
EIFFEL .. .

Raphael Simon, Emmanuel Stapf,
Christine Mingins, and Bertrand Meyer

Eiffel for E-Commerce under .NET

At its July 2000 Professional Developers Conference (PDC),
Microsoft introduced a new development framework, .NET,
providing a whole set of mechanisms to program Web and

Web-aware applications. Presented by Microsoft officials as the
company's most important innovation since the introduction of
Windows at the firstPDC in 1991, .NET makes an unprecedented
effort at supporting many different languages through a Common
Language Runtime. Heeding the lesson from Sun's failed attempt
to impose a one-Ianguage-fits-all Java corset (as stated, e.g., by
Scott McNealy: "1 don't understand why anybody would be pro
gramming in anything other than Java") 1, Microsoft has recog
nized what every software manager and developer knows: Today's
enterprise software world is multilanguage.

For more than a year prior to the official unveiling of .NET,
Interactive Software Engineering (ISE) and Monash University
collaborated with Microsoft to make a first version of ISE Eiff'el
available on .NET. During his keynote introducing the technol
ogy at the PDC, Chairman and Chief Architect of Microsoft, Bill
Gates, invited one of the authors to present the new .NET Eiffel
offering called Eiffel# (see Fig. 1). The other language featured in
that session was COBOL, ported to .NET by Fujitsu Software. It
is significant that these two languages represent, on one side, com
patibilitywith the past's legacy, and on the other, readiness for the
challenges of today's mission-critical enterprise applications.

We feel that Eiffel on .NET provides an ideal combination for
companies wishing to take advantage of best-of-breed technolo
gies in operating systems, Internet and Web infrastructure, soft
ware development methods, and development environments. In
particular, the openness of Eiffel to other languages and envi
ronments combined with .NET's emphasis on language neutral
ity, makes the resulting product an ideal vehicle for building
applications containing components in many different languages,
with Eiffel serving as the "glue" between them. The first JOOP
column in this series presented Eiffel as the "component combi-

Raphael Simon is a senior engineer in charge of the Windows applications and tools
division at ISE, Santa Barbara, CA. Emmanuel Stapf is a senior engineer at ISE and
head of the compiler and environment division. Christine Mingins is Associate Professor
and Associate Head of School at Monash University (Melbourne, Australia). Bertrand
Meyer is CTa of ISE and a Professor at Monash University. They may be contacted
at info@eiffel.com .

42 .lOOP OCTOBER 2000

nator"2; Eiffel on .NET gives a new
dimension to this role of EiffeL
We also see that the combination
of Eiffel with .NET's Web mech
anisms, especially Active Server
Pages + (ASP+), provides re
markable tools for building Web
and e-commerce applications.

This column describes the cur- Figure 1. Bertrand Meyer and
rent state of the Eiffel# imple- Bill Gates introducing Eiffel#.
mentation, related Eiffel work on
.NET, and future developments. A longer article written for MSDN
before the PDC3 provides additional background.

ABOUTTHE.NETFRAMEWORK
The .NET framework is the next generation Web technology de
veloped at Microsoft, which leverages many technical solutions
for building Internet applications. A particularly important com
ponent for building Web-based applications in a considerably
faster and easier way than more "traditional" approaches is ASP +.

The core of the technology consists of a runtime that inter
prets and/or compiles the .NET virtual machine's internal lan
guage, known as MicroSoft Intermediate Language (MSIL), with
metadata. The metadata describes each component part of the
system, including the prototype for all its methods, fields, or
events. One of the most visible consequences of this strategy is
the removal of any need for developers to write separate "glue"
code to make components interact with each other. Unlike COM
and CORBA, component-based development on .NET does not
require any Interface Definition Language (IDL) modules. The
components are just naturally able to interoperate thanks to the
metadata. This is in line with Eiffel's philosophy as embodied in
the Self-Documentation Principle4: Avoid multiple descriptions
of the same software properties with all the resulting problems
of tedious, error-prone development (Who really wants to write
a module and then write its interface again in IDL?) and risks of
divergence between these descriptions. Instead, include all the
requisite information in the software, and rely on software tools
to extract views at different levels of abstraction.

The unprecedented level of interoperability provided by the

.NET framework has some fascinating consequences for Eiffel
users. At the PDC, and again at TOOLS USA 2000, we showed a
debugging session within Visual Studio.NET that extended across
languages to follow execution step-by-step from Eiffel classes, to
classes written in C# (the native language introduced by Microsoft
to program the framework directly) and back again to Eiffel. It is
also possible to have Eifid classes inherit from classes written in
C++, C#, and other .NET languages. This means that Eiffel pro
grammers can have immediate access to thousands of reusable
library classes available in other .NET languages, not just as" con
surners," but also as "extenders," taking advantage of the Eiffel
mechanism to extend these components and integrate them into
their own applications. The possibilities for reuse and interoper
ability are far ahead of any earlier technology.

PRODUCING .NET SYSTEMS FROM EIFFEL

Targeting .NET for a language compiler means being able to pro
duce MSIL and the associated metadata. Generating MSIL would
be enough if the aim was just to «compile Eiffel under .NET," but
would fall short of our goal of providing a general-purpose frame
work for multilanguage interoperability because other languages
would not be able to reuse Eiffel types without the metadata that
describes them. One of the objectives set by ISE regarding the in
tegration of Eiffel is the ability to reuse existing types written in
any language, as well as the generation of types that can be un
derstood by any other .NET development environment. Eiffel, as
noted, is a .NET extender, meaning that you can write Eiffel classes
that inherit from classes written in other languages, extend them,
and then recompile them to IL, giving other environments the
possibility of reusing the new type.

This generation ofMSIL and metadata is done through a spe
cial switch in the Eiffel Ace file (the compilation control file) so
that the new Eiffel compiler is fully integrated into ISE's IDE,
EiffelBench. Existing Eiffel programmers will be able to work ex
actly as they did before the integration. As noted, ISE Eiffel will
also be available under Microsoft's Visual Studio.NET. This in
tegration will help new Eiffel developers that do not want or do
not have time for learning a new environment, but already make
use of Visual Studio to shorten their learning curve. The inte
gration will support all the specific functionalities of Visual Studio
such as syntax highlighting, the debugger, wizards, etc.

Another key goal is the ability to write ASP+ pages in Eiffel.
This is available today and is described in a later section.

Strategy

With these goals in mind, ISE organized the integration around
two major milestones. The first step of the integration has led to
the implementation of a new language called Eiffel# (pronounced
Eiffel sharp). This is an almost complete subset of Eiffel specifi
cally designed to target .NET that embodies the full extent of
Design by Contract and genericity. The only major construct not
supported in Eiffel# is multiple inheritance from effective (non
purely-abstract) classes. Eiffel#'s object model already goes be
yond the model supported by most 00 languages (Java, for

example, has neither genericity nor Design by Contract) and is
more than sufficient to build real applications while keeping the
native object model of .NET.

This step has been completed and Eiffel# is available today
from ISE. The second step, currently in progress, will extend the
results to encompass the full object model ofEiffel.

Both the integration into Visual Studio and ASP+ started with
Eiffel#. The support for ASP+ started with the support for Web
services.

The release schedule, including support for full Eiffel, will be
synchronized with the schedule for successive beta and com
mercial releases of .NET.

Web services in Eiffel: ASP+ and .NET

One of the most exciting aspects of the technology is the ability
to develop Web services in Eiffel. We encourage readers to see
the interactive demo online at ISE's Web site.s!twill enable you
to register (fictitiously) to the TOOLS conference, then see the
list of registrants as if you were one of the conference organiz
ers. A particularly interesting feature is the use ofEiffel contracts
for the testing and debugging of Web and debugging applica
tions. If you enter wrong information (see Fig. 2), you will get a
contract violation.

The Web user did not fill in the "last name" entry, which a
precondition requires to be nonempty. Clicking on Register will
yield the following page (see Fig. 3):

You wouldn't, of course, expect to show this page to a nor
mal user of the site. But for an e-commerce site such as this one,
developers' contracts provide a remarkable tool for specification,
documentation (as in the rest of Eiffel development), and, as
shown here, for testing, and debugging.

Another attractive aspect of this demo is that it can instanta
neously be turned from a Web application running in a browser,
into a client-server application running on a Windows client out-

No_. T"hl. fI.a d .. mo ",hI), .nd willllltt ",I,tI'''T""U' To Uloilter/or"'tOOt.$ U&A.~ • • IJlnt,<>f the "YtlU'·I" .. 4w'l'I~d
!!~~(lIOn, <h 1"11 •• " ht1l,'" In 'i"U. ".,I»f'. (July .aO-Augun . .f). Ob tb \h. ,,,,,,I ;(J'~:,,(,I,JU. ~c.:.:) ti!='W'.',14t,.;;\

)Nera

I~m.

(FulI.-T"". F II,IM.m •••• :::I
P' pre-Conf@r'e;nce,)Uly 30

P WET. July 30

P Conrliltente, Jul)! 31 - August J

I;J Eiffer Summit, August 1

l~ Post"'CQnferancs, August ..

ll1!1lilllOl'

Figure 2. Filling in an Eiffel#-ASP+ form (erroneously).

http://www.joopmag.com ..lOOP 43

EIFFEL

:i !'It ~ \leiH FMrtJ$. Teds t!IIl
:t,;kt:-;~·i~~-~w~~;;; .. ~-·~S:J~·I~-~·· .-~-----.---~.-.-----.-.
n~!ii~~:{-·ei1~It\l1·~,... m••• ...:1-~G?
!i~li.~_.~.iJA._~~~.~~.ltiji~_~~:.~·T~.~~.2~.~~_)~_~~ .. ~~_~T~_~.·~

ASP+ Error

Precondition violaUon: vall(/astname

Description: AnlJlihancied exc€pnon occurred at runtime dunng the exewtion oftlle current web requ~t Common sources of
these errors include (hut are not bmlted to)

• Attempts to access a method or property on an uninitialized object referenc~
• Att~pts to load a class that has not been deplO')'ed within the web application's "bm" direct01Y
• Attempts to as~gnlcast a variable to an object reference not compatible \'lith its ~
• Attempts to acc~s a file that does not exist on the fileS'lStem

Please rel18W the stack ~ace below to get a better understatldlng of I'tllat the error IS and \\liere it onglna!&iJ from in the code.

Important Note: Rulltime errors often occurontywhen certain conditions/scenarios are met (for example: a nuJ!.reference error
may Gnt{ happen vmen a userleaws a text field on a form empty). Consider using a debugger 10 more accurate~walk!hrough the
specifiC steps/condItions thai caused a failure to occur

Exception Oelat1s: System.Exception: Precondlnon\10Ianon: ViludJasLname

stack Trace:

([xception: Pr<con<iition violation: valid_l"c_llO!!Iel
at IleQjatt.CionService.Regi~trat.add reglstra.qSystem.Stri!llJ, System.String, System.StCl!llJ, System.Stri!llJ, S
at lliP'l.Regl.traelon .. px.Reglacer Ciick(System.cnject, SY'tem.£ventArg'l .
at System.;@. 01. VebCOntro Is. Button. OnClIck(Sl"teill. £ventl.rgsl
at System, Web. 01. VebeOntro!!. BUtton. Ralseh"SaclttVent (SY'tem.Strlngl
at System.;@. UI.Page.RelsePo,tBockEvent (Syatem. CollectloM.N&lIeV.l~eColl.ctiQn)
at Systelli. VeJ).UI.Pl.f/e.~roce~.R.qumln\erna! ()

[HttpExtlptlon IOx8000!OOSI1
at Syslem.Vtll.UI.P~t.~ndlclm~t5y'telll.Exc!ptlCnl
6t system.;@.UI.Pl.f/e.Process1\eQumlnurnal()
lit SY't! •• ~tb.Vl.P*.SY3teJII. Vlb.lHttpHIIlI~ler.Proce"~mISymm.ijCl),HttpCOnteKtl
at S~tl., ~eJ). HttpAppl1eatlonICaIlHandltrExemionStep.txlcute()
at S\'!tem.'elJ.HttpAppljcatiDn.ResUlle~tepa(Sy8teno.£xceptionl

Figure 3. A contract violation for distributed objects.

side of the Web. This is one of the common challenges for en
terprise applications: how to provide both modes of operation,
Web and non-Web, without extensive reprogramming.

The full source text of the demo (Eiffel and ASP+) is available
from the demo page. As you will see, it includes, in its current
form, a small amount of C# ('glue" code in the ASP+ page. This
need will soon go away as we implement Eiffel as an ASP+ lan
guage by providing a '@l anguage=" Eiffel " , directive.

Elffel# vs. Eiffel

A key requirement for Eiffel# is the exclusive use of the .NET run
time without any other Eiffel-specific runtime. The most chal
lenging issue is support for multiple inheritance since the .NET
runtime was designed to support single inheritance only. Because
Eiffel# must only use the .NET runtime, it has to follow the .NET
object model and thus disallows multiple inheritance of effective
or partially deferred classes. You may, however, multiply inherit,
pure-deferred classes.

Eiffel# does not support several of the new Eiffel con
structs that were added after the publication of the current
edition of Biffel: The Language.6 These constructs include
agents and related classes, generic conformance, and generic
argument creation.

44 JOOP OCTOBER 2000

The last difference between the two languages lies in the se
mantics of expanded types. Expanded types in the .NET envi
ronment are directly mapped to the so-called value types.
Although fundamentally the same, Eiffel expanded types and
.NET value types do not behave in the exact same way. In par
ticular, value types are sealed, meaning that one cannot inherit
from them. As a result, you cannot inherit from expanded
types in Eiffel#.

These are the only differences between Eiffd# and Eiffel. In
an earlier presentation,3 we mentioned that Eiffel# did not sup
port Eiffel's covariance for argument types. Since then, however,
we have implemented covariance in the normal Eiffel style.

Other than multiple inheritance, Eiffel# supports all the hall
marks ofEiffel programming: Design by Contract, exception han
dling, and genericity. Genericity came as a pleasant surprise-we
had initially announced it would not be in Eiffel# but found a
way to implement it in time for the first release.

.NET Specifics

While in a standard environment, providing that the choice be
tween building a Dynamic Link Library (DLL) or a Windows
Executable (EXE) is enough, .NET defines new concepts such as
assemblies and modules that any compiler targeting the envi
ronment should support. An assembly is made of a group of mod
ules, either a DLL or an EXE, and corresponds to an application.
F or that reason, the Ace file for Eiffel# introduces new options to
describe the different modules that will be part of the assembly.
The Eiffel# compiler generates one assembly whose name is the
name of the system as given in the ACE file. You may specify
whether the assembly should be an EXE or a DLL in the 11

generat 1 on default option as follows:

system
samp7e

root
ROOT_CLASS: "ma ke II

default
il-.Qenerat10n ("exe ") -- "dll" to generate a DLL

In this example, the compiler generates a single file "samp 1 e. exe II

containing both the assembly and the module. In case you would
lil<e to specify different files for multiple modules, you can use
the module option for each cluster and override the option for
any class in the cluster:

system
samp7e

root
ROOCCLASS: "ma ke II

default
1l_generat10n ("exe") -- "dll" to generate a DLL

cluster
root_c) uster: "C: \my_app II

default
module (IImy_app ")

option
module ("root "): ROOT_CLASS

end

This Ace file defines three modules:

• The first module, which includes the assembly manifest, is
"sampl e. exe ".

• The second module, "my_app.dll",includesallclassesinclus
ter roo t_c 7 us ter except the class ROOT_CLASS.

• The last module, "root. dll", includes the class ROOCCLASS.
This mechanism allows you to define as many modules as you
need and group the classes of the Eiffel system the way you
want to.

Another feature specific to .NET is the notion of namespace.
Any .NET type is associated with a namespace that ensures the
uniqueness of the type name in the system. You can define a de
fault namespace for all the classes of the Eiffel system by using the
following default Ace option:

system
sample

root
ROOCCLASS: "make 11

default
11_generat1on ("exe") -- "dll" to generate a DLL
namespace ("MyApp")

In this example, all the classes of the Eiffel system will be gen
erated in the namespace "MyApp.<cluster_name>" where
< c 7 us ter _name> is the name of the cluster that contains the
class. You may override the default namespace for each clus
ter as follows:

system
samp7e

root
ROOT_C LASS: "make II

default
1l_generation ("exe") -- "dll" to generate a DLL
namespace ("MyApp")

cluster
rooec luster: "C: \my_app II

default
module (IImy_app ")
namespace ("Root")

option
module ("root"): ROOT_CLASS

end

With this ACE file, all the classes that are part of the cluster
rooCd us ter will be generated in the namespace "Root". Note
that the name specified in the cluster clause is not appended to
the namespace defined in the default clause. Finally, the Eiffel#

class might include an a 11 a s clause (see the External Classes sec
tion for a description of the a 11 as keyword) in which case the
name specified in the clause overrides any namespace specified
in the ACE file.

Another major difference coming from the dynamic nature
of the .NET environment is how contracts behave at runtime. In
a "classic" environment, a contract violation results in a raised
exception and the level of assertion checking is decided at com
pile time. This approach is no longer satisfactory in .NET where
the caller of a contracted routine might be in a different module.
The client of a contracted component should be able to decide
which level of contract checking should be set, if any. This is the
reason for having a standard interface implemented by contracted
components that defines the possible contract interpretations.
The interface called IContract defines routines to set the level of
contract checking, similar to those of the Eiffel compiler: pre
conditions only; pre- and postconditions; preconditions, post
conditions, and invariants.

IContractalso allows specifying whether to raise an exception
in case of a contract violation.

interface [Contract

}

1/ subject to modification
public boo7 precondition_activated;
public bool postcondition_activated;
public boo7 invarianCactivated;

public void enab7e_precondition();
public void enab7e_postcondition();
public void enab7e_invariant();

public void disable_precondition();
public void disab7e_postcondition();
public void disable_invariant();

public bool exception_on_vio7ation();
public void enab7e_exception_on_vio7ation();
public void disab7e_exception_on_vio7ation();

public ContractException 7asCcontracCexception();

The Eiffel# compiler will automatically generate an implemen
tation of the [Contract interface with the default contract
checking level specified in the ACE file:

system
samp7e

root
ROOT_CLASS: "make /I

default
1l_generat1on ("exe")
assertion (require) can be "no", "require",

"ensure" or "invariant"

http://www.joopmag.com ..lOOP 45

EIFFEL

If you omit the assertion option then IContractis not generated.
If you choose the option "no" then IContractis generated but no
contracts will be checked until a client activates contract checking.

LEVERAGING THE .NET FRAMEWORK

We have seen how you can use Eiffel#to build .NET components.
Since the compiler generates all the necessary metadata, other
languages can reuse the Eiffel# components in any way they like
(heritance or client relationship). The next question is "how do
I reuse existing components in Eiffel#?» Existing components
cover the Microsoft libraries as well as components written by
other parties.

strategy

ISE will provide Eiffel# libraries that wrap the Microsoft frame
work. These libraries include wrappers for the Base Class Library,
WinForms, and WebForms. The Base Class Libraries include the
definition of the basic types such as collections, remoting services,
threading services, security, 10 access, etc. needed for any system.

The WinForms classes are a wrapper around the Win32 APIs
that provides a clean object model to build a GUI in .NET.
WebForms also provide a way to build GUls, but on the Web.
They include types like DataGrid or HTMLlmage.

These three libraries are distributed with Eiffel# so you can
reuse their classes directly in your system.

The Emitter

Obviously, the Microsoft libraries are not the only .NET com
ponents you might want to access. Your system may require
the integration of hundreds of components written in vari
ous languages. For this reason, ISE provides a tool called
Emitter that can analyze any .NET assembly and produce an
Eiffel wrapper for every type it defines. The Emitter accesses
the metadata bound into each type defined in the assembly,
maps them into an Eiffel equivalent, and generates the cor
responding classes.

Although an assembly may include references to other as
semblies (called external assemblies), the emitter will only gen
erate classes for the types defined in the given assembly. This
avoids, for example, generating the Base Class Libraries for all the
assemblies you need to wrap (since almost any assembly has a
reference to the Base Class Libraries).

Because any public .NET type must comply with the
Common Language Specification (CLS), and because the CLS
differs in certain aspects from the Eiffel model, the Emitter
has to perform a few nontrivial transformations to map the
.NET types into Eiffel classes. Perhaps the most important
mismatch is the inclusion of overloading into the CLS. The
Eiffel model prohibits overloading and requires disambiguating
any overloaded function. The Emitter uses a clearly under
standable algorithm for this purpose. Details of the algorithm
may be found in the MSDN article. 3 As an example, for the
following C# functions

public static void WriteLine (String format,

46 ... OOP OCTOBER 2000

Object argO);
public static void WriteLine (int va7ue);
public static void WriteLine (String va7ue);

the Emitter will generate the Eiffel functions:

(format: STRING; argO: ANY)
WriteLine_System_Int32 (va7ue: INTEGER)
WriteLine_System_String (value: STRING)

Table 1 lists all the primitive types as defined in the CLS and their
Eiffel equivalent:

Note that some of the Eiffel types (sized integers and reals)
were recently added to the Eiffel Kernel Library.

External Classes

The Eiffel# classes that the Emitter generates do not include any
logic; they are just needed for the Eiffel-type system. This means
that the Eiffel# compiler does not generate any IL code for these
classes. Any calls to functions on classes generated by the Emitter
are direct calls to the .NET type; there are no indirections and
thus no performance penalty. For the compiler to recognize such
classes, ISE introduced a new mechanism in Eiffel called external
classes. Such classes can only include external features, i.e., fea
tures that are not written in Eiffel, but rather methods or func
tions on an already existing .NET type. All the features of an
external class should be features belonging to the same .NET type.
You can declare such a type with the following syntax:

frozen external class
SYSTEM_CONSOLE

alias
"System. Conso7e"

The string that follows a 11 a s contains the name of the .NET type
that the Eiffel class wraps. Since .NET types might be sealed, i.e.)
they might forbid other types to inherit from them, and since
such a concept does not exist in Eiffel, Eiffel# introduces a new
use for the Eiffel keyword frozen. You may use frozen in front
of externa 1 to tell the Eiffel# compiler that no Eiffel# class should
inherit from the .NET type.

The external class should then list all the features you need to
access. All of these features are external features. The syntax for
an external .NET feature is the following:

frozen ReadLine: STRING is
external

"IL static signature :System.String use
System. Console"

alias
"ReadL i ne"

end
where frozen indicates that the feature may not be redefined in a
descendant (You may redefine external features if they are virtual,
in which case frozen should not be used), ReadL ine is the Eiffel#
feature name, and S T RING is the return type of the feature. The string

Table 1. Primitive types as defined in the CI..S, and their
Eiffel equivalents.

CLS Primitive Type (Description) Eiffel Type
System. Char (2-byte unsigned integer) CHARACTER
System. Byte (1-byte unsigned integer) INTEGER_8
System.lnt16 (2-byte signed integer) INTEGER_16
System.lnt32 (4-byte signed integer) INTEGER
System.lnt64 (8-byte signed integer) INTEGER_64
System.Single (4-byte floating point number) REAL
System. Double (8-byte floating point number) DOUBLE
System.String (a string of zero or more STRING
characters; null is allowed)

System.Object (the root of all class- ANY
inheritance hierarchies)

System.Boolean (True or False) BOOLEAN

that follows the externa 1 keyword specifies the kind of external,
the .NET function signature, and the .NET type on which the func
tion is defined. The string following the a 11 a 5 keyword contains
the .NET name of the function. There are different kinds of exter
nal features depending on the type of method they provide access
to. Eiffel# defines seven new kinds of externals listed in Table 2.

You can define such external features in nonexternal classes
should you need to. In the special case of external classes, the
. NET -type name appearing at the end of the string following the
externa 1 keyword should be the same as the one that appears af
ter the a 11 as keyword following the declaration of the class (see
previous code section).

The external features can be called from clients or descendants
of the class the same way you would call any other Eiffel feature.
So, if your system includes a feature that needs user input, it can
include the following code (which does not apply the usual Eiffel
command-query separation style):

need_user_input is
-- Take user input and do stuff.

local

do

io: SYSTEM_CONSOLE
input: STRING

create iO.make
input := io.ReadLine -- calls System.Cons07e.ReadLine()
- - do stuff

end

However, because ReadL i ne is a static external, you do not need
to instantiate the wrapper to call it, so the following code

need_user_input is
-- Take user input and do stuff.

local

do

io: SYSTEM_CONSOLE
input: STRING

-- removed creation of io

input := io.ReadLine -. cal1s SY5~em.Conso7e.':?'2adLine(

-- do stuff
end

is sufficient to make the external call. This is also valid for static
field access and static field setting. Other kinds of externals do
require the wrapper to be instantiated.

Eiffel# Libraries

The Eiffel# compiler incorporates an Eiffel# Base Class Library,
which follows the design principles found in the standard EiffelBase
Library. This library makes extensive use of genericity and con
tracts to provide a clean and powerful set of data structures you
can reuse in your system. It also uses the external classes provided
with Eiffel# that wrap the .NET Base Class Library.

The two other sets of classes provided with the Eiffel# com
piler wrap the WinForms and WebForms .NET libraries so that
you can easily build GUI and WEB applications.

The .NET Contract Wizard

As part of this development we produced a new tool, the .NET
Contract Wizard, that enables users through the metadata mech
anism to interactively add Eiffel-like contracts to .NET compo
nents coming from arbitrary languages. This tool will be described
in detail in a separate column but is already available for devel
opers who want to apply the benefits of Design by Contract in
languages other than Eiffel. This important extension was made
possible by the metadata facilities of .NET .

CONCLUSION

The aim of this project and the resulting products is to provide a
full integration between ISE Eiffel and the .NET environment.
The combined power of the platform and the development en
vironment should yield the dream environment for building the
powerful Internet applications that society expects from us to
day. Eiffel on .NET provides flexibility, productivity, and high re
liability. It is impossible to overestimate the benefits of Design by

Table 2. Seven new kinds of externals defined by Eiffel#.

.NET Function Kind Eiffel External

Method "Il signature ...
use class_name"

Static Method "Il signature ...
static use class_name"

Field Getter "Il signature ...
field use class_name"

Static Field Getter "Il signature ...
static_field use class_name"

Field Setter "Il signature ...
seCfield use class_name"

Static Field Setter "Il signature ...
seCstatic_field use class_name"

Constructor "Il signature ...
creator use class_name"

continued on page 58

http://www.joopmag.com ..lOOP 47

