La résistance

In 1992, the power of C++ dominated the known programming world. All the world?
Not quite. For in a small Gallic village... Willie Watls talks to chief Eiffel Druid Bertrand Meyer.

Can you give us a sketch bistory of
yourself and Interactive Software En-

gineering?

1 am originally a pure product of the best
that the French system has to offer in
terms of general, scientific and engineer-
ing education. This was completed by an
MS in computer science at Stanford in the
Us.

At Stanford I didn't have enough time to
leam much in detail, but I learned what was
important and what was not, So that after
that I was able to read a lot and learn by
myself. [was already working in industry,
but at least what I learnt what was import-
- ant from Knuth, McCarthy and a few
people like that. I also learnt about object-
oriented technology at Stanford. I was for-
tunate enough to run into a description of
Simula and it struck me right away as the
way (o program.

After that I came back to France, and went
to work for a company called 'EDF*, which
is the equivalent of what the Central Elec-
tricity Generating Board used to be in Bri-
tain. I was head of a group which was in
charge of software engineering, pro-
gramming education, software engineer-
ing tools, libraries and also links with
research in software engineering.

I1hada kind of dual role - partly operational
(very operational, actually), but also at the
same time research. The non-academic
side involved, among other things, setting
up a training programme on modern soft-
ware methodology, which opened my eyes
to the reality of industrial software devel-
opment, At the same time [was quite active
in research in programming methodology.
1 wrote a book called Méthodes de Pro-
grammation, ie ‘Programming Methods’,
which was very important for me and was
also quite influential in France. It was used
in the main educational institutions, and it
put me in contact with professors.

28 .EXEMagazine, Vol 6, Issue 11, May 1992

Bertrand Meyer and Eiffel

With the current plethora of object-orlented languages and tools, and C++ appar-
ently set to conquer the Universe, the reader might reasonably ask why .EXE
chooses to devote so much space to the inventor of yet another language - a
!ang;.ut;tge which is still comparatively unknown in the wider programming com-
munity.

The answer, In a nutshell, is Meyer's book Object-Orisnted Software Construction
(pub. Prentice-Hall, ISBN 0-13-628048-3). This book, | feel | can state with little
danger of effepllve contradiction, contains the most lucid description of object-
orlented techniques that you will find; whatever their opinion of the Eiffel language,
few of Meyer's opponents will deny that he can write like an angel.

The book has acted as a superb advertisement for Eiffel. Interest in the language
has spread from the academic world, and Is now beginning to appear in the
commercial mainstream. At the same time, control of Eiffel has been passed from
Mayer‘s. company Interactive Software Engineering to a non-profit consortium, and
alternative (non-ISE) implementations of the language have begun to appear,
notably SIG's implementation for DOS. Eiffel is fast becoming a practical possibility
for ordinary projects.

Eiffel is different. It Is not just another Algol variant with a few bolted-on object
extensions. Programmers who track current thinking should at least to know about
the ideas in Eiffel; this interview may serve as a taster for further reading. WRW.

Santa Barbara

Thad this dual career for about eight or nine
years, In 1983, I decided to develop the
academic side of me a little further, so Ttook
what I thought would be a year's sabbatical
at the University of California Santa Barbara
(in the end Tstayed four years), There [taught
much of the basic software cumiculum,

Now, in the data structures and algorithms
course that I taught it was the department
policy that the professor should use C, This
was strange, because most of the other
courses enjoyed a lot of academic freedom,
But C was a particular requirement because
they were using this course for two pur-
poses: 1) the official one - to teach data
structures and algorithms - and 2) to serve
as a filter to separate the men from the boys,

You're saying the course was made

deliberately difficuli?

Oh yes. Deliberately puzzling. I hated it. I
should say that I didn't know C very well at
the time, so I had to learn it - and it was
horrible, I wanted to teach data structures,
algorithms, and systematic approaches to
programming problems. Instead of that, I
found myself trying to help students debug
programs using pointers, finding incorrect
memory references and so on. I decided
that I could never do that again,

So in 85 T started Interactive Software En-
gineering with a few colleagues in order to
follow up certain aspects of our research,
The work in the company soon became
more interesting, fiom a purely scientific
viewpoint, than the work we were doing in
the University, because I could use what-
ever I found scientifically valuable as op-
posed to bowing to the student pressures
to use C. '

When did Eiffel appear?

When we started the company we really
wanted to develop some CASE tools - in
particular a structural editor, now the Archi-
Text product, But I also wanted to use
proper techniques - I didn’t want to be too
far from what I was trying to teach. So we
looked around for a decent object-oriented
environment and we just couldn’t find one.
Smalltalk was attractive, but it was too far
from the mainstream. C++ was available (as
was Objective C) but we really didn't dis-
cuss it. It was not up to our standards,

I very quickly wrote a specification for a
modern version of Simula, with some sim-
plifications ancl some extensions, 1 also a
wrote a basic version of the libraries. Li-
braries are the key to the success of object-

oriented technology in Eiffel, If it can be
defined by just one sentence, Eiffel is a
language to write the Eiffel libraries - that is
to say to write the best possible, reusable
industrial-quality software components
that we could think of.

I did that in just a week or so, and that was
it. At first, we didn't really think about it as
being a tool for others. It was only months
later thut we realised that we had something
that no-one else really had: a complete,
staticallytyped, efficiently implemented
language that could actually provide an
object-oriented solution to mainstream in-
dustry. It's only then that we started think-
ing about marketing the product.

How was Eiffel first implemented?
Was it one of those languages which
was always implemented in itself?

No. We didn't have a hootstrap strategy
initially, which may have been a mistake.
We justused the obvious solution, thatis to
sayto write it in C. AndIshould say we were
sorry for that decision for a long time. It is
only in Version 3 that we have managed to
write the entire system in Eiffel, With our
portability requirements, C was the almost
inevitable chaice,

What's in a name?
Why is it called ‘Eiffel’?

The question should be, ‘How could it be
called anything else? It was almost inevit-
able, First there's this habit of naming lan-
guages after people: Pascal, Turing and
many others. We decided, for once, to take
not a scientist but an engineer, and a really
great engincer, Second reason: the method
promotes bottom-up software construc-
tion. If you think of the shape of the Eiffel
Tower, and you try to build it top-down...
Third, and probably the important: if you
look at that structure, it's an extremely ele-
gant, powerful, reusable, extensible struc-
ture, However it is built of a few small,
simple parts which you combine, which is
exactly the same idea as object-oriented
software construction.

The opposition

How would you characterise the dif-
JSerence between Eiffel and C++?

There is a difference in philosophy and
there are technical differences. The dif-
ference in philosophy comes from u differ-
ent view of what ‘compatibility’ means. |
don't think there is any disagreement with
respect to the necessity of reusing existing
software, particularly C software, The

Bertrandeyer

divergence resides in how it shoukd be
done,

The C++ (or Objective C, or Turbo Pascal)
approach is that you should have compati-
hility at the language level. So you take C
and you add things 1o it. The Eiffel view is
that compatibility with existing software is
not an excuse for polluting the linguage,
The language can be C, which is a certain
technology, or it can he object-oriented,
which is completely different.

You don't make a device that is both a
diode and 2 transistor. If you have an exist-
ing machine that uses diodes then, fine -
you want to keep it. You could put in wires
to the transistors and have communication
links and so on, but you don't try to trans-
form a diode into a transistor incrementally.
This is the Eiffel position. You choose be-
tween the Eiffel, object-oriented world and
the C world, but you should keep the two
separate; because otherwise you risk losing
on both counts,

You lose the simplicity of C: you lose the
ability to implement it efficiently, the ease
of writing it and the ease of teaching the
language, which are the three major ad-
vantages of C. On the object-oriented side,
you again lose a lot, You lose simplicity -
because the object-oriented paradigm has
to be combined with totally incompatible
concepts. You lose the ease of teaching the
object-oriented paradigm. And you lose
some of the most important advantages of
object-orientedness. Forexample, it is quite
impossible to have garbage collection in C.
You lose typing - you cannot have hoth the
Ctype system and an object-oriented type
system. You lose the ability to do things like
exception handling properly, as you must
take into account all kinds of bizarre side-
effects.

So you actually lose the most important
benefits, the real breakthroughs, the quan-
tum leaps that you can get from object-
oriented technology, and all because of this
stupid requirement of remaining com-
patible with something that has nothing to
do with object-oriented technology. The
technology is too good, too important, too
potentially beneficial 1o damage it because
of concerns that may appear valid in 1986,
or 1989, or 1992, but will totally disappear
from the scene if the technology becomes
successful.

As fortechnical differences, there's a whole
list. Type-checking; assemions; genericity
(particularly constrained genericity, which
is the only way to get safe genericity); ex-
ception handling (which has been pro-
posed for C++, but Eiffel has them now),

EXE Magazine, Vol 6, Isue 11, May 1992

29

!

the assignment attempt (the ability to force
a type on a varjable) which is absolutely
essential; and there are the persistence fa-
cilities. Going a little bit beyond the lan-
guage, the presence of standard libraries is,
I think, a really strong plus for the Eiffel
approach. In C++ there are all kinds of
competing libraries but nothing has
emerged as a real standard, in part because
the language does not support the tools
(such as genericity) for building libraries.

Template faults

Wwith regard to genericily, what is
wrong with templates as implemented
in C++?

To start off with, templates are only now
getting into the language. But they are only
an emulation of genericity. In particular
they are not closely connected to the type
system, and there is no support for con-
strained genericity. It is very imporant to
be able to accept actual generic parameters
only if they are descendants of a certain
class. For example: T want to have vectors
of something of type T, and I want to be
able to add two vectors, so objects of type
T must have the + operation applicable to

them. It means you can then have a vector
of integers, but you cannot have a vector of
nuclear submarines if a nuclear submarine
doesn't have a + operation.

Templates cannot support this because
they are just a kind of macro. I see templates
as making more official what people had
Ireen doing manually in C++ so far, which
is using the pre-processor to generate vari-
ations of a class.

But templates do give you some type
protection.. Yow're saying that's not
enough?

Yes, 1 am, Type protection in C++ is in any
case always problematical, As long as you
can have those casts, as long as you can
convert from any pointer type to any other
pointer type, what type we talk about
hecomes pretty meaningless.

In arecent interview with .EXE, Bjarne
Stroustrup said that be didn’t think
that it was necessary to add Eiffel-
style support for assertions to Ct++. He
thought it sufficient tbat one could ac-
quire add-on specialist tools to do the
job, and that be did not believe in

e T - EaC SR

- Aswel g their debugging use, assert
:: andie enferg_e__.'_?gslg_n by Contract’

* Assignment attempt - this s E

R

_ runtime. Using a special assignment sy
<. attemptto assign to an knewn object from

fLil'nc-“o'n and C++'s proposed ptr_cast () and ref ‘cast () 'safe cast’ exten-
glons.- A : , B st

. Genericity - Generlc classes are ‘typeless’ container classes which are assigned

 then yse It to create a list of numbers, a list of windows, a list of addresses. Please
~ 86e Meyer's comments in the text for an explanation of consirained genericity.

g (which Meyer describes as ‘a sordid back-alley dea) is forbidden.

“Pecause It has just been loaded from a database). It the type system prohibifs the -
*asslgnient, the target object becomes void; if it is allowable, a normal assignment
takes place. This system fulfils the same purpose as Turbo Pascal's TypeOf.

~ a type when Instantiated. For example, one cauld bulld an all-purpose 11ist typs,

' ;éhmiﬁlng - Eiffel Is a very strongly typed lang'uag'e. In padiculér. all type- :

32 EXE Magazine, Vol 6, Issue 11, May 1992

sunalire

cramming too many features into a
language. Is that not a fair comment:
if you need assertions, you should buy
a separate tool?

'The comment ‘T don't believe in cramming
too many features into a language’ is a fair
comment. I would say that about C++,]
don'tthink itis properto have, for example,
function pointers and dynamic binding in
the same language, because it is confusing.
If you don't believe in crowding too many
features into a language, then you wouldn't
produce C++, because C++ is exactly that.
It's taking C, which already had its share of
language features, and adding more, in-
cluding some which are redundantand in-
compatible,

This business of function pointers istypical.
If you use an object-oriented language like
Smalltalk or Eiffel, then to obtain automatic
selection from various operations at run-
time you use dynamic binding. If you use
C, you can emulate this in a rather unpleas-
ant low-level fashion by having arrays (or
other data structures) of function pointers,
Now this is another way of doing things; it’s
less nice, but it works. What I don't think is
proper is the C++ approach in which you
have both mechanisms. Programmers have
to choose all the time between the one way
of doing things and the other, which means
a lot of confusion and complexity,

I decided that I should learn up about C++
after all, so I went and read the Ellis and
Stroustrup book (C++ Annotated Reference
Manual) from cover to cover. 1 was horri-
fied to see how many criticisms there are in
that book of C and C++. There are com-
ments like, ‘the array facility of C, and hence
of C++, is brain-damaged.’ You read this
and you say, ‘What? You're designing the
language, and now your telling us that
something is still wrong?' -

There are comments like thison many other
aspects, There are comments like, ‘This is
available, but don't useit.” I don’t think that
is good language design. If you produce a
language design book, you should be
proud of it and there shouldn’t be any dark
corners. I think I can say that about Eiffel.
I'm not saying that Eiffel is perfect, but I
cannot point to any construct in Eiffel for
which there is a comment ofthe form ‘Don't
use i’

Returning to your question: I don't think
that assertions should be separate from the
language. Assertions are absolutely essen-
tial to object-oriented design. This was
something which was mentioned in Objeci-
oriented Software Construiction, but clearly

Bertrand Meyer

not enough, I've written more about it since then. It's this whole
idea of Design By Contract. That, for me, gave the theory behind
object-oriented software construction, It's not just that you have
classes and inheritance and so on; It's that you build software in
such a way that it's made of pieces that communicate with each
other on 4 basis of well-defined obligations and benefits,

1 have tried to explain Design by Contract in a chapter with that
title, part of a collective book that has just appeared, Advances in
Object-Ortented Software Engineering. It's this idea that software
is 2 combination of various pieces which communicate with cach
other not on the basis of pre-defined assumptions, but on the basis
of properand precise definitions of what cach one of them expects
from the other and must provide. This is what justifles the idea of
preconditions, postconditions and invariants, and [don't know
how to teach object-oriented programming without them, When I
teach object-oriented techniques, I spend anywhere between one
third and one half of the presentation on assertions - especially in
connection with inheritance. I don't think anyone can understand
inheritance properly without introducing assertions,

1 also don't think you can understand the notion of class without
the idea of the invariant, which expresses the integrity constraints
on a certain data type independently of how the data type Is
implemented. This is where I disagree with Bjarne Stroustrup. I
don'’t think assertions are ‘fairly useful’,

Be assertive

Do you think people who use Eiffel always use tbe asser-
tlon mecbanism?

People who use Eiffel well use them a lot. Even people who don't
include assertions in their own software, because they haven’t yet
understood the power of this notion, benefit from them anyway.

The practice of software development in Eiffel is pretty much based
on libraries. When you switch to Eiffel, you don't necessarily see
as the major change a change in language or in method; what you
see is a way to start working at a higher level of abstraction by using
libraries. Now, these basic libraries are fully loaded with assertions,
The documentation is essentially based on assertions, and their use
is based mainly on assertions too. So even if somebody is only
starting to work with Eiffel, and has is not yet putting assertions in
his own software, he is going to benefit from them anyway.

It is true, however, as you implicitly suggested, that some people
who start with Eiffel - especially if they come from something else,
like C++ - don't necessarily put assertions to their full use. But they
usually start using them after some experience.

Anotber point about assertions: when reading your book
Objeci-Oriented Software Construction I found that i was not
ahvays obvious to me, as a programmer ratber than a
mathematician, why particular assertions were applied -
particularly in the case of the invariant. Is it just that I am
not smart enough, or bave you found this to be a more

general difficulty?

In my experience, and the experience of people working with me
- both developers in our company and users - it is true that you
don’t necessarily get the invariant right first time. As you start
improving a class, adding things to it, and understanding it better,
this process is pretty much embodied in writing the invariant and
improving the invariant, The more you understand what a class is

RENT "~ Conmunicatons and Teismery Consutania

BEWARE THE PIRATE'S PATCH\

You sell your software. You i @\
don'tgiveltaway. lt needsthe /f '
kind of protection that only « _#

a top quality]
UN-PATCHABLE
dongle affords, but
you don't want to
pay the Earth forit,
and you want to be
sure that you'll not
be making mislakes
in incorporating It into ; :
your code. ¥

e

The MAXPRO system Is for you. There are
microprocessor based units at reallsitc prices which lake
care of complete .EXE files without access to source code.
Set stop dales, tamper detection and many other faclities
on a menu-driven front end. Encrypt in just moments.
MAXPRO even copes with such as Clipper, QB & Clarion
files with Internal overlays. Neat trick.

For additional information
contact us at

L] [
Breni Communications
Unit 2
Dragon Industrial Estate
Harrogate HG1 5DN

Tel: (0423) 566972
kax: (0423) 501442

[Coreevosm]

SOFTWARE SECURITY
MODULES

Hardware devices (dongles) are a recognised and
proven means of protecting software from
unauthorised use and piracy.

Our range of devices offers some of the most robust
and troublefree solutions around. All units are
cascadeable and can be uniquely coded for each
customer. Features include:

» PC/non-PC.
* R5232/Printer.

% Internal memory
(some units)

= Software drivers supplied.

* Minimum 2 year
guarantae.

#* From £14 to £50

Control Telemetry of London
11 Canfield Place, London NW 3BT
Tel: 071 328 1155 Fax: 071 328 9149

[Corcieno.sar]|

about, the more you are able to express
invariant clauses andl; when you add a clause
toyourinvariant, then you gain something in
understanding what the class is about.

This doesn’t necessarily come right the first
time - but proper software design doesn’t
come right first time anyway. The process
of improving the software and the process
of writing and improving the invariant go
together. It's not surprising that these things
should appear a little difficult at figst - soft-
ware design #sdifficult. But invariants, and
assertions in general, enable you to get to
the heart of the matter.

Garbage
Can we talk about memory manage-

ment. Why do you use garbage collec-
tion, instead of ‘manual’ beap

managing systems?

In the manual for Eiffel-S, which is the SIG
implementation for DOS, they have a very
nice analogy. They say something like: ‘An
object-oriented program without a garbage
collector is like a pressure cooker without
avalve. You don't know exactly when it is
going to happen, but you know that sooner
or later it is going to explode’,

An object-oriented program generally cre-
ates a lot of objects. A lot of them are going
to become unreachable. You can of course
make sure that not too much of that hap-
pens - having a garbage collector is not an
excuse for generating tonsand tons of garb-
age, you still have to be careful - butif you
start managing these things yourself it's
dangerous and it's tedious,

It's dangerous because you always run the
risk of ‘freeing’ (in the sense of C's
free ()) an object which in fact is still
needed. This is the source of some of the
worst bugs that exist in C programming, It's a
very serious problem, because the conse-
quence of the error is usually quite remote
from the source of the emor. Usually when
you think you can free an object and you are
wrong - there is still some reference pointing
to it - you use that reference much later inthe
program, 5o thattracing back the cause of the
error may be extremely difficult,

As for the tedious part: if you do your
storage management manually, you end up
polluting your code. If you want to do
manual reclamation, you have towrite a lot
of recursive free procedures. As long as
you have the kind of complicated data
structures that are possible in object-
oriented programming, it's not enough to
free one object; you have to follow the

34 mxe Magazine, Vol 6, Issue 11, May 1992

pointers. You end up being the garbage
collector yourself. Programmers have bet-
ter things to do with their time,

The Ellis and
Stroustrup book
is the most
damaging
criticism of C++
that I know

It seems to me that if you don't have a
garbage collector, you lose many of the
major benefits of object-orientation. Per-
sonally I wouldn't write an object-oriented
program in an environment in which I
didn't have a garbage collector.

Cprogrammers are bostile to garbage
collectors because of the time over-
bead...

That's just because they don’t know about
modern garbage collection technology. In
version 3 of our implementation, we esti-
mate that the overhead of garbage collec-
tion - the difference between running a
program without garbage collection or run-
ning it with garbage collection - is about
20%. But this is not the real overhead, be-
cause if you didn't have the garbage collec-
tor, you would have some overhead due to
manual reclamation anyway. With version 3
- version 2.3 was not as good in this respect -

we do not expect anybody to run an Eiffel

program without garbage collection enabled.
But you can still switch it off if you want.

On the street

How many implementations of Eiffel
are there at the moment?

Among the ones [know about are: there's
of course ours - [nteractive Software Engin-
eering’s implementation of Eiffel; there’s an
implementation by SIG Computers of Ger-
many, which is essentially a DOS and OS/2
implementation, although there’s also a
UNIX version of it; there’s a company in the
US called Power Solutions that is about to
release its implementation; and there's a
GNU version that is in the making but is not
released yet. Oh, and I hear that there’s
some people called Nexnix Ltd in Brighton
who are developing a compiler.

nd

By the way, the ISE implementation will sup-
port DOS/Windows some time later this year.

What are the main features of version
3 of the Eiffel language and environ-
ment?

Probably the most important thing is this
‘melting ice’ idea, which is an attempt to get
the best of both the interpreted world and
the compiled world. If you look at why
some people use environments such as
LISP systems and Smalltalk systems, once
you have removed the superfluous argu-
ments, it boils down to just one, practical,
serious idea. With an incremental environ-
ment such as Smalltalk - I want to say ‘in-
terpretative environment’ but that's not
quite accurate - you can get a very quick
wurn-around.

Unti! now, with statically typed, com-
piled, object-oriented languages you
have had to go through a fairly classical
edit-compile-link-execute cycle. This
means in a big system, even for a small
change, there’s a fairly long wait. This Is
an issue we have been grappling with for
a long time, because there is absolutely
no philosophical reason why you should
have to choose between a quick turn-
around and static typing.

Static typing is good. It gives you safety,
because you are able to catch errors much
earlier, and it gives you efficiency, be-
cause it make it possible to generate
much, much better code. And there’s no
reason why these goals should be incom-
patible with a very, very quick turn-
around. ’ '

This is essentially what this melting-ice
technology of Version 3 achieves. You can
have extremely quick re-execution after a
change, even though you retain the static
typing. The idea is very simple. Whatever
you change inside the normal development
cycle is going to be interpreted, so that it's
extremely fast to see the results of a change
after you have made it. The interpreter
doesn’t have any significant negative effect
on performance, because typically you're
dealing with a big system and after a change
only a small part of it will have been af-
fected, so most of it will still be compiled.
We think that this is a major advantage that
will make all the difference in the world.

Another aspect to version 3 is the presence
of the library called EiffelVision, This is a
graphical user-interface library supporting
various tool kits - to start with Open Look
and Motif - with complete source code
compatibility. So people can write the best

T AL e baten o e T

S S b ik

into user interface applications in terms of
high-level concepts like menus, windows
and so on, without being concemned with
the details of Motif etc. Then they can just
port their application 0 various graphical
platforms without making source changes.
Eventually this will also apply 1o Windows
and Presentation Manager.

Also important in version 3 is the availa-
hility of the standardised relational data-
hase interface. This follows the same

* principles as our GUI library; that s to say
you program in terms of the SQL model and
then you go to some other RDBMS without
source code changes. This is very important
for big projects in commercial areas. Most
big relational systems currently use C, 50 it
is very important to be able to access tradi-
tional data quite easily and to map objects
onto relational data.

Looking forward

A recent .EXE Survey showed that
about balf our readers used C or C++
as their primary development lan-
guage, about 10% use Pascal, and no
other single language collected more

than about 5%. There were no Eiffel

users. What is your prediction for the
result of next year's survey?

Let me consider two years from now, when
Eiffel will have had a chance to make an
impact on the DOS world. T think that people
coming from languages like Pascal and
Modula-2 will very naturally migrate to Eif-
fel. They'll find themselves on safe ground
with strong typing, general software engin-
eering concerns and so on. I would see
them migeating en masse to Eiffel.

I think a proportion of people programm-
ing in C will migrate to Eiffel as well. Those
are the people who, again, have serious
software engineering concerns, and want
to be able to guarantee the quality of the
code they produce. I don'tknow how much
that is - it’s a certain proportion of people
writing in C today.

As for people using C++ today; they’re
still to a large extent the gvant garde, the
early pioneers. 1 would say that once these
people have understood the benefits of
object orientation and the limitations of
C++, they will look for something more
serious. I don’t think there is much com-
petition to Eiffel.

Bertrand Meyer

So without making any too wild predic-
tions, I think that, if you repeat your sur-
vey two years from now, from 15%to 25%
will be using Eiffel.

And C++?

I think that five years from now, no-one
will be using C++.

This despite the fact that 80% of our
C users are looking at C++?

That's all they have heard about. To a
certain extent you cannot expect any-
thing else. Suppose somebody has been
raised to the Stalinist creed, who has
only ever read political literature favour-
ing Marxism and Leninsm. If you ask
him, ‘What is the next thing?’, he’s not
going to answer ‘Democracy and the
free market.’

EXE

Many thanks to Dr Meyer for taking the time
to give this interview. To find out more
about Eiffel, you should contact Caroline
Browne at Applied Logic Distribution (081
780 2324).

Looking to add TCP/IP network access to your

system designs?

rovides the full TCP/IP

independent.

and porting services.

Now you can incorporate the industry
standard TCP/IP protocol suite in your
system designs with FUSION Deve oper’s Kit.

Designed for the OEM and systems
integrator, FUSION Developer's Kit
rotocol suite
including TELNET (virtual terminal), FTP
(File Transfer Protocol), and R-Commands.

FUSION Developer's Kit also has a flexible
C-source code architecture, making it
rocessor and operating system

Currently used in hundreds of process
control, embedded systems, and end-user
designs, FUSION Developer's Kit from
Network Research comes with full support

__% Network Research

36 EXE Magazine, Vol G, Issue 11, May 1992

[Corceno.sz ||

