
- Having the right, on December 18, to choose between

- Receiving GBP 1.20 on December 30, or
- Paying immediately one more EUR and receiving EUR 3.20 

on December 29”
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The following tree, from the presentation, illustrates what the combinators may be:

(We share the reader’s alarm at the unappetizing nature of the examples, especially coming from a Paris-
based author. The sympathetic explanation is that the presentation was directed to a foreign audience of 
which it assumed, along with unfamiliarity with the metric system, barbaric culinary habits. The present 
discussion relies on the assumption that bad taste in desserts is not a sufficient predictor of bad taste in 
language and architecture paradigms.)

The non-leaf nodes of the tree represent combinators, applied to the subtrees. For example “Take” 
is a combinator that assumes two arguments, a pudding part (“Cream” on the left, “Oranges” on the right) 
and a quantity (“1 pint” and “6”); the result of the application, represented by the tree node, is a pudding 
part or a pudding made of the given quantity of the given part.

It is also possible to write out such a structure textually, using a mini- “domain-specific language” 
(DSL) “for describing puddings”:

(Boldface added for operators.) This uses an anonymous but typical — the proper term might be vanilla
— variant of functional programming notation, where function application is simply written as 
function args, for example plus a b for the application of plus to a and b, and parentheses serve only 
for grouping.

With this basis, it becomes a piece of cake to define an operation such as sugar content by case 
analysis on the combinators (similar to defining a mathematical function on recursively defined objects 
by using a definition that follows the same recursive structure):

“salad = on_top_of topping main_part” -- Changed from “OnTopOf” for consistency
“topping = whipped (take pint cream)
main_part = mixture apple_part orange_part
apple_part = chopped (take 3 apple)
orange_part = optional (take 6 oranges)”

“S (on_top_of p1 p2) = S (p1) + S (p2)
S (whipped p) = S (p)
S (take q i) = q  S(i)
etc.”
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Not clear (to us) from the “etc.” is how operators such as S deal with the optional combinator; there has 
to be some way of specifying whether a particular concoction has the optional part or not. This issue 
aside, the approach brings the benefits that the presentation claims for it:

• “When we define a new recipe, we can calculate its sugar content with no further work.

• Only if we add new combinators or new ingredients would we need to enhance S.”

The real goal is of course not pudding but contracts. Here the presentation contains a sketch of the 
approach but the article is more detailed. It relies on the same ideas, applied to a more interesting set of 
elements, combinators and operations. 

The elements are financial contracts, dates, observables (such as a certain exchange rate on a 
certain date). Examples of basic contracts include zero (can be acquired at any time, no rights, no 
obligations) and one (c) for a currency c (immediately pays the holder one unit of c).

Examples of combinators on contracts include: or, such that acquiring the contract (or c1 c2)
means acquiring either of c1 and c2, and expiring when both have expired; anytime, such that 
(anytime c) can be acquired at any time before the expiration of c, and expiring whenever c expires; 
truncate, such that (truncate t c) is like c except that it expires at the earlier of t and the expiry of t; and 
get, so that acquiring (get c) means acquiring c at its expiry date. The paper lists about a dozen such basic 
combinators on contracts, and others on observables and dates. They make it possible to define advanced 
financial instruments such as a “European option” in a simple way:

Operations include the expiry date of a contract and — the most important practical benefit expected 
from all this modeling effort — its value process, a time-indexed sequence of expected values. As with 
the sugar content of a pudding, the functions are defined by case analysis on the basic constructors. Here 
are the cases involving the preceding basic elements and combinators for the operation H, which denotes 
the expiry date or “horizon”

The rules yielding value processes follow a similar structure, although the right-hand sides are more 
sophisticated, involving financial and numerical computations.

3  ASSESSING THE MODULARITY OF FUNCTIONAL SOLUTIONS

The preceding presentation, while leaving aside many contributions of the presentation and especially 
the article, suffices as a basis for discussing architectural features of the functional approach and 
comparing them with the O-O view. We will freely alternate between the pudding example (which makes 
the ideas immediately understandable) and financial contracts (representative of real applications).

european t u = get (truncate t (or u zero))

H (zero) =  -- Where is a special value with the expected properties
H (or c1 c2) = max (H (c1), H (c2)
H (anytime c) = H (c)
H (truncate t c) = min (t, H (c)
H (get c) = H (c)
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3.1 Extendibility criteria

As pointed out by the presentation, the immediate architectural benefit is that it is easy to add a new 
combinator: “When we define a new recipe, we can calculate its sugar content with no further work”. 
This property, however, is hardly a consequence of using a functional programming approach. The 
insight was to introduce the notion of combinator, which creates pudding and pudding parts — or 
contracts — from components that can either be atomic or themselves result from applying combinators 
to more elementary components.

The article and presentation suggest that this is a new idea for financial contracts. If so, the insights 
should be beneficial to financial software. But as a general software design idea they are not new. 
Transposed to the area of GUI design, the “bad approach” rejected at the beginning of the presentation 
(list all pudding types, for each of them compute sugar content etc.) would mean devising every screen 
of an interactive application in its own specific way and writing the corresponding operations — display, 
move, resize, hide — separately in each case. No one ever does this. Any GUI design environment 
provides atomic elements, such as buttons and menu entries, and operations to combine them recursively 
into windows, menus and other containers to make up a complete interface. Just as the pudding 
combinators define the sugar content and calorie count of a pudding from those of its ingredients, and 
contract combinators define the horizon and value sequence of a complex contract from those of its 
constituents, the display, move, resize and hide operations on a composite figure apply these operations 
recursively on the components. The EiffelVision library [8] is an example application of this 
compositional approach, systematic but hardly unique. The article’s contribution here is to apply the 
approach to a new application area, financial contracts. The approach itself, however, does not assume 
functional programming; any framework with a routine mechanism and recursion will do.

Interesting modularity issues arise not when existing combinators are applied to components of 
existing types, but when the combinators and component types change. The presentation indeed states: 
“Only if we add new combinators or new ingredients would we need to enhance S” (the sugar 
combinator). The interesting question is how disruptive such changes will be to the architecture.

The set of relevant changes is actually larger than suggested:

• Along with changes in atomic types and combinators we should consider changes in operations: 
adding a calorie count function for puddings, a delay operation for contracts, a rotate operation for 
graphical objects.

• Besides such additions we should include changes and removal, although for simplicity this 
discussion will continue to consider additions only.

3.2 Assessing the functional approach

The structure of the programs as given is simple: a set of definitions of the form

O (a) = ba,O [1]
O (c (x, y, ...)= fc,O (x, y, ...) [2]
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for every operation O, atomic type a and basic combinator c; the right-hand sides involve appropriate 
constants b and functions f. Again for simplicity, we may view the atomic types such as a as 0-ary 
combinators, so that we only need to consider form [2]. With t basic combinators and f operations, we 
need t  f definitions.

Regardless of the approach, these t  f elements will have to be accommodated. The architectural 
problem is how we group them into modules to facilitate extension and reuse. This issue is not discussed 
in the article and presentation. Of course the matter is not critical for small t and f ; then all the definitions 
can be packed into a single module. This takes care of extendibility in a simple way:

• To add a basic combinator c, add f definitions of the above form, one for each existing operation.

• To add an operation O, add t definitions, one for each existing combinator.

This approach does not scale well: for larger developments, it will be necessary to divide the system into 
modules; the extendibility problem then becomes how to make sure that such modifications affect as few 
modules as possible.

Even with fairly small t and f, the one-module solution does not support reusability: if another 
program only needs a subset of the operations and combinators, it would suffer the usual dilemma of 
primitive modularization techniques:

• Charybdis: copy-paste the relevant parts, but then risk forgetting to update the derived modules 
when something changes in the original (possibly for such prosaic reasons as a bug fix).

• Scylla: use a module inclusion facility, as provided by many languages, to make the contents of 
an existing module available to a new one; but you end up loaded with a bigger baggage than 
necessary, which complicates updates and may cause conflicts (assuming the derived module 
defines a new combinator or function and a later version of the original module introduces a 
clashing definition.)

These observations remind us in passing that reusability is closely connected to extendibility. An online 
critique of the OCaml functional language [17] takes a concrete example:

You cannot easily modify the behavior of a module outside of it. Suppose you use a Time 
module defining Time.date_of_string, which parses ISO8601 basic format 
("YYYYMMDD"), but want to recognize ISO8601 extended format ("YYYY-MM-DD"). 
Tough luck: you have to get the module maintainer to edit the original function — you 
cannot redefine the function yourself in your module.

As software grows and changes, another aspect of reuse becomes critical: reuse of common properties. 
Along with European options, the article introduces “American options”. Described as combinators, they 
have different signatures (Date Contract Contract and (Date, Date) Contract Contract), and 
all the operations have to be defined separately for each of the basic combinators each of them involves. 
One suspects, however, that the two kinds of option have a number of properties and operations in 
common, in the same way that puddings can be grouped into categories. Such groupings would help 
model and modularize the software, with the added benefit — if enough commonalities emerge — of 
reducing the number of required definition to substantially less than t  f. This requires, however, taking 
a new look at the problem domain: we must discover, beyond functions, the essential types.
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Such a view will be at a higher level of abstraction. One can argue in particular with the fixation 
on functions and their signatures. According to the article (italics retained), “An American option offers 
more flexibility than a European option. Typically, an American option confers the right to acquire an 
underlying contract at any time between two dates, or not to do so at all.” This suggests a definition by 
variation: either American options are a special case of European option, or they are both variants of a 
more general notion of option. Defining them as combinators immediately sets them apart from each 
other because of the extra Date in the signature. This is akin to defining a concept by its implementation 
— a mathematical rather than computer implementation, but still implying loss of abstraction and 
generality. Using types as the basic modularization mechanism, as in object-oriented design, will elevate 
the level of abstraction.

3.3 Levels of modularity

Assessing functional programming against criteria of modularity is legitimate since better 
modularization is one of the main arguments for the approach. We have seen the presentation’s 
comments on this issue, but here is a more general statement from one of the foundational papers of 
functional programming, by Hughes [7], stating that with this approach:

[Programs] can be modularized in new ways, and thereby greatly simplified. This is the key 
to functional programming’s power — it allows greatly improved modularization. It is also 
the goal for which functional programmers must strive — smaller and simpler and more 
general modules, glued together with the new glues we shall describe.

The “new glues” described in Hughes’s paper are the ones we have seen at work for the two examples 
covered — systematic use of stateless functions, including high-level functions (combinators) which act 
on other functions — plus the extensive use of lists and other recursively defined types, and the concept 
of lazy evaluation.

These are attractive techniques, but they address fine-grain modularization. Hughes develops a 
functional version of the Newton-Raphson computation of the square root of a number N with tolerance 
eps and initial approximation a0:

with appropriate combinators within, repeat and next, and compares this version with a Fortran 
program involving goto instructions. Even ignoring the cheap shot (at the time of the paper’s original 
publication Fortran was already old hat and gotos despised), it is understandable why some people may 
prefer such a solution, based on small functions glued through combinators, to the loop version. Then 
again others prefer loops, and because we are talking about the fine-grain structure of programs rather 
than large-scale modularization the issue hardly matters for software engineering; it is a matter of style 
and taste. The more fundamental question of demonstrating correctness has essentially the same 
difficulty in both approaches; note for example that the definition of within in Hughes’s paper, yielding 
the first element of a sequence that differs from the previous one by less than eps

sqrt a0 eps N = within eps repeat (next N) a0)

within eps ([a:b:rest])  =  if abs (a – b) <= eps then b else within eps ([b:rest]
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seems to assume that the distances between adjacent elements are decreasing, and definitely assumes that 
one of these differences is no greater than eps. Stating this property would imply some Design-by-
Contract-like mechanism to associate preconditions with functions (there is no such mechanism in 
common functional approaches); the proof that it guarantees termination of eps would be essentially the 
same as a proof of termination for the corresponding loop in the imperative style.

There seems to be no contribution to large-grain modularity or software architecture in this and 
earlier examples. In particular the stateless nature of functional programming does not seem (positively 
or negatively) to affect the issue.

In citing examples from Hughes’s paper we have, with his agreement, used modern (Haskell) notation for 
lists as in [a:b:rest], more readable than the original’s cons notation as in cons a (cons b rest).

3.4 The functional advantage

There remains three significant advantages for the functional approach as illustrated in examples so far.

The first is notational. No doubt some of the attraction of functional programming languages 
comes from the terseness of definitions such as the above. This needs less syntactical baggage than 
routine declarations in common imperative languages. Several qualifications limit this advantage:

• In considering design issues as in the present discussion, the notational issue is less critical. One 
could, for example, use a functional approach for design then target an imperative language.

• Many modern functional languages such as Haskell and Ocaml are strongly typed, implying the 
notation will be a little more verbose; for example, unless the designer wants to rely on type 
inference (not a good idea at the design stage), within needs the type declaration 
Double [Double] Double.

• Not everyone may be comfortable with the common practice — not required by functional 
programming, but pervasive — of replacing multi-argument functions by functions returning 
functions (known in the medical literature as RCS, for “Rabid Currying Syndrome”, and 
illustrated by such signatures as (a b c) Obs a Obs b Obs c in the financial article).

Still, notation conciseness is a virtue even at the design and architecture level, and functional 
programming languages may have some lessons here for other design notations.

The other two advantages are of a more fundamental nature. One is the ability to manipulate 
operations as “first-order citizens” — the conventional phrase, although we can simply say “as objects 
of the program” or just “as data”. Lisp first showed that this could be done effectively; a number of 
mainstream languages offered a way to pass routines as arguments to other routines, but this was not 
considered a fundamental design technique, and was in fact sometimes viewed with suspicion as 
reminiscent of self-modifying code with all the associated uncertainties. Modern functional languages 
showed the benefit of accepting higher-order functionals as regular program objects, and developed the 
associated type systems. This is the part of functional programming that has had the most direct effect 
on the development of mainstream approaches to programming; as will be seen below, the notion of 
agent, directly derived from these functional programming concepts, is a welcome addition to the 
original object-oriented framework.
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The third significant attraction of functional programming is lazy evaluation: the ability, in some 
functional languages such as Haskell, to describe a computation that is potentially infinite, with the 
understanding that any concrete execution of that computation will be finite. The above definition of 
within assumes laziness; this is even more clear in the definition of repeat:

which produces (in ordinary function application notation) the infinite sequence a, f (a), f (f (a))... With 
next N x defined as (x + N / x) / 2, the definition of within as used by sqrt will stop evaluating that 
sequence after a finite number of elements.

This is an elegant idea. Its general application in software design calls for two observations.

First, there is the issue of correctness. The ease of writing potentially infinite programs may mask 
the difficulty of ensuring that they will always terminate. We have seen that within assumes a 
precondition, not stated in its presentation; that precondition, requiring that elements decrease to below 
eps, cannot be finitely evaluated on an infinite sequence (it is semi-decidable). These are tricky 
techniques for designers to use, as illustrated by the problem of how many functional programmers it 
takes to change a light bulb. (It is hard to know in advance. If there are any functional programmers left, 
ask one to change the bulb. If she fails, try the others.)

Second and last, lazy manipulation of infinite structures is possible in a non-functional design 
environment, without any special language support. The abstract data type approach (also known as 
object-oriented design) provides the appropriate solution. Finite sequences and lists in Eiffel libraries are 
available through an API relying on a notion of “cursor”:

Commands to move the cursor are start (go to first item), forth (move to next item), finish. Boolean 
queries before and after tell if the cursor is before the first element or after the last. If neither holds, item
returns the element at cursor position, and index its index.

It is easy to adapt this specification to cover infinite sequences: just remove finish and after (as 
well as count, the number of items). This is the specification of the deferred (abstract) class 
COUNTABLE in the Eiffel library. Some of its descendants include PRIMES, FIBONACCI, RANDOM; 
each provides its implementations of start, forth and item (plus, in the last case, a way to set the seed for 
the pseudo-random number generator). To obtain successive elements of one of these infinite sequences, 
it suffices to apply start then query for item after any finite number of applications of forth.

repeat f a = [a : repeat f (f a))]

Lists with 
cursors

item

index count
1

finishstart forth

afterbefore

Cursor
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Any infinite sequential structure requiring finite evaluation can be modeled in this style. Although 
this does not cover all applications of lazy evaluation, the advantage is to make the infinite structure 
explicit, hence facilitating establishing the correctness of a lazy computation.

3.5 State intervention

The functional approach seeks to rely directly on the properties of mathematical functions by rejecting 
the assumption, present but implicit in imperative approaches, that computing operations can, in addition 
to delivering a result (as a mathematical function does), modify the state of the computation: either a 
global state, or, in a more modular approach, some part of that state, for example the contents of a 
specific object.

Although prominent in all presentations of functional programming, this property is not visible in 
the examples discussed here, perhaps because they follow from an initial problem analysis that already 
whisked the state away in favor of functional constructs. It is possible for example that a non-functional 
model of the notion of valuation of a financial contract would have used, instead of a function that yield 
a sequence (the value process), an operation that transforms the state to update the value.

It is nevertheless possible to make general comments on this fundamental decision of functional 
approaches. The notion of state is hard to avoid in any model of a system, computerized or not. One 
might even argue that it is the central notion of computation. The world does not clone itself as a result 
of each significant event. Neither does the memory of our computers: it just overwrites its cells. It is 
always possible to model such state changes by positing a sequence of values instead; but this can be 
rather artificial (as suggested by the alternative answer to the earlier riddle: functional programmers 
never change a bulb, they buy a new lamp with a new socket, a new cable and new bulb).

Recognizing the impossibility of ignoring the state for such operations as input and output, and 
the clumsiness of earlier attempts [15], modern functional languages, in particular Haskell, have 
introduced the notion of monad [19], which embeds the original functions in higher-order functions with 
more complex signatures; the added signature components can serve to record state information, as well 
as any extra elements such as an error status (to model exception handling) or input-output results.

Using monads to integrate the state proceeds from the same general idea — used in the reverse 
direction — as the technique described in the last section for obtaining lazy behavior by modeling 
infinite sequences as an abstract data type: to emulate in a framework A a technique T that is implicit in 
a framework B, program in A an explicit version of T or of the key mechanism making T possible. T is 
infinite lists in the first case (the “key mechanism” is infinite lists evaluated finitely), and the state in the 
second case.
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The concept of monad is elegant and obviously useful for semantic descriptions of programming 
languages (for example to simplify denotational theories). One may, however, whether it is the 
appropriate solution as a mechanism directly used by programmers. Here we must be careful to consider 
the right arguments. The obvious objection to monads — that they are difficult to teach to ordinary 
programmers — is irrelevant; innovative ideas considered hard at the time of their introduction can fuse 
into the mainstream as educators develop ways to explain them. (Both recursion and object-oriented 
programming were once considered beyond the reach of “Joe the Programmer”.) The important question 
is whether this is worth the trouble. Making the state available to functional programmers through 
monads is akin to telling your followers, after you convinced them to embrace chastity, that having 
children is actually good, if with you.

Is it really necessary to exclude the state in the first place? Two observations are enough to raise 
doubts:

• Elementary state-changing operations, such as assignment of simple values, have a clear 
mathematical model (Hoare rules, based on substitution). This diminishes the main benefit 
expected of stateless programming: to facilitate mathematical reasoning about programs.

• For the more difficult aspects of establishing the correctness of a design or implementation, the 
advantage of the functional approach are not so clear. For example proving that a recursive 
definition has specific properties and terminates requires the equivalent of a loop invariant and 
variant. It is also unlikely that efficient functional programs can afford to renounce linked data 
structures, with all the resulting problems such as aliasing, which are challenging regardless of the 
underlying programming model.

If functional programming fails to bring a significant simplification to the task of establishing 
correctness, there remains a major practical argument: referential transparency. This is the notion of 
substitutivity of equals for equals: in mathematics, f (a) always means the same thing for given f and a.
This is also true in a pure functional approach. In a programming language where functions can have side 
effects, f (a) can return different results in successive invocations. Renouncing such possibilities makes 
it much easier to understand program texts by retaining the usual modes of reasoning from mathematics; 
we are all used for example to accept that g + g and 2  g have the same meaning, but this ceases to be 
guaranteed if g is a side-effect-producing function. The difficulty here is not so much for automatic 
verification tools (which can detect that a function produces side-effects) as for human reader.

Maintaining referential transparency in expressions is a highly desirable goal. It does, however, 
justify removing the notion of state from the computational model. It is important to recall here the rule 
defined in the Eiffel method: command-query separation principle [10]. In this approach the features 
(operations) of a class are clearly divided into two groups: commands, which can change the target 
objects and hence the state; queries, which provide information about an object. Commands do not return 
a result; queries may not change the state — in other words, they satisfy referential transparency. In the 
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above list example, commands are start, forth and (in the finite case) finish; queries are item, index, 
count, before and (finite case) after. This rule excludes the all too common scheme of calling a function 
to obtain a result and modify the state which we guess is the real source of dissatisfaction with imperative 
programming, far more disturbing than the case of explicitly requesting a change through a command 
then requesting information through a (side-effect-free) query. The principle can also be stated as Asking 
a question should not change the answer. It implies for example that a typical input operation will read:

Here read_character is a command, consuming a character from the input; last_character is a query, 
returning the last character read (both features are from the basic I/O library). A contiguous sequence of 
calls to last_character would be guaranteed to return the same result repeatedly. For both theoretical and 
practical reasons detailed elsewhere [10], the command-query separation principle is a methodological 
rule, not a language feature, but all serious software developed in Eiffel observes it scrupulously, to great 
referential transparency advantage. Although other schools of object-oriented programming regrettable 
do not apply it (continuing instead the C style of calling functions rather than procedures to achieve 
changes), but in my view it is a key element of the object-oriented approach. It seems like a viable way 
to obtain the referential transparency goal of functional programming — since expressions, which only 
involve queries, will not change the state, and hence can be understood as in traditional mathematics or 
a functional language — while acknowledging, through the notion of command, the fundamental role of 
the concept of state in modeling systems and computations.

4  AN OBJECT-ORIENTED VIEW

We now consider how to devise an object-oriented architecture for the designs discussed in the 
presentation and article.

4.1 Combinators are good, types are better

So far we have dealt with operations and combinators. Operations will remain; the key step is to discard 
combinators and replace them by types (or classes — the distinction only arises with genericity). This 
brings a considerable elevation of the level of abstraction:

• A combinator describes a specific way of building a new mechanism from existing ones. The 
combination is defined in a rigid way: a take combination (as in take 3 apple) associates one 
quantity element and one food element. As noted earlier, this is the mathematical equivalent of 
defining a structure by its exact implementation.

• A class defines a type of objects by listing the applicable features (operations). It provides 
abstraction in the sense of abstract data types: the rest of the world knows the corresponding 
objects solely through the applicable operations, not from how they were constructed. We may 
capture these principles of data abstraction and object-oriented design by noting that the approach 
means knowing objects not from what they are but through what they have (their public features 

io.read_character
Result := io.last_character
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and the associated contracts). This also opens the way to taxonomies of types, or inheritance, to 
keep the complexity of the model under control and take advantage of commonalities.

By moving from the first approach to the second one we do not lose anything, since classes trivially 
includes combinators as a special case: it suffices to provide features giving the constituents, and an 
associated creation procedure (constructor) to build the corresponding objects. In the take example:

This makes it possible to obtain an object of this type through create apple_salad.make (6.0, apple), 
equivalent to an expression using the combinator.

4.2 Using software contracts and genericity

Since we are concentrating on design, the effect of make has been expressed in the form of a 
postcondition, but it really would not be a problem to include the implementation clause (do base := b ; 
quantity := q). It is one of the consequences of well-understood O-O design to abate the distance between 
implementation and design (and specification). In all this we are freely using state-changing assignment 
instructions, and still have (we thank the reader for inquiring) most of our teeth and hair.

Unlike the combinator, however, the class is not limited to these features. For example it may have 
other creation procedures. One can usually mix two repetitions of the same thing:

class REPETITION create
make

feature
base: FOOD
quantity: REAL
make (b: FOOD; q: REAL)

-- Produce this food element from quantity units of base.
ensure

base = b
quantity = q

end
... Other features ...

end

make (r1, r2: REPETITION)
-- Produce this food element by combining r1 and r2.

require
r1.base = r2.base

ensure
base = r1.base
quantity = q
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The precondition expresses that the quantities being mixed are from the same basic food types. This 
requirement can also be made static through the type system; genericity (also available in typed 
functional languages, under the curious if impressive-sounding name of “parametric polymorphism”) 
leads to defining the class as 

Not only can classes have different creation procedures, they will generally have many more features. 
Specifically, the operations of our previous versions become features of the appropriate classes. (The 
reader may now have guessed that the variable name t stood for type and f for feature.) The pudding 
classes (including classes describing food variants such as REPETITION) have features such as sugar
and calorie_content; the contract classes have features such as horizon and value. Two notes are in order:

• Since we started from a purely functional model, all the features mentioned so far are either 
creation procedures or queries. Although it is possible to keep this functional style in an object-
oriented framework, the development might also introduce commands, for example to change a 
contract in response to a certain event such as renegotiation. This issue — state, or not? — is 
largely irrelevant to the discussion of modularization.

• In the original, the value function yielded an infinite sequence. We can keep this signature by using 
a result of type COUNTABLE, permitting the equivalent of lazy computation; or we can give value
an integer argument so that value (i) returns the i-th value.

4.3 The modularization policy

The modularization achieved so far illustrates the fundamental idea of object technology (at least the one 
we find fundamental [10]): merging the concepts of type and module. In its simplest expression, 
object-oriented analysis, design and implementation means that we base every module of a system on a 
type of objects manipulated by the system. This is a more restrictive discipline than the modular facilities 
offered by other approaches: a module is no longer just an association of software elements — 
operations, types, variables — that the designer chooses to keep together based on any suitable criterion; 
it is the collection of properties and operations applicable to instances of a type.

The class is the result of this type-module merge. In O-O languages such as Smalltalk, Eiffel and 
C# (but not, for example, in C++ or Java) the merge is bidirectional: not only does a class define a type 
(or a type template if genericity is involved), but, the other way around, any type, including basic types 
such as integer, is formally defined as a class.

class REPETITION  create
... As before ...

feature
make (r1, r2: REPETITION  )

... No precondition necessary here ...

... The rest as before ...
end

[FOOD]

[FOOD]
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It is possible to retain classes in their type role only, separate from the modular structure. This is 
in particular the case with functional languages such as OCaml which offer both a traditional module 
structure and a type mechanism taken from object-oriented programming. (Haskell is similar, with a 
more restricted concept of class.) Conversely, it is possible to remove the requirement that all types be 
defined by classes, as with C++ and Java where basic types such as Integer are not classes. The view of 
object technology assumed here assumes a full merge, with the understanding that a higher-level of 
grouping of classes (packages as in Java or .NET, clusters in Eiffel) may be necessary, but as an 
organizational facility rather than a fundamental construct.

This approach implies the primacy of types over functions when it comes to defining the 
software architecture. The modularization criterion is types; every operation (function) gets attached to 
a class, not the other way around. Functions, however, take their revenge through the application of 
abstract data type principles: a class is defined, and known to the rest of the world, through an abstract 
interface (API) listing the applicable operations and their formal semantic properties (contracts: 
preconditions, postconditions and, for the class as a whole, invariant).

The rationale for this modularization policy is that it yields to better modularity, including 
extendibility, reusability and (through the use of contracts) reliability. We must, however, examine these 
promises concretely on the examples at hand.

4.4 Inheritance

An essential contribution of the object-oriented method to modularity goals is inheritance. As we expect 
the reader to be familiar with this technique we will only recall some basic ideas and sketch their possible 
application to the examples.

Inheritance organizes classes in taxonomies, roughly representing the “is-a” relation, to be 
contrasted with the other basic relation between classes, client, which represents usage of a class through 
its API (operations, signatures, contracts). Inheritance typically does not have to observe information 
hiding, as this is incompatible with the “is-a” view. While some authors restrict inheritance to pure 
subtyping, there is in fact nothing wrong with applying it to support a standard module inclusion 
mechanism. Eiffel actually has a “non-conforming inheritance” mechanism [4] which disallows 
polymorphism but retains all other properties of inheritance. This dual role of inheritance is in line with 
the dual role of classes as types and modules.

In both capacities, inheritance captures commonalities. Elements of a tentative taxonomy for 
puddings might be as described by the inheritance graph on the following page.

It is important to note the distribution of roles between inheritance and the client relation. A fruit 
salad is a pudding and is also a repetition in the earlier sense (we ignore generic parameters). A repetition 
is a special case not of pudding but of “pudding part”, describing food ingredients. Some pudding parts 
(such as “composite puddings”), but not all, are also puddings. A fruit salad is a pudding, and also a 
repetition (of fruit parts). A “creamy fruit salad”, on the other hand, is not a fruit salad, if we take this 
notion to mean a pudding made of fruits only. It has a fruit salad and cream, as represented by the 
corresponding client links. It is a composite pudding, since this notion indeed represents concoctions that 
are made of several parts, like the more general notion of COMPOSITE_PART, and are also puddings. 
Here the parts, reflected in the client links, are a fruit salad and cream.
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A similar approach can be applied to the contract example, based on a classification of contract 
types into such categories as “zero-coupon bonds”, “options” and other to be obtained from careful 
analysis with the help of experts from that problem domain.

Multiple inheritance is essential to this object-oriented form of modeling. Note in particular the 
definition of a composite part, applying a common pattern for describing such composite structures (see 
[10], 5.1, “Composite figures”):

class COMPOSITE_PART inherit

feature
...

end

Pudding 
inheritancePUDDING PUDDING_PART

REPETITION

FRUIT_SALAD

LIST

COMPOSITE_PART

CREAMY_FRUIT_SALAD CREAM

COMPOSITE_PUDDING

Client of

Inherits



 Deferred

PUDDING_PART
LIST [PUDDING_PART]



SOFTWARE ARCHITECTURE: OBJECT-ORIENTED VS FUNCTIONAL  §418
A composite part is both a pudding part, with all the applicable properties and operations (sugar content 
etc.), and a list of pudding parts, again with all the applicable list operations: cursor movement such as 
start and forth, queries such as item and index, commands to insert and remove elements. The elements 
of the list may be pudding parts of any of the available kinds, including — recursively — composite 
parts. This makes it possible to apply techniques of polymorphism and dynamic binding as discussed 
next. Note the usefulness of having both genericity and inheritance; also, multiple inheritance should be 
the full mechanism for classes, not the form limited to interfaces (Java style) which would not work here.

4.5 Polymorphism, polymorphic containers and dynamic binding

The contribution of inheritance and genericity to extendibility and extendibility comes in part from the 
techniques of polymorphism and dynamic binding, illustrated here by the version of sugar_content for 
class COMPOSITE_PART:

This applies the operations of class LIST directly to a 
COMPOSITE_PART, since the latter class inherits 
from the former. The result of item can be of any of the 
descendant types of PUDDING; since it may as a 
consequence denote objects of several types, it is 
known as a polymorphic variable (more precisely in 
this case, a polymorphic query). An entire COMPOSITE_PART structure, containing items of different types, 
is known as a polymorphic container. Polymorphic containers are made possible by the combination of 
polymorphism, itself resulting from inheritance, and genericity. (As these are two very different mechanisms, 
the functional programming term “parametric polymorphism” for genericity can cause confusion.)

The polymorphism of item implies that successive executions of the call can item.sugar_content
will typically apply to objects of different types; the corresponding classes may have different versions 
of the query sugar_content. Dynamic binding is here the guarantee that such calls will in each case 
apply the appropriate version, based on the type of the object actually attached to item. In the case of a 
part that is itself composite, this will be the above version, applied recursively; but it could be any other, 
for example the version for CREAM.

Here as in most current approaches to O-O design, polymorphism is controlled by the type system. 
The type of item’s value is variable, but only within descendants of PUDDING as specified by the generic 
parameter of COMPOSITE_PART. This is part of a development that has affected both the functional 
programming world and the object-oriented world: using increasingly sophisticated type systems (still 
based on a small number of simple concepts such as inheritance, genericity and polymorphism) to embody 
a growing part of the intelligence about a system’s architecture into its type structure.

sugar_content: REAL
do

from start until after loop
Result := Result + 
forth

end
end

item.sugar_content

item

index count1

finishstart forth

afterbefore
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4.6 Deferred classes and features

Classes PUDDING and PUDDING_PART are marked as “deferred” (with an asterisk in the BON object-
oriented modeling notation [20]) in the earlier diagram of the class structure. This means they are not 
completely implemented; another term is “abstract class”. A deferred class will generally have deferred 
features, possessing a signature and (importantly) contract but no implementation. Implementations 
appear in non-deferred (“effective”) descendant classes, adapted to the choice that each effective class 
has made for implementing the general concept defined by the deferred class. In the example both classes 
PUDDING and PUDDING_PART will have deferred features sugar_content and calories; descendants 
will “effect” (implement) it, for example, in COMPOSITE_PART, by defining the sugar content as the 
sum of the content of the parts, as shown above. In COMPOSITE_PUDDING, which inherits this version 
from COMPOSITE_PART and the deferred version from PUDDING, the effective version takes over, 
giving its implementation. (The rule is that inheriting two features with the same name causes a name 
clash, which must be resolved through renaming, except if one of the features is deferred and the other 
effective, in which case they just yield a single feature with the available implementation. It is for this 
kind of sound application of the inheritance mechanism that name overloading brings intractable 
complexity, suggesting that this mechanism should not appear in object-oriented languages.)

Deferred classes are more sophisticated than the Java notion of “interface”, since they can be 
equipped with contracts that constrain future effectings, and also because they can contain effective 
features as well, offering the full spectrum between a fully deferred class, describing a pure 
implementation, and an effective one, defining a complete implementation. Being able to describe partial 
implementations is essential to the use of object-oriented techniques for architecture and design.

In the financial contract example, CONTRACT and OPTION would be natural deferred class 
candidates, although again they do not need to be fully deferred.

5  ASSESSING AND IMPROVING O-O MODULARITY

The preceding section has summarized the application of object-oriented architectural techniques to the 
examples at hand. We must know examine the sketched result in light of the modularity criteria stated at 
the beginning of this discussion. The contribution to reliability follows from the type system and 
contracts; we concentrate on reusability and extendibility.

5.1 Reusing operations

One of the principal consequences of using inheritance is that common features can be moved to the 
highest applicable level; then descendants do not need to repeat them: they simply inherit them “as is”. 
If they do need to change the implementation while retaining the functionality, they simply redefine (or 
“override”) the inherited version. “Retaining the functionality” means here that, as noted, the original 
contracts still apply, whether the version being overridden was already effective or still deferred. This 
goes well with dynamic binding: a client can use the operation at the higher level — for example 
my_pudding.sugar_content, or my_contract.value — without knowing what version of the routine is 
used, in what class, and whether it is specific to that class or inherited.
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Thanks to commonalities captured by inheritance, the number of feature definitions may be 
significantly smaller than the maximum t  f. Any reduction here is valuable: it is a general rule of 
software design that repetition is always potentially harmful, as it implies future trouble in configuration 
management, maintenance, debugging (if a fault found its way into the original, it must also be corrected 
in the copies). Copy-paste, as David Parnas has noted, is the software engineer’s enemy.

The actual reduction clearly depends on the quality of the inheritance structure.We note here that 
abstract data type principles are the appropriate guidance here: since the key to defining types for object-
oriented design is to analyze the applicable operations, a properly designed inheritance hierarchy will 
precisely place towards the top classes that collect features applicable to many variants.

There is no clear equivalent to these techniques in a functional model. With combinators, it is 
necessary to define the variant of every operation for every combination, repeating any common ones.

5.2 Extendibility: adding types

How well does the object-oriented form of architecture support extendibility? One of the most frequent 
forms of extension to a system will be the addition of new types: a new kind of pudding, pudding part or 
financial contract. This is where object technology shines in its full glory. Just find the place in the 
inheritance structure where the new variant best fits — in the sense of having the most operations in 
common — and write a new class that inherits some features, redefines or effects those for which it 
provides its own variants, and add any new features and invariant clauses applicable to the new notion.

Dynamic binding is again essential here; the benefit of the O-O approach is to remove the need 
for client classes to perform multi-branch discriminations to perform operations, as in: if this is a fruit 
salad then compute in this way, else if it is a flan then compute in that way, else ..., which must be 
repeated for every operation and, worse, must be updated, for every single client and every single 
operation, any time a type is added or changed. Such structures, requiring client classes to maintain 
intricate knowledge of the variant structure of the supplier concepts on which they rely, are a prime 
source of architecture degradation and obsolescence in pre-O-O techniques. Dynamic binding removes 
the issue; a client application can ask for my_contract.value and let the built-in machinery select the 
appropriate version, not having to know what the variants are.

No other software architecture technique comes close to the beauty of this solution, combining the 
best of what the object-oriented approach has to offer.

5.3 Extendibility: adding operations

The argument for object technology’s support for extendibility comes in part (in addition to mechanisms 
such as information hiding and genericity, as well as the central role of contracts) from the assumption 
that the most significant changes in the life of a system are of the kind just discussed: introducing a type 
that shares some operations with existing types and may require new operations. Experience indeed 
suggests that this is the most frequent source of non-trivial change in practical systems, where object-
oriented techniques show their advantage over others. But what of the other case: adding operations to 
existing types? Some client application relying on the notion of pudding might for example want to 
determine the cost of making various puddings, even though pudding classes do not have a cost feature.
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Functional programming performs neither better nor worse for the addition of an operation than 
for the addition of a type: it’s a matter of adding 1 to f rather than t. The object-oriented solution, 
however, does not enjoy this neutrality. The basic solution is to add a feature at the right level of the 
hierarchy. But this has two potential drawbacks:

• Because inheritance is a rather strong binding (“is-a”) between classes, all existing descendants 
are affected. In general, adding a feature to a class at a high position in the inheritance structure 
can be a delicate matter.

• This solution is not even available if the author of the client system is not permitted to modify the 
original classes, or simply does not have access to their text — a frequent case in practice since 
these classes may have been grouped into a library, for example a financial contract library. It 
would make no sense to let authors of every application using the library modify it.

Basic object-oriented techniques (e.g. [10]) do not suffice here. The standard O-O solution, widely used, 
is to use the visitor pattern [6]. The following sketch, although not quite the standard presentation, 
should suffice to summarize the idea. (It is summarized from [13], a first-semester introductory 
programming textbook — suggesting how fundamental these concepts have become.) The figure lists 
the actors involved in the pattern.

The pattern turns the pas-de-deux between the application (classes such as CLIENT) and the existing 
types (such as T_TARGET for a particular type T, which could be PUDDING or CONTRACT in our 
examples) into a ménage-à-trois by introducing a visitor class F_VISITOR for every applicable operation 
F, for example COST_VISITOR. Application classes such as CLIENT call an operation on the target, 
passing the appropriate visitor as an argument; for example:

The command accept (v: VISITOR) performs the operation by calling on its argument v — 
cost_visitor in this example — a feature such as FRUIT_SALAD_visit, whose name identifies the target 
type. This feature is part of the class describing such a target class, here FRUIT_SALAD; it is applied to 
an object of the corresponding type (here a fruit salad object), which it passes as argument to the T_visit
feature; Current is the Eiffel notation for the current object (also known as “this” or “self”). The target
of the call, v on the figure, identifies the operation by using an object of the corresponding visitor type, 
such as COST_VISITOR.

my_fruit_salad.accept (cost_visitor)

Visitor 
participants

CLIENT

TARGET F_VISITOR

t.accept (v)

T_TARGET

t f

v. T_visit (Current)

Client (calls)

Client (knows about)



SOFTWARE ARCHITECTURE: OBJECT-ORIENTED VS FUNCTIONAL  §522
The key question in software architecture when assessing extendibility is always distribution of 
knowledge; a method can only achieve extendibility by limiting the amount of knowledge that modules 
must possess about each other (so that one can add or change modules with minimum impact on the 
existing structure). To understand the delicate choreography of the visitor pattern it is useful to see what 
each actor needs and does not need to know:

• The target class knows about a specific type, and also (since for example FRUIT_SALAD inherits 
from COMPOSITE_PUDDING and COMPOSITE_PUDDING from PUDDING) its context in a 
type hierarchy. It does not know about new operations requested from the outside, such as 
obtaining the cost of making a pudding.

• The visitor class knows all about a certain operation, such as cost, and provides the appropriate 
variants for a range of relevant types, denoting the corresponding objects through arguments: this 
is where we will find routines such as fruit_salad_cost, flan_cost, tart_cost and such.

• The client class needs to apply a given operation to objects of specified types, so it must know 
these types (only their existence, not their other properties) and the operation (only its existence 
and applicability to the given types, not the specific algorithms in each case).

Some of the needed operations, such as accept and the T_visit features, must come from ancestors. Here 
is the overall diagram showing inheritance (FRUIT_SALAD abbreviated to SALAD):

Overall 
visitor 
structure

CLIENT

F_VISITOR

t.accept (v)

T_TARGET

t v

v.T_visit

Client (calls)
Client (knows about)

FLANSALAD
(Current) COST_

VISITOR
SUGAR_
VISITOR



*
PUDDING_



VISITOR

salad_visit+

flan_visit+


salad_visit+

flan_visit+


salad_visit+

flan_visit+


PUDDING

tram_visit*
taxi_visit*


Deferred
Effective

*
+

Inherits (directly

VISITOR CLASSESTARGET CLASSES

accept*

accept+ accept+ accept+

or indirectly)
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Such an architecture is commonly used to provide new operations on an existing structure with many 
inheritance variants, without having to change that structure for every such operation. A common 
application is in language processing — for compilers and other tools in an Interactive Development 
Environment — where the underlying structure is an Abstract Syntax Tree (AST): it would be disastrous 
to have to update the AST class each time a new tool needs, for its own purposes, to perform a traversal 
operation on the tree, applying to each node an operation of the tool’s choosing. (This is known as 
“visiting” the nodes, explaining the “visitor” terminology and the T_visit feature names.)

For all this to work, the clients must be able to perform t.accept (v) on any t of any target type. 
This assumes that all target types descend from a common class — here PUDDING — where the feature 
accept will have to be declared, in deferred form. This is a delicate requirement since the goal of the 
whole exercise was precisely to avoid modify existing target classes. Designers using the Visitor pattern 
generally consider the requirement to be acceptable as it implies ensuring that the classes of interest have 
a common ancestor — which is often the case already if they represent variants of a common concept, 
such as PUDDING or CONTRACT — and adding just one deferred feature, accept, to that ancestor.

The visitor pattern is widely used. The reader is the judge of how “beautiful” it is. In our view it 
is not the last word. Criticisms include:

• The need for a common ancestor with a special accept feature, in domain-specific classes that 
should not have to be encumbered with such concepts irrelevant to their application domain, 
whether puddings, financial contracts or anything else.

• More worryingly, the class explosion, with numerous miniature F_VISITOR classes embodying a 
very specific kind of knowledge (a special operation on a set of special types). For the overall 
software architecture this is just pollution.

Depollution requires adding a major new concept to the basic object-oriented framework: agents.

6  AGENTS: WRAPPING OPERATIONS INTO OBJECTS

The basic ideas of agents (added to the basic object-oriented framework of Eiffel in 1997, see also C# 
“delegates”) can be expressed in words familiar in the functional programming literature: we treat 
operations (functions in functional programming, features in object-oriented programming) as “first-
class citizens”. In the O-O context the only first-class citizens are, at run time, objects, corresponding in 
the static structure to classes.

6.1 The agent mechanism

An agent is an object representing a feature of a certain class, ready to be called. A feature call x.f (u, ...) 
is entirely defined by the feature name f, the target object denoted by x, and the arguments u, ...; an agent 
expression specifies f, and may specify none, some or all of the target and arguments, said to be closed. 
Any others, not provided in the agent’s definition, are open. The expression denotes an object; the object 
represents the feature with the closed arguments set to the given values. One of the operations that can 
be performed on the agent object is call, representing a call to f; if the agent has any open arguments, the 
corresponding values must be passed as arguments to call (for the closed arguments, the values used are 
those specified in the agent’s definition).
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The simplest example of agent expression is agent f. Here all the arguments are open but the target 
is closed. So if a is this agent expression (as a result of the assignment a := agent f, or of a call p (agent f) 
where the formal argument of p is a), a.call ([u, v]) has the same effect as x.f (u, v). The difference is of 
course that f (u, v) directly names the feature (although dynamic binding means it could be a variant of 
a known feature), whereas in the form with agents a is just a name, which may have been obtained from 
another program unit; so at this point of the program nothing is known about the feature except for its 
signature and possibly its contract. Because call is a general-purpose library routine it needs a single kind 
of argument; the solution is to use a tuple, here the two-element tuple [u, v]. In this form, agent f, the 
target is closed (it is the current object) and both arguments are open.

A variant is agent x.f ; here too the arguments are open and the target is closed: that target is x
rather than the current object. To make the target open, use agent {T}.f where T is the type of x; then a 
call needs a three-argument tuple: a.call ([x, u, v]). To keep some arguments open, you can use the same 
notation, as in agent x.f ({U}, v) (typical call a.call ([u]), but since the type U of u is clear from the 
context you do not need to specify it explicitly; a question mark suffices, as in agent x.f (?, v). This also 
indicates that the original forms with all arguments open, agent f and agent x.f, are abbreviations for 
agent f (?, ?) and agent x.f (?, ?).

The call mechanism applies dynamic binding: the version of f to be applied will, as in non-agent 
call, depend on the dynamic type of the target.

If f represents a query rather than a command, you can get from the corresponding agent the result 
of a call to f by using item instead of call, as in a.item ([x, u, v]) (which performs a call and has the value 
of its result); or you can call and then access a.last_result which, in accordance with the Command-
Query Separation principle, will return the same value, with no further call, in successive invocations.

For more advanced uses, rather than basing an agent on an existing feature f, it is also possible to 
write agents in-line, as in editor_window.set_mouse_enter_action (agent do text.highlight end), 
illustrating a typical use for graphical user interfaces; this is the basic style for event-driven 
programming in EiffelVision library [8]. Inline agents provide the same mechanism as lambda 
expressions in functional languages: to write operations and make them directly available to the software 
as values to be manipulated like any other “first-class citizens”.

More generally, agents enable the object-oriented framework to define higher-level functionals 
just as in functional languages, with the same power of expression.

6.2 Scope of agents

Agents have turned out to be an essential and natural complement to the basic object-oriented 
mechanisms. They are widely used in particular for:
• Iteration: applying a variable operation, naturally represented as an agent, to all elements in a 

container structure.

• GUI programming as just noted.

• Mathematical computations, as in the example of integrating a certain function, represented by an 
agent, over a certain interval.

• Reflection, where an agent provides properties of features (not just the ability to call them through 
call and item) and, beyond them, classes.
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Agents have proved essential to our investigation of how to replace design patterns by reusable 
components [1] [2] [11] [12]. The incentive is that while the designer of any application needing a pattern 
must learn it in detail — including architecture and implementation — and build it from scratch into the 
application, a reusable component can be used directly through its API. Success stories include the 
Observer design pattern [11] [13], which no one having seen the agent-based solution will ever be 
tempted to use again, Factory [2], and Visitor as discussed next.

6.3 An agent-based library to make the visitor pattern unnecessary

The agent mechanism allows a much better solution to the problem addressed somewhat clumsily by the 
Visitor pattern: adding operations to existing types, without changing the supporting classes. The 
solution is detailed in [12] and available through an open-source library available on the download site 
of the ETH Chair of Software Engineering [5].

The resulting client interface is particularly simple. No change is necessary to the target classes 
(PUDDING, CONTRACT and such): no more accept feature. One can reuse the classes exactly as they 
are, and accept their successive versions: no more explosion of visitor classes, but a single VISITOR
library class, with only two features to learn for basic usage, register and visit. The client designer need 
not understand the internals of that class or worry about implementing the visitor pattern, but only to 
apply the basic scheme for using the API:

1 • Declare a variable representing a visitor object, specifying the top target type through the generic 
parameter of VISITOR, and create the corresponding object:

pudding_visitor: VISITOR [PUDDING] 
create pudding_visitor 

2 • For each operation to be executed on objects of a specific type in the target structure, register the 
corresponding agent with the visitor:

pudding_visitor.register (agent fruit_salad_cost)

3 • To perform the operation on a particular object — typically as part of a traversal — simply use the 
feature visit from the library class VISITOR, as in

pudding_visitor.visit (my_pudding) 

That is all there is to the interface: a single visitor object, registration of applicable operations, and a 
single visit operation. Three properties explain this simplicity:

• The operations to be applied, such as fruit_salad_cost, would have to be written regardless of the 
architecture choice. Often they will already be available as routines, making the notation 
agent fruit_salad_cost possible; if not — especially if they are very simple operations — the 
client can avoid introducing a routine by using inline agents.

• It seems strange at first that a single VISITOR class, with a single register routine to add a visitor, 
should suffice. In the Visitor pattern solution the calls t.accept (v), the target t identified the target 
type (a particular kind of pudding); but here register does not specify any such information. How 
can the mechanism find the right operation variant to apply (cost of a fruit salad, cost of a flan)? 
The answer is a consequence of the reflective properties of the agent mechanism: an agent object 
embodies all the information about the associated feature, including its signature. So 
agent fruit_salad_cost includes the information that this is a routine applicable to fruit salads 
(from the signature fruit_salad_cost (fs: FRUIT_SALAD), also available, in the case of an inline 
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agent, from its text). This makes it possible to organize the internal data structures of VISITOR so 
that in a visiting call, such as pudding_visitor.visit (my_pudding), the routine visit will find the 
right routine or routines to apply based on the dynamic type of the target, here pudding_visitor:
VISITOR [P] for a specific pudding type P — also matching, as enforced statically by the type 
system, the type of the object dynamically associated with the argument, here the 
polymorphic my_pudding.

• This technique also enjoys the reuse benefits of inheritance and dynamic binding: if a routine is 
registered for a general pudding type (say COMPOSITE_PUDDING) and no other has been 
registered for a more specific type (for example the cost might be computed in the same way for 
all composite puddings), visit uses the best match.

The mechanism as described provides the complement to traditional O-O mechanism. When the problem 
is to add types providing variants of existing operations, inheritance and dynamic binding work like a 
charm. For the dual problem of adding operations to existing types without modifying these types, the 
solution described here will apply.

Applying the previous modularity criterion of distribution of knowledge — who must know what? 
— we see that in this approach:

• Target classes only know about fundamental operations, such as sugar_content, characterizing the 
corresponding types.

• An application needs only to know the interface of the target classes it uses, and the two essential 
features, register and visit, of the VISITOR library class. If it needs new operations on the target 
types, not foreseen in the design of the target classes, such as cost in our example, it need only 
provide the operation variants that it needs for the target types of interest, with the understanding 
that in the absence of overriding registration the more general operations will be used for more 
specific types.

• The library class VISITOR does not know anything about specific target types or 
specific applications.

It seems impossible to go any further in minimizing the amount of knowledge required of the various 
parts of the system. The only question that remains open, in our opinion, is whether such a fundamental 
mechanism should remain available through a library or should somehow yield a language construct.

6.4 Assessment

The introduction of agents originally raised the concern that they might cause redundancy and hence 
confusion by offering alternative solutions in cases also amenable to standard O-O mechanisms. (Such 
concerns are particularly strong in Eiffel, whose language design follows the principle of providing “one 
good way to do anything”.) This has not happened: agents found right away their proper place in the 
object-oriented arsenal; designers have no trouble deciding when they are applicable and when not.
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In practice, all non-trivial uses of agents — in particular the cited pattern replacements — also rely 
on genericity, inheritance, polymorphism, dynamic binding and other advanced O-O mechanisms. This 
reinforces the conviction that the mechanism is a necessary component of successful object technology. 
(For a differing opinion, see the Sun white paper explaining why Java does not need an agent- or 
delegate-like facility [18]. It shows how to emulate the mechanism using Java’s “inner classes”. 
Although interesting and well-argued, it mostly succeeds, in our view, at demonstrating the contrary of 
its thesis. Inner classes do manage to do the job, but one can readily see, as in the elimination of the 
Visitor pattern with its proliferation of puny classes, the improvement in simplicity, elegance and 
modularity brought by an agent-based solution.)

Agents, it was noted above, allow object-oriented design to provide the expressive power of 
functional programming through a general mechanism for defining higher-order functionals (operations 
that can use operations — themselves recursively enjoying the same property — as their inputs and 
outputs). Even lambda expressions find their counterpart in inline agents. These mechanisms were 
openly influenced by functional programming and should in principle attract the enthusiasm of its 
proponents, although one fears that some will view this debt acknowledgment as an homage that vice 
pays to virtue [16].

Setting aside issues of syntax, the only major difference is that agents can wrap not only pure 
functions (queries without side effects) but commands. Ensuring full purity does not, however, seem 
particularly relevant to discussions of architecture, at least as long as we enforce the command-query 
separation principle, retaining the principal practical benefit of purity — referential transparency of 
expressions — without forcing a stateful world into the artificial stranglehold of stateless models.

Agents bring the final touch to object technology’s contribution to modularity, but they are only 
one of its elements, together with those sketched in this discussion, and a few more. The combination of 
these elements, going beyond what the functional approach can offer, makes object-oriented design the 
best available approach to ensure beautiful architecture.
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