Prelude to a Theory of Void

Bertrand Meyer

Draft 1, June 1998

ABSTRACT

A set of rules to ascertain that in calls of the foxa¥(...) there will always be an object
attached tox.

1 PURPOSE

The theory developed in this article investigates void calls, a dangerous source of bugs
in object-oriented computation, and ways to avoid them.

About the scope of this article

The article was initially written as a short note presenting the results of se€tiorns

but it turned out that a proper exposition requires some background elements (8gction
Since one may want to prove many properties of object-oriented software besides
avoidance of void calls, there is room for a series of follow-up articles focusing on proofs
of specific properties. Such eventual articles will not need to repeat the background
elements, which define a general scheme for the theory of object-oriented computation.

It is indeed part of the aim of this exposition to set a framewaork for other theories
of specific aspects of object-oriented computation, the accumulation of which might
eventually yield a semantic definition and proof system for a full O-O language.

This is a pre-publication draft of a paper published in JOOP in 1998. Citation reference: Bertrand
Meyer, prelude to a Theory of Vojdn Journal of Object-Oriented Programmingol. 11, no. 7,
November 1998, pages 36-48.

PRELUDE TO A THEORY OF VOID81

\Void calls

The specific theory developed here addresses a practical problem well known to object-
oriented application developers.

In a strongly typed object-oriented language few run-time errors remain possible
once the compiler has accepted a system. One of the most unpleasant is a run-time
attempt to execute a call of the formaference. feature (arguments), intended to apply
a feature to an object but unable to do so becausertference turns out to be “void”

(or “null™), that is to say, not attached to any object. Sucho#d call will fail, often
leading to abnormal termination of the entire execution.

This is a frustrating event and it would be a great benefit to developers if it were
possible for compilers, in the same way that they detect type mismatches, to reject any
programs that may cause a void call during execution. This article describes a set of rules,
enforceable by compilers, which can help prevent void calls.

Trusted components

The work presented here is part of the Trusted Components Project, a general effort
initiated by Monash University and Interactive Software Engineering with the aim of
producing certifiably reliable library components to serve as basis for building high-
quality appplications. The project is by nature collaborative; any institution or individual
that shares its goals is welcome to join.

One part of this effort, although by no means the only one, is to investigate how
much one can hope to prove, mathematically, the correctness of object-oriented
software components.

Because the general problem of program proving is difficult, it is desirable to take
smaller steps first. Any help in proving specific reliability properties of programs should
be welcome to programmers, especially if it takes the form of rules that can be enforced
by compilers. Preventing void calls is an attractive candidate, since the practical benefits
are high, as any object-oriented software developer can testify, and the difficulty of
implementing a solution should be, thanks to the theory developed here, much less than
if the aim was to prove arbitrary correctness properties of object-oriented systems.

References and how they can lead to void calls

The basic operation performed at run-time by an object-oriented system is feature call.
Also called “message passing” and “method call”, this computational step has the
general form

target. feature (arguments)

wheretarget must represent an object afedture a feature of its generating class.

8§81 PURPOSE 3

In a statically typed language and particularly in Eiffel, type checking rules will
allow the compiler, before it accepts the text of a system containing such a call, to
determine that for all possible run-time executions of this feallure will be compatible
with the type oftarget and arguments. If not, the compiler will reject the submitted
system.

Assuming the call passes the scrutiny of the type checker, its semantics simply is:
apply feature to the object attached target, passing to it the values afguments.

In practice, the association between the namargkt, as it appears statically in the
program text, and the corresponding run-time objects, is often indirect: &kt
actually denotes is not an object but an objeétrence A reference is eitheattached
in which case it gives access to an objectjoad, as illustrated on the following figure.

An object
Another object

A reference, attached
-

" A reference, void

]
"l"lp

Not all variables are references. In Eiffel one can declare a variable to be of an “expanded
type”, in which case its possible values are objects rather than references, and the problems
discussed in this article do not arise. Expanded types are used in particular for basic values
such asINTEGER for which references are generally not needed. Other object-oriented
languages have their own mechanisms to give programmers a similar choice.

Regardless of the default convention, it would be hard to do without reference types,
because of the flexibility they provide:

» References may be void. This convention is particularly useful for describing
complex data structures: in a linked list, every element but the last one will have a
reference to its right neighbor, and in the last object that reference will be void.

* This convention also provides an obvious default initialization valugeid — for
all entities of non-basic types. This is the rule applied in Eiffel, enabling every
object field and every variable to have a language-defined initial value so that there
are no run-time “uninitialized value” error or implementation-dependent behavior.

A reference is not tied forever to one object but may, during execution, be
reattachedo different successive objects. This is again necessary for implementing
many data structures; for example one may want in an implementation of trees to
re-parent a tree, making it a subtree of some other node; this is most easily done by
ensuring that every node object has a reference to its parent, and reattaching that
reference when needed.

PRELUDE TO A THEORY OF VOID81

For these reasons references are almost universally available in object-oriented
languages, as they already were in pre-object-oriented languages such as Lisp, Algol W,
Pascal and Ada that support the manipulation non-trivial data structures.

But the introduction of references also has some unfortunate consequences. If
targetmay be void we cannot any more guarantee, evenin in a strongly typed language,
that the feature call makes sense, since it can only be executedtarherdenotes an
object.

The effect of a void call
A void call cannot be carried out; in Eiffel it will cause an exception.

Although it is possible to recover from such an exception by writing an appropriate
exception handler, this is only a solution of last resort, since if the programmer detects
that the exception may occur a simpler and more direct remedy is to avoid the exception
in the first place by modifying the software to ensure tiget will never be void.

The possibility of handling a void call through an exception handler remains useful,
but only as a “just in case” measure, when the programmer, although unable to pinpoint
a specific source of void calls, fears that because of its complexity the software might
still cause void calls in unknown cases that have escaped testing, and wants to provide a
general-purpose rescue mechanism to limit the damage in such a case. Although
preferable to ignoring the problem altogether, this approach is only a palliative.

Avoiding void calls

A better approach would be to let the compiler detect and reject any software element
that can cause void calls. In simple cases this is possible. For example the GNU Eiffel
compiler — which currently does not support Eiffel's exception handling, and hence
needs, perhaps more than other compilers, to provide some help to users in this area —
will flag a routine declaration of the form

bad_routineis
local
will_be_void: SOME_REFERENCE_TYPE
do
will_be_void .some_feature
-- The preceding line will always cause a void call,
-- since the language rules ensure that will_be_void
-- isinitialized to Void on every call.
end

But other cases may escape detection. For example the following scheme, although
not uncommon in practice, may in principle cause a void call:

§2 THEORETICAL FRAMEWORK

suspicious_routine is
local
might_be void: SOME_REFERENCE _TYPE
do

if some_conditionthen
create might _be_void

-- Creation instruction; ensures that might_be_void
--is not void. Also written !! might_be_void.
end
... Other instructions ...
if some_other_conditionthen
might_be_void . some_feature
end
end

For some forms o6ome_other_condition void calls are indeed possible; in other
cases, for example some_other_condition is the boolean expression

yet_another_condition and might_be_void /= Void

then no void call will ever occur. But verifying this property, and distinguishing between
safe and potentially unsafe cases, is beyond the abilities of current compilers.

The rest of this article presents a theory which compiler writers can use to include
void-call prevention measures in their compilers, and application programmers to reason
about void-related properties of their software.

2 THEORETICAL FRAMEWORK

The following paragraphs present the assumptions behind the theory.

\Void-safe software elements

We say that a software elementvsid-safeif its execution will not produce any void
call. The aim of the theory is to define conditions under which software elements will be
provably void-safe.

Instructions and programs

The syntactic domain of interest fsstruction. The theory will define a boolean-valued
functionprecondition applicable to elements of that domain, with the intention that if the
function has value True for an instruction this indicates that the instruction is void-safe
— its execution will not cause any void calls.

The definition of functiomprecondition will rely on some auxiliary functions.

Instruction has a number of subsets, corresponding to the different kinds of
instruction, such asCall, Assignment, Creation. The functions of interest, such as

PRELUDE TO A THEORY OF VOID8§2

Precondition and its auxiliaries, will be defined by case analysis: separate definitions will
be applicable to arguments of each of the identified subsets.

We can consider an entire prograsysgtemn Eiffel terminology) to be a kind of
instruction. The value oprecondition applied to an element of the corresponding set
System will determine whether the system as a whole is void-safe — whether it is
guaranteed not to produce any void call at any time during its execution.

Mathematical basis and notation

The mathematics of the Theory of Void only relies on elementary set theory and logic.
To express it, this article uses EFL (Expressive Formal Language), a simple notation for
expressing mathematical descriptions. EFL will be presented in a forthcoming paper but
should not raise any difficulty, since it is just elementary set theory couched in a form
suitable for discussions of software engineering and programming language topics. This
article uses only a handful of EFL constructs (the full notation does not have many more
anyway); each will be explained when first introduced.

The syntax of EFL resembles that of programming languages rather than traditional
mathematical notation; this facilitates exchange of specification elements by e-mail, and
helps build large specifications incrementally from small pieces, supporting (like a good
object-oriented programming language) the process of progressive extension,
adaptation, modification and specialization. But one should not be misled by the external
appearance of specifications: EFL describes purglthematicabbjects — all of them
sets — and their properties.

Accordingly, the results of this article are purely mathematical, and independent of
the choice of notation. EFL is only a means of exposition.

Assertions

The principal semantic domain is the séssertion. In a general program-proving
context we would probably treat assertions as boolean-valued functions, but for the
purposes of this discussion all that matters is our ability to guarantee that some references
are not void. So an element @¥fssertion will simply be, for the moment, a set of
variables, denoting the software property that all these variables’ values are non-void.

Assertion
-- Properties of computational states, limited for the moment
-- to stating that certain references are not void
has
nonvoid: part Expression
end

(A has clause describes the components of a mathematical object, as with a record or
structure type in programming. This is like defining a set as a cartesian product, but with
the advantage that the specification remains open since one can adasngsynponents

§2 THEORETICAL FRAMEWORK

later as one discovers new propertigst Ais the set of subsets @f also known as the
powerset ofA. So here the specification states that an elemeassértion contains a set
of Assertions. As in Ada and Eiffel, EFL comments are signaled by two hyphehs:

Expression is a syntactic domain, representing the set of expressions in the object-
oriented programming language. The specificatioAssfertion usesExpression rather
than Variable to allow expressing not just properties of the form

“x is not void”
but also (in terms of the notation of an object-oriented programming language):
“a.bis not void”

The latter case is necessary because if we consider — referring again to a
programming language notation — the call

Xaf
where the postcondition of routiméncludes
al= Vvoid

for some attributea of the corresponding class, then the interesting inference for the
caller is

Xs«a /= Void

which we can formally express by including the expressiosin the assertion obtained
as postcondition to the call.

The functions of interest

For any Instruction we are interested in two principal functigmscondition, already
mentioned, angostcondition. Here are their signatures:

precondition: Instruction —> Assertion —> Boolean
postcondition: Instruction —|> Assertion —> Assertion

—> indicates a total function:|> indicates a possibly partial function, of which
we must specify the domain. Arrows associate from the right, so that the first of these
signatures meansstruction—> (Assertion—> Boolean). As a general rule it appears
more convenient to curry the functions than to use cartesian products for arguments.

The intended meaning glstcondition is that if instruction executes successfully
with a as its input assertion theyostcondition (i) (a) is the resulting assertion. In other
words, if a is the set of references known to be non-void upon starfindnen
postcondition (i) (a) is the set of references known to be non-void upon finishing.

The intended meaning gfrecondition is simply to define the domain of the partial
function postcondition. In other words, to state thatecondition (i) (a) is to state that
will execute successfully if started while no memberadg a void reference. For the

PRELUDE TO A THEORY OF VOID8§2

present Theory of Void the notion of “executing successfully” is simply the property of
not producing any void calls. If this is the case we say — as already noted —-ishat
void-safefor a.

The aim of the game
The preceding definitions set the aim of the game in the rest of the discussion:

1« If we take an entire program to be an instructmrthen the property to prove is
that p is void-safe for the empty assertion, that is to say:
precondition (p) (Empty) = True. This expresses thatstarted from scratch will not
cause any void calls.

2 « Computing precondition (p) requires having a definition of the function. So
sections3 to 5 of this article defineprecondition by case analysis, considering each
kind of instruction in turn.

3+ As part of these definitions, the value pfecondition (i) (a), if i represents the
object-oriented calk. f, will be the condition thak is part ofa. The definition for
compound instructions will ensure that if a prograrns void-safe then, for any
call x. fthat any of its instruction executeswill be non-void at the time of the call
— the general property that we seek to establish in this article.

Point1 indicates that in the end the only function of interegiriscondition. But we also
need to definepostcondition for each kind of instruction, as the definitions for
precondition will involve the value ofpostcondition; the two function definitions will
proceed hand in hand.

Soundness and completeness

Ideally the Theory of Void should be sound and complete according to the following
definitions:

The theory issound if it is sufficient (powerful enough): whenever
precondition (i) (a) holds,iis void-safe fora, that is to say, execution of
under the input conditioa will never cause a void call.

The theory iscompleteif it is necessary (not too pessimistic): whenever
precondition (i) (a) does not hold;is not void-safe fog, thatis to say, som
executions of under the input conditioa can cause a void call.

D

In practice, however, it seems possible to do with a theory that is neither complete
nor even (shocking at this might appear at first) sound:

« If the theory is not complete, some potential void-call-prone situations will escape
the scrutiny of our tools. Although it is desirable to catch as many such situations
as possible, catchingny of them is preferable to the current situation in which

§2 THEORETICAL FRAMEWORK 9

compilers detecno void calls except possibly for trivial cases. Although not
complete in the state described by the article, the theory already rules out many
potentially damaging constructions.

« If the theory is not sound, it may raise some false alarms. For example it might
produce an error message for a scheme such as the following, assuming that the
functionabs returns the absolute value of its argument.

if n>=0then
create might_be_void
end
if n=abs (n) then
might_be void.some_feature
end

Heremight_be_voidwill never be void in the call, since a positive number is always
equal to its absolute value. For a tool to know this, however, it would need to have
extensive theorem-proving and program-proving capabilities beyond today’s
compiler technology, and rely on a complete formalization of the programming
language’s semantics, far more ambitious than the limited Theory of Void
developed in this article. So a compiler relying on the present theory will signal a
possible error even though the program fragment is in fact safe. It will be the
programmer’s responsibility to determine that this is a false alarm and to make the
corresponding decision: either ignore the warning or (perhaps preferably) change
the form of the extract in a way that will pacify the tool. (This does not necessarily
mean that error reports should be mere warnings. As will be seen below, it is
possible to let a compiler issue fatal errors even if the theory seems not fully sound.
See"“The Check instruction”, page 22

Another argument for accepting an imperfect theory, with respect to both soundness
and completeness, is that to guarantee either of these two properties would require that
we provide a full formal semantics for the underlying programming language, and hence
that wechooseone language as the object of our theory. By avoiding such a choice the
theory developed here potentially applies to any object-oriented language (and even to
some non-0O-0 ones), although the model it uses most closely fits Eiffel.

The principal motive remains pragmatism and incrementality. By not initially
aiming at full soundness and completeness, we can achieve our practical aim of helping
compiler writersnowto produce tools that will enable programmers to detect and correct
potential void calls. As we improve the theory — by covering more and more
instructions, and getting closer to full coverage of specific programming languages —
this help will be more and more precious. But even partial help, such as provided by the
theory in its current initial state, is invaluable: if it avoids just one void call in a mission-
critical application, the theory will have been worth developing.

10

PRELUDE TO A THEORY OF VOID8§2

For the long term we should of course retain the goal of providing a sound and
complete Theory of Void for the programming language of interest.

Dynamic aliasing

An assertion was defined above as a set of expressions known to be non-void. It may be
useful to extend this notion by also including a set of expression pairs denoting
references known to be attached to the same object:

Assertion
has
equal- part Expression_pair
end
(to be added to the previolms specification forAssertion, which read, on pagé,
Assertion has nonvoid: part Expression end), with

Expression_pair
has
first, second: Expression
end
When specifying the effect of a reference assignment y, we will not only
consider its effect on theonvoid set (if y was in nonvoid, x will now be in it, and ify
was not in it butx was,x must be removed): we will also add the pai; y> to theequal
set of the assertion. Sé&he Procedure_call instruction”, page.Zphis will improve
the completeness of the theory by enabling us to know more about our software; in
particular if the expression paix, y> is in equal and the theory tells us, from the
properties of a routine that after the calk. r the value ofx. comp is not void, then we
can infer thatx. comp is also not void. Reference equality is of course an equivalence
relation, but we don’t necessarily have to ensure that whereydr> is in anequal set
the pair<b, a> is in it too; we can just keep one pair and make sure that all functions on
pairs treat the two elements symmetrically. This is the mathematical equivalent of what
software engineers call “just an implementation decision”.

A notational aside about EFL conventions. Thas clauses accumulate; so
Assertion as defined so far may be viewed as equivalent to the cartesian product

(part Expression) x (part Expression_pair)

Without thehas mechanism, however, we might initially have defined the set
Assertion as being the setart Expression, and later realized that we also need the
equal component, making that initial definition obsolete and forcing us to revisit
and adapt every part of the specification that referredssertion. Instead, EFL
supports the incremental construction of specifications: we never define a new set
as some combination of known sets but specify it step by step by listing, through
has clause, the various components making up its elementsABsartion the

§2 THEORETICAL FRAMEWORK 11

components areonvoid (a member of the séixpression) andequal (a member of

the setExpression_pair, itself specified in the same style). We can always ek
clauses later, as we discover new components of members of our sets. Until the last
moment we do not assume that the list of components is exhaustiv; when we are
ready to “release” a specification we implicitly identify each set to the cartesian
product of its components. This incremental approach is crucial to the practical
effort of writing formal specifications of large and complex phenomena. It should
be pointed out again, however, that these conventions are just a way of arriving at
the result, and that this result — the final specification — is fully equivalent to a
traditional one expressed through cartesian product or a similar technique.

Affected targets

We will see in the specification of routine call®gtaining unaffected properties”, page
25) that it is useful, for practical proofs, to add one more component to assertions:
affected variables. The new component is

Assertion

has
affected: part Expression
end

and stands for the property that the computation so far may only have changed the
expressions imffected. For example ifa. affected is the setx, y, z}, this means that no
variable other thar, y andz has been touched by the computation.

To avoid any confusion, here is the full definition afsertion reconstructed from
the three components introduced separately so far (EFL tools could produce such a
reconstruction from elements originally entered piecewise as here):

Assertion

has
nonvoid: part Expression
equal. part Expression_pair
affected: part Expression
end

Routines

One final general definition is required before we start the definition of functions
precondition and postcondition for the various kinds of instruction. Since relevant
programming languages will have a notion of routine call, we need to define the syntactic
domainRoutine. Selecting Eiffel routines as our model, we can use

PRELUDE TO A THEORY OF VOID8§2

Routine
-- Subprograms
has
pre, post. Assertion
-- Ignore arguments for the moment!
body: Instruction
end
It will be central to the proof technique of the Theory of Void to assume that each
routine is equipped with two assertions, any of which can of course be empty. The
following three considerations justify this decision:

* Without thepre and post components of a routine we would not be able to prove
anything about calls except by “unfolding” the proof of every routine of a system.
This is not only impractical — requiring huge proofs — but contrary to the
abstraction principles of object technology.

» Without the ability to rely on explicitly stated preconditions and postconditions of
routines, we could not prove anything useful about a system unless we have access
to the source code advery single routindt uses. As soon as it relies on just one
compiled library routine we would be helpless. This is of course unacceptable, as it
excludes all realistic software systems. With explict preconditions and
postconditions we can proceed: whenever we use a library routine we should do so
on the basis of a contract specification —slort form as offered by Eiffel
environments and used as basic documentation for Eiffel libraries — which includes
the relevant precondition and postcondition, even for a routine whose source is not
available to us.

By equipping routines with assertions we can apply to proofs the abstraction and
reuse techniques that make object-oriented programming possible.

Eventually we should of course prove that the body of every routine is consistent
with its pre andpost. This task is indeed the “unfolding” noted above. It is a supplier-
side task (the responsibility of the library authors), separate from the client-side
responsibility of proving the conditional correctness of an application (conditional on the
library’s correctness). This separation preserves abstraction and reusability.

Note that one should not confupee andpost with the functionsprecondition and
postcondition. The former are syntactical components: every routine will include, as part
of its text, two assertions expressing its intended precondition and postcondition. The
latter are semantic functions, which enable us (or a compiler) to compute properties of
a program.

As stated in a comment, the definition Bbutine does not account for routine
arguments. This is part of what make the current discussion a “prelude” to the Theory of
Void. There seems to be, however, no particular difficulty in adding arguments (at least
for a language such as Eiffel where argument passing follows a simple semantic model);

§2 THEORETICAL FRAMEWORK 13

it will be a matter of adding some substitution functions to the function specifications of
sectiord.

Routines include procedures and functions:

Procedure
-- Routines that do not return a result
subset
Routine
end
-- No further properties
Function
-- Routines that returns a result
subset
Routine
has
function_result. Variable
end
These definitions use the EFL notionsafbset , which serves to introduce a new
set in terms of another, in a manner similar to inheritance in object-oriented
programming, although mathematically this is a simple concept of subsetting. With
subset the new set retains the components of the reference set Ruerie), while
adding, if necessary, further components, as done here in the dagectbn. Similarly,
each of the construct specifications of sectidts5 defines an individual instruction as
asubset of Instruction.

A mathematical note

(This section is a comment on EFL and not indispensable to an understanding of the
article.) For the reader who may have doubts about the mathematical nature of the
subset relation, in particular whether it truly defines a subset, the following
clarifications of the EFL model will help. The most convenient model for a definition of

a set through its components, as in

Person
has
name: String
age: Integer
end
is not the first idea that comes to mind — th&erson is the cartesian product
String x Integer. The reason, among others, is that this would prevent the kind of
subsetting in which are interested: if we add a new componenhegyt of type REAL,
either through a newas clause (in the incremental style praised earlier) or through a
subset definition for a new sePerson_with_height, we would not be introducing a
mathematical subset, sinéex B x C is not isomorphic to a subset gfx B. In fact, the
subset relation goes the wrong way (we can mgB to a subset oA x B x C).

14

PRELUDE TO A THEORY OF VOID8§2

A more appropriate model gartial functions: we will understand the definition
of Person as denoting the set of partial functions frofag to Value whose domain
includes botmame andage, with the value fomame being in String and the value for
age being ininteger. Here Tag is the set of all possible tags, suchrasne andage, and
Value is the set of all possible values, including strings, integers and reals.

With this definition it is indeed true thd&erson _with_height is a subset oPerson:
any element oPerson_with_height has the tagsame, age andheight in its domain, so
itis indeed an element éferson as well. Note the importance of stating, in the definition,
that the domaiincludesthe appropriate tags — not that the domigithe set of the tags
considered (such amme andage), which would prevent subsetting.

This model is part of EFL's concern for the “engineering” of specifications —
similar to the engineering of software systems thanks to object technology — for a
smooth refinement process, incremental and evolutionary.

Note that once we have finished this refinement process we can, if we like, start
thinking again in terms of cartesian product: if the set of tags is fixed, for examapie,
age and height, there is a trivial one-to-one correspondence between the set of partial
functions with values irString for Name and in Integer for age and height, and the
cartesian producString x Integer x Integer. So once again the result can be recast in
entirely traditional terms.

Implication

In a number of cases we will need the ability to express that an assertion implies
another, in a sense compatible with the usual definition of implication in logic. The
following function definition expresses implication for our model of assertions:

infix "=>" (strong, weak: Assertion): Booleanis
-- An auxiliary function: does strong imply weak?
do
Result := ((strong « nonvoid superset weak . nonvoid)
and (strong . equal superset weak . equal))
and (strong . affected superset weak . affected))
-- In other words: if weak states that a reference is not void,
-- SO must strong; if weak specifies that two references
-- are equal, so must strong; if weak states that a reference
-- have been modified, so must strong.
end

superset is the set inclusion operator, “is a superset of”.

A note for readers who might at first think that theperset relations, in this
definition of"=>", go the wrong way. When modeling semantics through program states
we are indeed used to thinking thattfong implies weak” means ‘strong is a subset of
weak’ in the sense that any state that satisfigeng satisfiesveak. But here we model
an assertion as three sets of objects known in each case to satisfy a certain property —

83 PROVING VOID-SAFETY: CONTROL STRUCTURES 15

being non-void, being equal, or being affected by the computation so far. So the subset
relations go the other way: to say ttsatong implies weak is to say that wheneveveak

tells us that a certain object satisfies one of these properties, the object must satisfy that
property instrong; in other words, that the objects known to satisfy the propersyrong

must constitute a superset of the objects known to satisfy that propemakn

3 PROVING VOID-SAFETY: CONTROL STRUCTURES

We can now proceed to the relevant specifications for the variantswtiction. The
section for each variant follows the same pattern:

« Define the syntax of the corresponding construct in the form of the definition of a
certain set, such a&ssignment, in the form of asubset of Instruction. The syntax
of interest is of course abstract syntax, since we are not concerned about the
concrete notational conventions of a particular programming language.

« Define the values of functiongrecondition and postcondition for elements of the
given set.

The setinstruction is never defined explicitly. The principle here is the same as that
through which, at “release” time, we equate a set defined through one ortaore
clauses with the combination of its components. Similarly, if nothing is known about a
set except for one or moreibset definitions, we equate it in the end with the union of
all its defined subsets.

Correspondingly, there is no explicit definition for functiopsecondition and
postcondition for a generalnstruction; the general definition will simply be the union
of all the specific definitions for the listed subset#sfruction.

This section addresses control structures and the Null instruction. The next two
sections cover reference-modifying instructions (creation and assignment) and assertion-
equipped instructions (call, loogheck).

The Null instruction
The first construct of interest is the null instruction, with the following definition:

Null
-- The empty instruction
subset
Instruction
end

Here are the corresponding function values:

16

PRELUDE TO A THEORY OF VOIDS§3

precondition (n: Null) (a: Assertion): Booleanis
-- Always OK
do
Result:= True
end
postcondition (n: Null) (a: Assertion): Assertionis
-- No change to result
do
Result:= a
end
Resultdenotes the result of a function. The symizaineans “is defined asEmpty
is the empty set. Again, these EFL notations, although resembling those of programming
languages, denote purely mathematical concepts.

The definition of Precondition states that thevull instruction is always possible,
regardless of the input assertigrsince the precondition iBue.

The definition ofPostcondition states that thé&/ull instruction lives up to its name:
it yields an output assertion identical to its input assertion — changing nothing to known
information about which references are non-void.

The Compound instruction

A Compoundinstruction is made of one or more instructions, to be executed in sequence.

To avoid distracting ourselves with a notation for sequences (such as the one in EFL),
and keep the notational apparatus to the bare minimum, we can simply consider that a
Compound has a “first” and a “rest”:

Compound
-- Instructions made of one or more instructions
-- to be executed in sequence
subset
Instruction
has
first, rest. Instruction
end
(A notational observation: this definition sounds suspicious at first since it is
implicitly recursive.instruction, as noted above, will be defined as the union of its
defined subsets; here one of the subset definitions nsgsction — twice. The
difficulty is easily resolved thanks to the following rule. In EFL, all objects of
discourse are sets, and the only operators used in the definition of a set are those of
set theory, such as intersection and union. If a definition is recursive, defirasg
op (A) where op stands for some combination of set operators, it is simply
understood as a shorthand for the fixpoint definition

Empty union op (Empty) union op (op (Empty)) union ...

83 PROVING VOID-SAFETY: CONTROL STRUCTURES 17

where union is set union. This immediately generalizes to sets of mutually
recursive definitions.)

The precondition of a compound is defined as follows:

precondition (c: Compound) (a: Assertion): Boolean is

-- The first instruction must be OK, and so must be the rest
-- of the compound when executed in the resulting state

do
Result =
precondition (c. first, s) and
precondition (c. rest, postcondition (c. first, s))
end

This definition shows why we need, in the general case, to explore not just function
precondition but alsopostcondition: the former relies on the latter. Heregsstcondition
in this case:

postcondition (c. Compound) (a: Assertion): Assertionis
-- Result of executing rest of compound from state
-- resulting from executing first instruction
do
Result = postcondition (c . rest, postcondition (c. first, a))
end

The conditional instruction
We consider a simple form of conditional instruction, with abstract syntax

Conditional
-- Instructions made of one or instruction (the body)
-- to be executed only if a certain condition is satisfied
subset
Instruction
has
body:. Instruction
condition: Assertion
end

This represents instructions of the form

if conditionthen

body
end

where, incondition, we are only interested in clauses corresponding to our assertions,
such asc/= Void. Then we have:

18 PRELUDE TO A THEORY OF VOID8&4

precondition (c: Conditional) (a: Assertion): Boolean is
-- The body must be OK if the condition is satisfied
-- (what happens otherwise doesn’t matter)
do
Result:= (a=> c.condition)
end

"=>" is the implication function defined earliém(plication”, page 14).

4 CREATION AND ASSIGNMENT

The two constructs that directly affect references and void-safety are object creation,
which makes a reference non-void, and reference assignment, which changes the value
of a reference.

The Creation instruction
Syntax:

Creation
-- Object creation
subset
Instruction
has
target Variable
end

This definition ignore creation procedures (“constructors”). Here are the three
function definitions:

precondition (c: Creation) (a: Assertion): Boolean is
-- Always OK
do
Result:= True
end

postcondition (c: Creation) (a: Assertion): Assertionis

-- Add target of creation instruction to set of references known
-- to be non-void; remove it from any equality set

do
Result. nonvoid := trim (a. nonvoid, c . target) union {c. target}
Result. equal .= remove (a. equal, c. target)
Result. affected := a. affected union {c . target

end

This uses two auxiliary functiontsm andremove:

* If esis a set of expression andis a variable frim (es, v) is es deprived of any
element of the fornw something.

84 CREATION AND ASSIGNMENT 19

* If psis a set of pairs theremove (ps, v) is another, obtained froms by removing
any pair of which one of the two elements. is eithenr of the formv. something.

These functions have not been spelled out but are easy to write in EFL or any other
appropriate mathematical notation.

The notation{a, b, c, ...} defines a set by enumeration, here with just one element,
c. target. Another notational convention: thesult of a function can be defined through
the values of its components, hergual and nonvoid. (In the incremental spirit of EFL
specifications, there may be, for the same function, more than one definition similar to
the above, each including only some of the components iddheause. We may posit
support tools with the ability to piece together all such partial definitions for a given
function, and to check that the result covers all the components. Again none of this
affects the mathematical significance of the final definitions.)

The definition ofprecondition expresses that creation will not cause any void calls.
The definition of postcondition states the effect of a creation on our knowledge of
reference properties:

* The target of the creation will be added to thenvoid set, since making the
corresponding reference non-void is the immediate effect of creation.

* Any pair containing the target must be removed from #aeal set, since the
creation instruction obsoletes any information we may have had about the target
being equal to something else.

The Assignment instruction

The assignment instruction may cause “guilt by association” — references
becoming potentially void through the assignment of a void expression to a variable. We
can model the syntax as:

Assignment
-- Object creation
subset
Instruction
has
target. Variable
source: Expression
end

An assignment will not cause any void call:

precondition (s: Assignment) (a: Assertion): Boolean is
-- Always OK
do
Result:= True
end

The postcondition is less trivial:

20

PRELUDE TO A THEORY OF VOID85

postcondition (s: Assignment) (a: AssSertion): Assertion is

-- Adapt the assertion by adding the source’s
-- properties transposed to the target

do
Result. nonvoid := adapt (a. nonvoid, s. target, s. source)
Result. equal .= add_pair (a.equal, s. target, s. source)
Result. affected := a. affected union {c.target}

end

using two auxiliary functionsadapt and add_pair. The function adapt (es: part
Expression , v. Variable, e: Expression): part Expression yields the set of expressions
obtained fromes by applying the following changes (in order):

- Removev if present.

- Remove any element of the fomsomething.

- If es containse, addv.

- If es contains any element of the foemsomething, addv. something.

Similarly, add_pair (ps: part Expression_pair, v. Variable, e: Expression): part
Expression_pair yields a set of expression pairs obtained frpmby adding the pair

<y, e>, as well as all pairs of the formxw something, e.something> for which
v Something is in ps. As before, defining these two functions is straightforward.

5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS

In the last set of instructions we will encounter constructs that may have assertions as
part of their syntax. They include ti@heck instruction, loops (with their invariants), and
routine calls.

Pragmatic considerations

In defining the properties of assertion-equipped constructs, we may divide proof rules
into two categories. Theoretically both are equally important, but for the practice of
object-oriented development, with its emphasis on abstraction and reusability, we may
have to treat them separately.

Consider a routine calkrget. routine (...) whereroutine has a precondition and a
postcondition (Eiffel syntax):

85 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 21

routine(...) is
require
pre
do
-- Any number of instructions:
body
ensure
post
end

The rules of our theory should tell us (as they indeed do, in the form given below)
that the precondition for the call instructiontisget. pre, guaranteeing on completion
of the call the postconditiotarget. post. The rule enabling us to deduce this property of
the call from the preconditions and postconditions declared for the routine, pre and post,
belongs to the first category of proof rules, which we mayesadirnal rules.

External rules enable us to prove properties of client modules, such as a module
containing the caltarget. routine (...).

Such proofs are of course only valid if the assertions given for the routine are
consistent with what the routine does bedy. This property will be expressed by a
function calledconsistent and defined below. For every routimewe must prove that
consistent (r. body) (r. pre, r. post) holds. Such properties constitute the second
category, which we may cafiternal properties.

The object-oriented method’s emphasis on abstraction and layered architectures
suggest that it is usually a good idea to prove internal and external properties separately:
if we are using a routine from another cluster of the software, or a library cluster, we
assume its properties, as expressed byr#sndpost, to prove our own client software;
the author of the routine’s class is responsible for proving its internal properties.

Sometimes we may not even have the option of proving the internal properties, for
example if the source code of a library we use is not available. Then we can only hope
that the library authors have taken care of the internal proofs; but we should still do the
external proofs of our calls, which beconmmnditional proofs of our software
(conditional on the correctness of its supplier classes).

A similar issue arises when we think we know for sure the truth of a certain property
that our theory is not powerful enough to prove. An example was given earlier
(“Soundness and completeness”, page 8

if n>0then
create might_be_void
end
if n=abs (n) then
might_be_void .some_feature
end

22

PRELUDE TO A THEORY OF VOID85

Here the theory may not be able to prove theght be_void can in fact never be
void. This may break down an entire proof. In order to be able to proceed, a workaround
is to add, just before the last call, an instruction (imitated from Eiffel) of the form

check
might_be_void /= Void

end
whose postcondition, as seen next, is the given assertionstighe be void /= Void,
enabling us to proceed with the proof of the enclosing software element. Theoretically
there is no cheating, since we still have to verify the precondition of ctieek
instruction, requiring us in fact to establish thaight_be_void /= Void holds. We will
consider that such preconditions amegernal properties, to be proved separately. If the
theory doesn’t enable such proofs but we might simply rely on our intimate conviction
that the property is holds — thus indeed cheating.

A good supporting environment might keep track of what internal properties we
haven't proved, reminding us of how much we have cheated.

The distinction between internal and external properties is not theoretical but simply
mercenary — it enables us to concentrate on the part of the job that we have the best
chance of completing, even if we have to sacrifice some soundness and completeness.

In the following rulesthe internal components appear in red, as a reminder that
they represent properties that may have to be proved separately, or even (in the case of
somecheck constructs and library routines) taken at face value rather than actually
proved.

The Check instruction
Eiffel has an instruction of the form
check some_assertion end

similar to theassert instruction of Algol W and C. Such an instruction can be
understood, for the purposes of present discussion, to produce no effect at all if
some_assertion happens to hold at the time of execution, and otherwise to produce an
outcome so horrendous that we dare not even think about specifying it. Here are the
syntax, precondition and postcondition.

Check
-- Assertion verification
subset
Instruction
has
assumption: Assertion
end

85 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 23

precondition (c: Check) (a: Assertion): Boolean is
-- Possible only if the assumption holds under a
do
Result:= (a=> c « assumption)
-- Reminder: function "=>"is assertion implication
end
postcondition (c: Check) (a: Assertion): Assertion is
-- In normal cases, the instruction has no effect.
do
Result:=a
end
The definition of the precondition tgghlighted in red to indicate that, as noted, it
may have to be ascertained separately or outside of the theory.

Instruction consistency

Consider an instruction an input assertiop and an output assertiap The following
auxiliary function expresses thatstarted in an initial state satisfying will produce a
state satisfyingy:

consistent (i: Instruction) (p, g: Assertion): Boolean is
-- Will j, started with p, yield g?
do
Result:= precondition (i) (p) and (postcondition (i) (p) => q)
end
The definition states thgt:must satisfy the conditions needed to exeduaad the
postcondition of executing starting withp satisfied, implieg.

This function will be useful in discussing the semantics of routines.

Transposing an assertion to the context of the target

Consider a routine equipped with assertions applying to its attributes, such as the
following in Eiffel notation:

my_procedureis
require
some_attribute /= Void
do
... Whatever ...
ensure
other_attribute /= Void
end
If we study the behavior of a call of the formy_target . my_procedure relative
to a certain assertion that involves properties (non-void, equal) of the references
involved, we must transpose the routine’s own assertions to the context &drget. For
example the precondition means, in the context of the call, the propertyishaarget

24

PRELUDE TO A THEORY OF VOID85

« some_procedure is not void. If, as will be done next, we study the value of
precondition (pc) (a) wherepc is the given call, usingny_target as target, and is some
assertion, we will want to make sure that the set nonvoid includes
my_target . some_attribute (not justsome_attribute, which makes sense in the context
of the routine but not in the context of the caller).

This prompts us to define a function
infix "+++" (a: Assertion; v. Variable). Assertion

whose result is obtained from by replacing, in each o& . nonvoid, a . equal and

a . affected, every expressiom by v. e. In other words we are transposing everything
to the context of a call having as its target. Again, the formal definition bf++" is
straightforward and not included here.

The Procedure_call instruction

It was mentioned at the beginning of this discussion that feature call, of the form
reference. feature (...), is the fundamental operation of object-oriented computation. We
start with procedure calls; the next section considers functions. Remember that in the
syntactic domairRoutine, and hence in its subseBocedure and Function, we have
assumed componentge andpost, listing the assertions with which a routine has been
equipped.

Procedure_call
-- The basic object-oriented call
subset
Instruction
has
target. Variable
feature: Procedure
-- For the moment we ignore arguments
end

precondition (p: Procedure_call) (a: Assertion): Boolean is
-- Is it correct to call p under the initial condition a?
local
-- Auxiliary names for convenience:
feature_target:=p . target
feature _pre:= (p . feature. pre)
feature_post:=(p . feature . post)
feature _body := (p . feature . body)
do
Result:=
feature_targetmember (a . nonvoid) and
(a=> (feature_pre +++ feature_target)) and
consistent (feature _body) (feature_pre, feature post)
end

85 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS

member is the set membership operator. This definitiorpafcondition states that
the assertiora must guarantee that the target of the call (that is to redgrence in
reference. feature (...) must be non void — after all, this is what we are discussing all
along), that the initial assertion must imply the routine’s precondition (transposed to the
target, hence the++ feature_target) and that the body of the routine must implement its
specification as stated by the precondition and postcondition. This last property is
highlighted in red because it may be preferable, as explained earlier, to prove it separately.

postcondition (p: Procedure_call) (a: Assertion): Assertionis

-- Effect of executing p under the initial condition a
-- (Initial version — will be improved next).

local

-- Auxiliary names for convenience:

feature_target:=p . target
feature _post:=(p . feature . post)

do
Result := (feature_post +++ feature_target)

end

This definition ofpostcondition states that the call achieves the postcondition listed
in the routine, transposed to the context of the target.
Retaining unaffected properties

The definition of functionpostcondition for procedure calls, although useful, is not
powerful enough in practice because our reliance on a routine’s explicit assepiens (
and post) prevents us from retaining any assertion clauses that are not affected by the
routine. Consider a call executed in a state where the following assertion (in Eiffel
notation) holds:

one /= Void
and assume thathas the postcondition
other /= Void
Then the rule allows us to deduce, as postcondition of the call, the property
target. other /= Void

This is correct, but not good enough. Assuming that there is no connection
whatsoever between referenae® andother, the original assertion will still hold after
the call, so that we should be able to deduce the postcondition

one /= Void and target. other /= Void

The definition ofpostcondition obtained so far does not give this, since it defines
the postcondition of the call on the sole basis of the routine’s own stated postcondition.

25

PRELUDE TO A THEORY OF VOID85

This is where it pays off to have included in assertions dffected component,
whose usefulness may not have been obvious so far. We replace the definition of
postcondition by:

postcondition (p: Procedure_call) (a: Assertion): Assertionis
-- Effect of executing p under the initial condition a
-- (Final version).
local
-- Auxiliary names for convenience:
feature_target:= p. target
feature_post:=(p . feature . post)
from_routine := (feature_post+++ feature_target)
do
Result := extend _unaffected (a, from_routine)
end
using a functiorextend _unaffected (a, b: Assertion): Assertionwhose result is obtained
from b as follows: add taob. nonvoid every element ofa . nonvoid which is not an
extension of an element &f. affected (where the “extensions” of arev itself and any
expression of the formr. something); add tob. equal every pair ofa . equal of which

neither element is an extension of an elemenb ofaffected; and add tob . affected
every element of . affected.

Function calls

Along with procedure calls we must consider function calls. We assume for simplicity
(but with no loss of generality, since the discussion can be transposed to the conventions
of other languages) the Eiffel convention that a special variagbda(/t in Eiffel) is used

in function bodies to denote the function’s result.

There is little extra work to do if we restrict our attention to assignments of the
following form (in Eiffel syntax):

some_variable := target . some_function

Then it suffices to apply the definitions obtained favcedure_call, adapting the
postcondition definition to ensure that any property d®esult yields, through
substitution, a property alome_variable.

Loops

As with routines, we can prove properties of loops by making sure that loops are
equipped with assertions, specifically a loop invariant as in Eiffel:

85 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 27

Loop
-- Loops with their invariants
subset
Instruction
has
exit, invariant. Assertion
body: Instruction
-- For the moment we ignore arguments
end

Then:

precondition (I: Loop) (a: Assertion): Boolean is
-- Does aenable us to execute the loop properly?
-- Yes iff it guarantees initial satisfaction of the invariant,
-- and the loop body preserves the invariant
do
Result:= (a=> I.invariant) and
consistent (body) (I = invariant, | = invariant)
-- In a more complete version the preceding line would also
-- take exitinto account. See the discussion below.
end

postcondition (I: Loop) (a: Assertion): Boolean is
-- The environment resulting from executing the loop:
-- both the invariant and the exit condition hold
do
Result:= (assertion_and (/. invariant, | . exit))
end

In this function definitionassertion_and denotes a function, again easy to write,
which produces the boolean “and” of two asssertions: take the union ofdineid
sets,theequal sets, and theaffected sets, respectively. (As with the definition of
implication —“Implication”, page 14— this may at first seem counter-intuitive, since
we are used to think that the “and” operator of logic has “intersection” as its counterpart
in set theory; but union is indeed the right operator here since our assertions denote sets
of objects satisfying certain properties, so that anding two assertions means including
the objects satisfying these properties on either side.)

The consistent property to prove in the second line of the body of the definition of
precondition is (as the reader familiar with Hoare semantics will have noted) too
demanding. It requires that body always preservés invariant, whereas in fact it only
needs to preserve this invariant wharexit initially holds. So it would be desirable to
replace this property by something like

(assertion_and (assertion_not (I = exit), | « invariant),
| w invariant)

28

PRELUDE TO A THEORY OF VOID85

where the functiorassertion_not yields the negation of an assertion. Unfortunately we
cannot, in the model described here, expeessrtion _not. (This has nothing to do with

the use of EFL.) The model for assertions enables us to state thabtiweid set of
references known to be non-void{is b, c}; it provides not way to state the negation of
that property — that one or more af b andc is void. Although it may be possible to
extend the assertion model to support negation, this does not seem worth the trouble,
since it appears unlikely that proving the kind of properties relevant for this article —
that some references aretvoid, or are equal, or have been affected by the computation
— would require the assumption, in the body of a loop, that some referareesid (or

not equal, or not affected).

If this happens, remember that the property will be needed in a “red” proof, which
we will have either to take for granted or to prove through techniques that fall outside of
the present state of the Theory of Void.

Acknowledgementshis paper benefited from comments by John Potter, Heinz
Schmidt, Richard Mitchell and Kim Waldén.

	 Prelude to a Theory of Void Bertrand Meyer Draft 1, June 1998
	ABSTRACT
	1 PURPOSE
	About the scope of this article
	Void calls
	Trusted components
	References and how they can lead to void calls
	The effect of a void call
	Avoiding void calls

	2 THEORETICAL FRAMEWORK
	Void-safe software elements
	Instructions and programs
	Mathematical basis and notation
	Assertions
	The functions of interest
	The aim of the game
	Soundness and completeness
	Dynamic aliasing
	Affected targets
	Routines
	A mathematical note
	Implication

	3 PROVING VOID-SAFETY: CONTROL STRUCTURES
	The Null instruction
	The Compound instruction
	The conditional instruction

	4 CREATION AND ASSIGNMENT
	The Creation instruction
	The Assignment instruction

	5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS
	Pragmatic considerations
	The Check instruction
	Instruction consistency
	Transposing an assertion to the context of the target
	The Procedure_call instruction
	Retaining unaffected properties
	Function calls
	Loops

