
bugs

ion
sides
oofs
ound
ation.

ries
ight
Prelude to a Theory of Void

Bertrand Meyer

Draft 1, June 1998

ABSTRACT

A set of rules to ascertain that in calls of the formx.f (...) there will always be an object
attached tox.

1 PURPOSE

The theory developed in this article investigates void calls, a dangerous source of
in object-oriented computation, and ways to avoid them.

About the scope of this article

The article was initially written as a short note presenting the results of sections3 to 5,
but it turned out that a proper exposition requires some background elements (sect2).
Since one may want to prove many properties of object-oriented software be
avoidance of void calls, there is room for a series of follow-up articles focusing on pr
of specific properties. Such eventual articles will not need to repeat the backgr
elements, which define a general scheme for the theory of object-oriented comput

It is indeed part of the aim of this exposition to set a framework for other theo
of specific aspects of object-oriented computation, the accumulation of which m
eventually yield a semantic definition and proof system for a full O-O language.
This is a pre-publication draft of a paper published in JOOP in 1998. Citation reference: Bertrand
Meyer, prelude to a Theory of Void, in Journal of Object-Oriented Programming, vol. 11, no. 7,
November 1998, pages 36-48.

PRELUDE TO A THEORY OF VOID§12

bject-

sible
n-time

ere
ct any
rules,

effort
of

igh-
ual

how
nted

take
uld
rced

nefits
ty of
s than
.

call.
the
Void calls

The specific theory developed here addresses a practical problem well known to o
oriented application developers.

In a strongly typed object-oriented language few run-time errors remain pos
once the compiler has accepted a system. One of the most unpleasant is a ru
attempt to execute a call of the formreference.feature (arguments), intended to apply
a feature to an object but unable to do so because thereference turns out to be “void”
(or “null”), that is to say, not attached to any object. Such avoid call will fail, often
leading to abnormal termination of the entire execution.

This is a frustrating event and it would be a great benefit to developers if it w
possible for compilers, in the same way that they detect type mismatches, to reje
programs that may cause a void call during execution. This article describes a set of
enforceable by compilers, which can help prevent void calls.

Trusted components

The work presented here is part of the Trusted Components Project, a general
initiated by Monash University and Interactive Software Engineering with the aim
producing certifiably reliable library components to serve as basis for building h
quality appplications. The project is by nature collaborative; any institution or individ
that shares its goals is welcome to join.

One part of this effort, although by no means the only one, is to investigate
much one can hope to prove, mathematically, the correctness of object-orie
software components.

Because the general problem of program proving is difficult, it is desirable to
smaller steps first. Any help in proving specific reliability properties of programs sho
be welcome to programmers, especially if it takes the form of rules that can be enfo
by compilers. Preventing void calls is an attractive candidate, since the practical be
are high, as any object-oriented software developer can testify, and the difficul
implementing a solution should be, thanks to the theory developed here, much les
if the aim was to prove arbitrary correctness properties of object-oriented systems

References and how they can lead to void calls

The basic operation performed at run-time by an object-oriented system is feature
Also called “message passing” and “method call”, this computational step has
general form

target.feature (arguments)

wheretarget must represent an object andfeature a feature of its generating class.

§1 PURPOSE 3

ill
ll, to

ly is:

.

nded
oblems
values
nted

pes,

ing
ve a
d.

ery
there
vior.

be
ting

es to
ne by
g that
In a statically typed language and particularly in Eiffel, type checking rules w
allow the compiler, before it accepts the text of a system containing such a ca
determine that for all possible run-time executions of this callfeature will be compatible
with the type oftarget andarguments. If not, the compiler will reject the submitted
system.

Assuming the call passes the scrutiny of the type checker, its semantics simp
apply feature to the object attached totarget, passing to it the values ofarguments.

In practice, the association between the name oftarget, as it appears statically in the
program text, and the corresponding run-time objects, is often indirect: whattarget
actually denotes is not an object but an objectreference. A reference is eitherattached,
in which case it gives access to an object, orvoid, as illustrated on the following figure

Not all variables are references. In Eiffel one can declare a variable to be of an “expa
type”, in which case its possible values are objects rather than references, and the pr
discussed in this article do not arise. Expanded types are used in particular for basic
such asINTEGER for which references are generally not needed. Other object-orie
languages have their own mechanisms to give programmers a similar choice.

Regardless of the default convention, it would be hard to do without reference ty
because of the flexibility they provide:

• References may be void. This convention is particularly useful for describ
complex data structures: in a linked list, every element but the last one will ha
reference to its right neighbor, and in the last object that reference will be voi

• This convention also provides an obvious default initialization value —Void — for
all entities of non-basic types. This is the rule applied in Eiffel, enabling ev
object field and every variable to have a language-defined initial value so that
are no run-time “uninitialized value” error or implementation-dependent beha

• A reference is not tied forever to one object but may, during execution,
reattachedto different successive objects. This is again necessary for implemen
many data structures; for example one may want in an implementation of tre
re-parent a tree, making it a subtree of some other node; this is most easily do
ensuring that every node object has a reference to its parent, and reattachin
reference when needed.

An object
Another object

A reference, attached

A reference, void

PRELUDE TO A THEORY OF VOID§14

ented
gol W,

es. If
uage,

iate
tects
ption

eful,
point
ight

vide a
ough

ment
Eiffel
nce
rea —

hough
For these reasons references are almost universally available in object-ori
languages, as they already were in pre-object-oriented languages such as Lisp, Al
Pascal and Ada that support the manipulation non-trivial data structures.

But the introduction of references also has some unfortunate consequenc
target may be void we cannot any more guarantee, even in in a strongly typed lang
that the feature call makes sense, since it can only be executed whentarget denotes an
object.

The effect of a void call

A void call cannot be carried out; in Eiffel it will cause an exception.

Although it is possible to recover from such an exception by writing an appropr
exception handler, this is only a solution of last resort, since if the programmer de
that the exception may occur a simpler and more direct remedy is to avoid the exce
in the first place by modifying the software to ensure thattarget will never be void.

The possibility of handling a void call through an exception handler remains us
but only as a “just in case” measure, when the programmer, although unable to pin
a specific source of void calls, fears that because of its complexity the software m
still cause void calls in unknown cases that have escaped testing, and wants to pro
general-purpose rescue mechanism to limit the damage in such a case. Alth
preferable to ignoring the problem altogether, this approach is only a palliative.

Avoiding void calls

A better approach would be to let the compiler detect and reject any software ele
that can cause void calls. In simple cases this is possible. For example the GNU
compiler — which currently does not support Eiffel’s exception handling, and he
needs, perhaps more than other compilers, to provide some help to users in this a
will flag a routine declaration of the form

bad_routine is

local
will_be_void: SOME_REFERENCE_TYPE

do
will_be_void .some_feature

-- The preceding line will always cause a void call,
-- since the language rules ensure that will_be_void
-- is initialized to Void on every call.

end

But other cases may escape detection. For example the following scheme, alt
not uncommon in practice, may in principle cause a void call:

§2 THEORETICAL FRAMEWORK 5

r

een

lude
ason

ill be

d
he
safe

of
s

suspicious_routine is
local

might_be_void: SOME_REFERENCE_TYPE
do

if some_condition then
create might_be_void

-- Creation instruction; ensures that might_be_void
-- is not void. Also written !! might_be_void.

end
... Other instructions ...
if some_other_condition then

might_be_void .some_feature
end

end

For some forms ofsome_other_condition void calls are indeed possible; in othe
cases, for example ifsome_other_condition is the boolean expression

yet_another_condition and might_be_void /= Void

then no void call will ever occur. But verifying this property, and distinguishing betw
safe and potentially unsafe cases, is beyond the abilities of current compilers.

The rest of this article presents a theory which compiler writers can use to inc
void-call prevention measures in their compilers, and application programmers to re
about void-related properties of their software.

2 THEORETICAL FRAMEWORK

The following paragraphs present the assumptions behind the theory.

Void-safe software elements

We say that a software element isvoid-safe if its execution will not produce any void
call. The aim of the theory is to define conditions under which software elements w
provably void-safe.

Instructions and programs

The syntactic domain of interest isInstruction. The theory will define a boolean-value
functionprecondition applicable to elements of that domain, with the intention that if t
function has value True for an instruction this indicates that the instruction is void-
— its execution will not cause any void calls.

The definition of functionprecondition will rely on some auxiliary functions.

Instruction has a number of subsets, corresponding to the different kinds
instruction, such asCall, Assignment, Creation. The functions of interest, such a

PRELUDE TO A THEORY OF VOID§26

will

et
it is

ogic.
n for

er but
form
. This
more

tional
l, and
ood
sion,

ternal

nt of

r the
rences
f
void.

ord or
t with
Precondition and its auxiliaries, will be defined by case analysis: separate definitions
be applicable to arguments of each of the identified subsets.

We can consider an entire program (systemin Eiffel terminology) to be a kind of
instruction. The value ofprecondition applied to an element of the corresponding s
System will determine whether the system as a whole is void-safe — whether
guaranteed not to produce any void call at any time during its execution.

Mathematical basis and notation

The mathematics of the Theory of Void only relies on elementary set theory and l
To express it, this article uses EFL (Expressive Formal Language), a simple notatio
expressing mathematical descriptions. EFL will be presented in a forthcoming pap
should not raise any difficulty, since it is just elementary set theory couched in a
suitable for discussions of software engineering and programming language topics
article uses only a handful of EFL constructs (the full notation does not have many
anyway); each will be explained when first introduced.

The syntax of EFL resembles that of programming languages rather than tradi
mathematical notation; this facilitates exchange of specification elements by e-mai
helps build large specifications incrementally from small pieces, supporting (like a g
object-oriented programming language) the process of progressive exten
adaptation, modification and specialization. But one should not be misled by the ex
appearance of specifications: EFL describes purelymathematicalobjects — all of them
sets — and their properties.

Accordingly, the results of this article are purely mathematical, and independe
the choice of notation. EFL is only a means of exposition.

Assertions

The principal semantic domain is the setAssertion. In a general program-proving
context we would probably treat assertions as boolean-valued functions, but fo
purposes of this discussion all that matters is our ability to guarantee that some refe
are not void. So an element ofAssertion will simply be, for the moment, a set o
variables, denoting the software property that all these variables’ values are non-

Assertion
-- Properties of computational states, limited for the moment
-- to stating that certain references are not void

has
nonvoid: part Expression

end

(A has clause describes the components of a mathematical object, as with a rec
structure type in programming. This is like defining a set as a cartesian product, bu
the advantage that the specification remains open since one can add newhas components

§2 THEORETICAL FRAMEWORK 7

ject-

to a

the

h
hese
s
ents.

r

l

later as one discovers new properties.part A is the set of subsets ofA, also known as the
powerset ofA. So here the specification states that an element ofAssertion contains a set
of Assertions. As in Ada and Eiffel, EFL comments are signaled by two hyphens:--.)

Expression is a syntactic domain, representing the set of expressions in the ob
oriented programming language. The specification ofAssertion usesExpression rather
thanVariable to allow expressing not just properties of the form

“x is not void”

but also (in terms of the notation of an object-oriented programming language):

“a.b is not void”

The latter case is necessary because if we consider — referring again
programming language notation — the call

x.f

where the postcondition of routiner includes

a /= Void

for some attributea of the corresponding class, then the interesting inference for
caller is

x.a /= Void

which we can formally express by including the expressionx.a in the assertion obtained
as postcondition to the call.

The functions of interest

For any Instruction we are interested in two principal functions:precondition, already
mentioned, andpostcondition. Here are their signatures:

precondition: Instruction —> Assertion —> Boolean

postcondition: Instruction —|> Assertion —> Assertion

—> indicates a total function;—|> indicates a possibly partial function, of whic
we must specify the domain. Arrows associate from the right, so that the first of t
signatures meansInstruction —> (Assertion —> Boolean). As a general rule it appear
more convenient to curry the functions than to use cartesian products for argum

The intended meaning ofpostcondition is that if instructioni executes successfully
with a as its input assertion thenpostcondition (i) (a) is the resulting assertion. In othe
words, if a is the set of references known to be non-void upon startingi, then
postcondition (i) (a) is the set of references known to be non-void upon finishing.

The intended meaning ofprecondition is simply to define the domain of the partia
functionpostcondition. In other words, to state thatprecondition (i) (a) is to state thati
will execute successfully if started while no member ofa is a void reference. For the

PRELUDE TO A THEORY OF VOID§28

y of
t

y:

o
h

r

ing

plete

ape
ions
h

present Theory of Void the notion of “executing successfully” is simply the propert
not producing any void calls. If this is the case we say — as already noted — thai is
void-safe for a.

The aim of the game

The preceding definitions set the aim of the game in the rest of the discussion:

1 • If we take an entire program to be an instructionp, then the property to prove is
that p is void-safe for the empty assertion, that is to sa
precondition (p) (Empty) = True. This expresses thatp started from scratch will not
cause any void calls.

2 • Computingprecondition (p) requires having a definition of the function. S
sections3 to 5 of this article defineprecondition by case analysis, considering eac
kind of instruction in turn.

3 • As part of these definitions, the value ofprecondition (i) (a), if i represents the
object-oriented callx.f, will be the condition thatx is part ofa. The definition for
compound instructions will ensure that if a programp is void-safe then, for any
call x.f that any of its instruction executes,x will be non-void at the time of the call
— the general property that we seek to establish in this article.

Point1 indicates that in the end the only function of interest isprecondition. But we also
need to definepostcondition for each kind of instruction, as the definitions fo
precondition will involve the value ofpostcondition; the two function definitions will
proceed hand in hand.

Soundness and completeness

Ideally the Theory of Void should be sound and complete according to the follow
definitions:

In practice, however, it seems possible to do with a theory that is neither com
nor even (shocking at this might appear at first) sound:

• If the theory is not complete, some potential void-call-prone situations will esc
the scrutiny of our tools. Although it is desirable to catch as many such situat
as possible, catchingany of them is preferable to the current situation in whic

The theory issound if it is sufficient (powerful enough): whenever
precondition (i) (a) holds,i is void-safe fora, that is to say, execution ofi
under the input conditiona will never cause a void call.

The theory iscomplete if it is necessary (not too pessimistic): whenever
precondition (i) (a) does not hold,i is not void-safe fora, that is to say, some
executions ofi under the input conditiona can cause a void call.

§2 THEORETICAL FRAMEWORK 9

ot
many

ight
at the

ys
ave
ay’s
ing
oid
al a
the

e the
ange
rily
it is
und.

ness
re that
ence
the

ven to

lly
elping
rect
ore
s —
y the
on-
compilers detectno void calls except possibly for trivial cases. Although n
complete in the state described by the article, the theory already rules out
potentially damaging constructions.

• If the theory is not sound, it may raise some false alarms. For example it m
produce an error message for a scheme such as the following, assuming th
functionabs returns the absolute value of its argument.

if n >= 0 then
create might_be_void

end
if n = abs (n) then

might_be_void.some_feature
end

Heremight_be_void will never be void in the call, since a positive number is alwa
equal to its absolute value. For a tool to know this, however, it would need to h
extensive theorem-proving and program-proving capabilities beyond tod
compiler technology, and rely on a complete formalization of the programm
language’s semantics, far more ambitious than the limited Theory of V
developed in this article. So a compiler relying on the present theory will sign
possible error even though the program fragment is in fact safe. It will be
programmer’s responsibility to determine that this is a false alarm and to mak
corresponding decision: either ignore the warning or (perhaps preferably) ch
the form of the extract in a way that will pacify the tool. (This does not necessa
mean that error reports should be mere warnings. As will be seen below,
possible to let a compiler issue fatal errors even if the theory seems not fully so
See“The Check instruction”, page 22.)

Another argument for accepting an imperfect theory, with respect to both sound
and completeness, is that to guarantee either of these two properties would requi
we provide a full formal semantics for the underlying programming language, and h
that wechooseone language as the object of our theory. By avoiding such a choice
theory developed here potentially applies to any object-oriented language (and e
some non-O-O ones), although the model it uses most closely fits Eiffel.

The principal motive remains pragmatism and incrementality. By not initia
aiming at full soundness and completeness, we can achieve our practical aim of h
compiler writersnowto produce tools that will enable programmers to detect and cor
potential void calls. As we improve the theory — by covering more and m
instructions, and getting closer to full coverage of specific programming language
this help will be more and more precious. But even partial help, such as provided b
theory in its current initial state, is invaluable: if it avoids just one void call in a missi
critical application, the theory will have been worth developing.

PRELUDE TO A THEORY OF VOID§210

and

ay be
ting

re; in

nce

on
what

o
uct

set
e
isit

w set
ugh
For the long term we should of course retain the goal of providing a sound
complete Theory of Void for the programming language of interest.

Dynamic aliasing

An assertion was defined above as a set of expressions known to be non-void. It m
useful to extend this notion by also including a set of expression pairs deno
references known to be attached to the same object:

Assertion
has

equal: part Expression_pair
end

(to be added to the previoushas specification forAssertion, which read, on page6,
Assertion has nonvoid: part Expression end), with

Expression_pair
has

first, second: Expression
end

When specifying the effect of a reference assignmentx := y, we will not only
consider its effect on thenonvoid set (if y was innonvoid, x will now be in it, and ify
was not in it butx was,x must be removed): we will also add the pair<x, y> to theequal
set of the assertion. See“The Procedure_call instruction”, page 24. This will improve
the completeness of the theory by enabling us to know more about our softwa
particular if the expression pair<x, y> is in equal and the theory tells us, from the
properties of a routiner, that after the callx.r the value ofx.comp is not void, then we
can infer thatx.comp is also not void. Reference equality is of course an equivale
relation, but we don’t necessarily have to ensure that whenever<a, b> is in anequal set
the pair<b, a> is in it too; we can just keep one pair and make sure that all functions
pairs treat the two elements symmetrically. This is the mathematical equivalent of
software engineers call “just an implementation decision”.

A notational aside about EFL conventions. Thehas clauses accumulate; s
Assertion as defined so far may be viewed as equivalent to the cartesian prod

(part Expression) x (part Expression_pair)

Without the has mechanism, however, we might initially have defined the
Assertion as being the setpart Expression, and later realized that we also need th
equal component, making that initial definition obsolete and forcing us to rev
and adapt every part of the specification that referred toAssertion. Instead, EFL
supports the incremental construction of specifications: we never define a ne
as some combination of known sets but specify it step by step by listing, thro
has clause, the various components making up its elements. ForAssertion the

§2 THEORETICAL FRAMEWORK 11

e last
e are
sian
tical
uld
ng at
o a

e
ions:

d the

uch a

ons
nt
tactic
components arenonvoid (a member of the setExpression) andequal (a member of
the setExpression_pair, itself specified in the same style). We can always addhas
clauses later, as we discover new components of members of our sets. Until th
moment we do not assume that the list of components is exhaustiv; when w
ready to “release” a specification we implicitly identify each set to the carte
product of its components. This incremental approach is crucial to the prac
effort of writing formal specifications of large and complex phenomena. It sho
be pointed out again, however, that these conventions are just a way of arrivi
the result, and that this result — the final specification — is fully equivalent t
traditional one expressed through cartesian product or a similar technique.

Affected targets

We will see in the specification of routine calls (“Retaining unaffected properties”, pag
25) that it is useful, for practical proofs, to add one more component to assert
affected variables. The new component is

Assertion

has

affected: part Expression
end

and stands for the property that the computation so far may only have change
expressions inaffected. For example ifa.affected is the set{x, y, z}, this means that no
variable other thanx, y andz has been touched by the computation.

To avoid any confusion, here is the full definition ofAssertion reconstructed from
the three components introduced separately so far (EFL tools could produce s
reconstruction from elements originally entered piecewise as here):

Assertion

has

nonvoid: part Expression
equal: part Expression_pair
affected: part Expression

end

Routines

One final general definition is required before we start the definition of functi
precondition and postcondition for the various kinds of instruction. Since releva
programming languages will have a notion of routine call, we need to define the syn
domainRoutine. Selecting Eiffel routines as our model, we can use

PRELUDE TO A THEORY OF VOID§212

ach
The

ve
m.

he

of
ccess
e
as it

and
do so

udes
is not

and

tent
er-
side
the

part
. The
ies of

ry of
least
odel);
Routine
-- Subprograms

has
pre, post: Assertion

-- Ignore arguments for the moment!
body: Instruction

end

It will be central to the proof technique of the Theory of Void to assume that e
routine is equipped with two assertions, any of which can of course be empty.
following three considerations justify this decision:

• Without thepre andpost components of a routine we would not be able to pro
anything about calls except by “unfolding” the proof of every routine of a syste
This is not only impractical — requiring huge proofs — but contrary to t
abstraction principles of object technology.

• Without the ability to rely on explicitly stated preconditions and postconditions
routines, we could not prove anything useful about a system unless we have a
to the source code ofevery single routineit uses. As soon as it relies on just on
compiled library routine we would be helpless. This is of course unacceptable,
excludes all realistic software systems. With explict preconditions
postconditions we can proceed: whenever we use a library routine we should
on the basis of a contract specification — ashort form as offered by Eiffel
environments and used as basic documentation for Eiffel libraries — which incl
the relevant precondition and postcondition, even for a routine whose source
available to us.

By equipping routines with assertions we can apply to proofs the abstraction
reuse techniques that make object-oriented programming possible.

Eventually we should of course prove that the body of every routine is consis
with its pre andpost. This task is indeed the “unfolding” noted above. It is a suppli
side task (the responsibility of the library authors), separate from the client-
responsibility of proving the conditional correctness of an application (conditional on
library’s correctness). This separation preserves abstraction and reusability.

Note that one should not confusepre andpost with the functionsprecondition and
postcondition. The former are syntactical components: every routine will include, as
of its text, two assertions expressing its intended precondition and postcondition
latter are semantic functions, which enable us (or a compiler) to compute propert
a program.

As stated in a comment, the definition ofRoutine does not account for routine
arguments. This is part of what make the current discussion a “prelude” to the Theo
Void. There seems to be, however, no particular difficulty in adding arguments (at
for a language such as Eiffel where argument passing follows a simple semantic m

§2 THEORETICAL FRAMEWORK 13

s of

ted
With

s

of the
f the

ng
of

t
of

h a
it will be a matter of adding some substitution functions to the function specification
section4.

Routines include procedures and functions:

Procedure
-- Routines that do not return a result

subset
Routine

end
-- No further properties

Function
-- Routines that returns a result

subset
Routine

has
function_result: Variable

end

These definitions use the EFL notion ofsubset , which serves to introduce a new
set in terms of another, in a manner similar to inheritance in object-orien
programming, although mathematically this is a simple concept of subsetting.
subset the new set retains the components of the reference set (hereRoutine), while
adding, if necessary, further components, as done here in the case ofFunction. Similarly,
each of the construct specifications of sections3 to 5 defines an individual instruction a
a subset of Instruction.

A mathematical note

(This section is a comment on EFL and not indispensable to an understanding
article.) For the reader who may have doubts about the mathematical nature o
subset relation, in particular whether it truly defines a subset, the followi
clarifications of the EFL model will help. The most convenient model for a definition
a set through its components, as in

Person
has

name: String
age: Integer

end

is not the first idea that comes to mind — thatPerson is the cartesian produc
String x Integer. The reason, among others, is that this would prevent the kind
subsetting in which are interested: if we add a new component, sayheight of typeREAL,
either through a newhas clause (in the incremental style praised earlier) or throug
subset definition for a new setPerson_with_height, we would not be introducing a
mathematical subset, sinceA x B x C is not isomorphic to a subset ofA x B. In fact, the
subset relation goes the wrong way (we can mapA x B to a subset ofA x B x C).

PRELUDE TO A THEORY OF VOID§214

n,

—
for a

start

rtial

in

plies
The

ates

erty —
A more appropriate model ispartial functions : we will understand the definition
of Person as denoting the set of partial functions fromTag to Value whose domain
includes bothname andage, with the value forname being inString and the value for
age being inInteger. HereTag is the set of all possible tags, such asname andage, and
Value is the set of all possible values, including strings, integers and reals.

With this definition it is indeed true thatPerson_with_height is a subset ofPerson:
any element ofPerson_with_height has the tagsname, age andheight in its domain, so
it is indeed an element ofPerson as well. Note the importance of stating, in the definitio
that the domainincludesthe appropriate tags — not that the domainis the set of the tags
considered (such asname andage), which would prevent subsetting.

This model is part of EFL’s concern for the “engineering” of specifications
similar to the engineering of software systems thanks to object technology —
smooth refinement process, incremental and evolutionary.

Note that once we have finished this refinement process we can, if we like,
thinking again in terms of cartesian product: if the set of tags is fixed, for examplename,
age andheight, there is a trivial one-to-one correspondence between the set of pa
functions with values inString for Name and in Integer for age andheight, and the
cartesian productString x Integer x Integer. So once again the result can be recast
entirely traditional terms.

Implication

In a number of cases we will need the ability to express that an assertion im
another, in a sense compatible with the usual definition of implication in logic.
following function definition expresses implication for our model of assertions:

infix "=>" (strong, weak: Assertion): Boolean is
-- An auxiliary function: does strong imply weak?

do
Result := ((strong.nonvoid superset weak. nonvoid)

and (strong. equal superset weak. equal))
and (strong. affected superset weak. affected))
-- In other words: if weak states that a reference is not void,
-- so must strong; if weak specifies that two references
-- are equal, so must strong; if weak states that a reference
-- have been modified, so must strong.

end

superset is the set inclusion operator, “is a superset of”.

A note for readers who might at first think that thesuperset relations, in this
definition of"=>", go the wrong way. When modeling semantics through program st
we are indeed used to thinking that “strong impliesweak” means “strong is a subset of
weak” in the sense that any state that satisfiesstrong satisfiesweak. But here we model
an assertion as three sets of objects known in each case to satisfy a certain prop

§3 PROVING VOID-SAFETY: CONTROL STRUCTURES 15

ubset

fy that

of a

t the

hat

ut a
of

t two
ertion-
being non-void, being equal, or being affected by the computation so far. So the s
relations go the other way: to say thatstrong impliesweak is to say that wheneverweak
tells us that a certain object satisfies one of these properties, the object must satis
property instrong; in other words, that the objects known to satisfy the property instrong
must constitute a superset of the objects known to satisfy that property inweak.

3 PROVING VOID-SAFETY: CONTROL STRUCTURES

We can now proceed to the relevant specifications for the variants ofInstruction. The
section for each variant follows the same pattern:

• Define the syntax of the corresponding construct in the form of the definition
certain set, such asAssignment, in the form of asubset of Instruction. The syntax
of interest is of course abstract syntax, since we are not concerned abou
concrete notational conventions of a particular programming language.

• Define the values of functionsprecondition andpostcondition for elements of the
given set.

The setInstruction is never defined explicitly. The principle here is the same as t
through which, at “release” time, we equate a set defined through one or morehas
clauses with the combination of its components. Similarly, if nothing is known abo
set except for one or moresubset definitions, we equate it in the end with the union
all its defined subsets.

Correspondingly, there is no explicit definition for functionsprecondition and
postcondition for a generalInstruction; the general definition will simply be the union
of all the specific definitions for the listed subsets ofInstruction.

This section addresses control structures and the Null instruction. The nex
sections cover reference-modifying instructions (creation and assignment) and ass
equipped instructions (call, loop,check).

The Null instruction

The first construct of interest is the null instruction, with the following definition:

Null

-- The empty instruction

subset

Instruction
end

Here are the corresponding function values:

PRELUDE TO A THEORY OF VOID§316

ming

,

:
own

nce.
EFL),
that a

it is
its

of
ose of

ply
precondition (n: Null) (a: Assertion): Boolean is
-- Always OK

do
Result := True

end

postcondition (n: Null) (a: Assertion): Assertion is
-- No change to result

do
Result := a

end

Result denotes the result of a function. The symbol:= means “is defined as”.Empty
is the empty set. Again, these EFL notations, although resembling those of program
languages, denote purely mathematical concepts.

The definition ofPrecondition states that theNull instruction is always possible
regardless of the input assertiona, since the precondition isTrue.

The definition ofPostcondition states that theNull instruction lives up to its name
it yields an output assertion identical to its input assertion — changing nothing to kn
information about which references are non-void.

The Compound instruction

A Compound instruction is made of one or more instructions, to be executed in seque
To avoid distracting ourselves with a notation for sequences (such as the one in
and keep the notational apparatus to the bare minimum, we can simply consider
Compound has a “first” and a “rest”:

Compound
-- Instructions made of one or more instructions
-- to be executed in sequence

subset
Instruction

has
first, rest: Instruction

end

(A notational observation: this definition sounds suspicious at first since
implicitly recursive.Instruction, as noted above, will be defined as the union of
defined subsets; here one of the subset definitions usesInstruction — twice. The
difficulty is easily resolved thanks to the following rule. In EFL, all objects
discourse are sets, and the only operators used in the definition of a set are th
set theory, such as intersection and union. If a definition is recursive, definingA as
op (A) where op stands for some combination of set operators, it is sim
understood as a shorthand for the fixpoint definition

Empty union op (Empty) union op (op (Empty)) union ...

§3 PROVING VOID-SAFETY: CONTROL STRUCTURES 17

lly

ction

ions,
where union is set union. This immediately generalizes to sets of mutua
recursive definitions.)

The precondition of a compound is defined as follows:

precondition (c: Compound) (a: Assertion): Boolean is

-- The first instruction must be OK, and so must be the rest
-- of the compound when executed in the resulting state

do
Result :=

precondition (c.first, s) and
precondition (c.rest, postcondition (c.first, s))

end

This definition shows why we need, in the general case, to explore not just fun
precondition but alsopostcondition: the former relies on the latter. Here ispostcondition
in this case:

postcondition (c: Compound) (a: Assertion): Assertion is

-- Result of executing rest of compound from state
-- resulting from executing first instruction

do
Result := postcondition (c . rest, postcondition (c.first, a))

end

The conditional instruction

We consider a simple form of conditional instruction, with abstract syntax

Conditional
-- Instructions made of one or instruction (the body)
-- to be executed only if a certain condition is satisfied

subset
Instruction

has
body: Instruction
condition: Assertion

end

This represents instructions of the form

if condition then
body

end

where, incondition, we are only interested in clauses corresponding to our assert
such asx /= Void. Then we have:

PRELUDE TO A THEORY OF VOID§418

ation,
value

hree
precondition (c: Conditional) (a: Assertion): Boolean is
-- The body must be OK if the condition is satisfied
-- (what happens otherwise doesn’t matter)

do
Result := (a => c.condition)

end

"=>" is the implication function defined earlier (“Implication”, page 14).

4 CREATION AND ASSIGNMENT

The two constructs that directly affect references and void-safety are object cre
which makes a reference non-void, and reference assignment, which changes the
of a reference.

The Creation instruction

Syntax:

Creation
-- Object creation

subset
Instruction

has
target Variable

end

This definition ignore creation procedures (“constructors”). Here are the t
function definitions:

precondition (c: Creation) (a: Assertion): Boolean is
-- Always OK

do
Result := True

end

postcondition (c: Creation) (a: Assertion): Assertion is
-- Add target of creation instruction to set of references known
-- to be non-void; remove it from any equality set

do
Result. nonvoid := trim (a.nonvoid, c. target) union {c. target}
Result. equal := remove (a.equal, c. target)
Result. affected := a.affected union {c .target}

end

This uses two auxiliary functionstrim andremove:

• If es is a set of expression andv is a variable,trim (es, v) is es deprived of any
element of the formv.something.

§4 CREATION AND ASSIGNMENT 19

other

ent,
h

lar to

ven
f this

lls.
of

arget

ces
. We
• If ps is a set of pairs thenremove (ps, v) is another, obtained fromps by removing
any pair of which one of the two elements. is eitherv or of the formv.something.

These functions have not been spelled out but are easy to write in EFL or any
appropriate mathematical notation.

The notation{a, b, c, ...} defines a set by enumeration, here with just one elem
c. target. Another notational convention: theResult of a function can be defined throug
the values of its components, hereequal andnonvoid. (In the incremental spirit of EFL
specifications, there may be, for the same function, more than one definition simi
the above, each including only some of the components in thedo clause. We may posit
support tools with the ability to piece together all such partial definitions for a gi
function, and to check that the result covers all the components. Again none o
affects the mathematical significance of the final definitions.)

The definition ofprecondition expresses that creation will not cause any void ca
The definition ofpostcondition states the effect of a creation on our knowledge
reference properties:

• The target of the creation will be added to thenonvoid set, since making the
corresponding reference non-void is the immediate effect of creation.

• Any pair containing the target must be removed from theequal set, since the
creation instruction obsoletes any information we may have had about the t
being equal to something else.

The Assignment instruction

The assignment instruction may cause “guilt by association” — referen
becoming potentially void through the assignment of a void expression to a variable
can model the syntax as:

Assignment
-- Object creation

subset
Instruction

has
target: Variable
source: Expression

end

An assignment will not cause any void call:

precondition (s: Assignment) (a: Assertion): Boolean is
-- Always OK

do
Result := True

end

The postcondition is less trivial:

PRELUDE TO A THEORY OF VOID§520

s

ns as
d

rules
e of
may
postcondition (s: Assignment) (a: Assertion): Assertion is

-- Adapt the assertion by adding the source’s

-- properties transposed to the target

do

Result. nonvoid := adapt (a.nonvoid, s. target, s. source)

Result. equal := add_pair (a.equal, s. target, s. source)

Result. affected := a.affected union {c.target}

end

using two auxiliary functions,adapt and add_pair. The function adapt (es: part
Expression , v: Variable, e: Expression): part Expression yields the set of expression
obtained fromes by applying the following changes (in order):

- Removev if present.

- Remove any element of the formv.something.

- If es containse, addv.

- If es contains any element of the forme.something, addv.something.

Similarly, add_pair (ps: part Expression_pair, v: Variable, e: Expression): part
Expression_pair yields a set of expression pairs obtained fromps by adding the pair
<v, e>, as well as all pairs of the form<v.something, e.something> for which
v.something is in ps. As before, defining these two functions is straightforward.

5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS

In the last set of instructions we will encounter constructs that may have assertio
part of their syntax. They include theCheck instruction, loops (with their invariants), an
routine calls.

Pragmatic considerations

In defining the properties of assertion-equipped constructs, we may divide proof
into two categories. Theoretically both are equally important, but for the practic
object-oriented development, with its emphasis on abstraction and reusability, we
have to treat them separately.

Consider a routine calltarget.routine (...) whereroutine has a precondition and a
postcondition (Eiffel syntax):

§5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 21

low)

of
post,

odule

are
a

nd

ctures
rately:
, we
;

s, for
hope
o the

erty
rlier
routine (...) is
require

pre
do

-- Any number of instructions:
body

ensure
post

end

The rules of our theory should tell us (as they indeed do, in the form given be
that the precondition for the call instruction istarget.pre, guaranteeing on completion
of the call the postconditiontarget.post. The rule enabling us to deduce this property
the call from the preconditions and postconditions declared for the routine, pre and
belongs to the first category of proof rules, which we may callexternal rules.

External rules enable us to prove properties of client modules, such as a m
containing the calltarget.routine (...).

Such proofs are of course only valid if the assertions given for the routine
consistent with what the routine does —body. This property will be expressed by
function calledconsistent and defined below. For every routiner, we must prove that
consistent (r. body) (r. pre, r. post) holds. Such properties constitute the seco
category, which we may callinternal properties.

The object-oriented method’s emphasis on abstraction and layered archite
suggest that it is usually a good idea to prove internal and external properties sepa
if we are using a routine from another cluster of the software, or a library cluster
assume its properties, as expressed by itspre andpost, to prove our own client software
the author of the routine’s class is responsible for proving its internal properties.

Sometimes we may not even have the option of proving the internal propertie
example if the source code of a library we use is not available. Then we can only
that the library authors have taken care of the internal proofs; but we should still d
external proofs of our calls, which becomeconditional proofs of our software
(conditional on the correctness of its supplier classes).

A similar issue arises when we think we know for sure the truth of a certain prop
that our theory is not powerful enough to prove. An example was given ea
(“Soundness and completeness”, page 8):

if n > 0 then
create might_be_void

end
if n = abs (n) then

might_be_void.some_feature
end

PRELUDE TO A THEORY OF VOID§522

ound

ically

e
tion

we

mply
e best
ness.

ase of
ally

e
all if
e an
e the
Here the theory may not be able to prove thatmight_be_void can in fact never be
void. This may break down an entire proof. In order to be able to proceed, a workar
is to add, just before the last call, an instruction (imitated from Eiffel) of the form

check

might_be_void /= Void
end

whose postcondition, as seen next, is the given assertion, heremight_be_void /= Void,
enabling us to proceed with the proof of the enclosing software element. Theoret
there is no cheating, since we still have to verify the precondition of thecheck
instruction, requiring us in fact to establish thatmight_be_void /= Void holds. We will
consider that such preconditions areinternal properties, to be proved separately. If th
theory doesn’t enable such proofs but we might simply rely on our intimate convic
that the property is holds — thus indeed cheating.

A good supporting environment might keep track of what internal properties
haven’t proved, reminding us of how much we have cheated.

The distinction between internal and external properties is not theoretical but si
mercenary — it enables us to concentrate on the part of the job that we have th
chance of completing, even if we have to sacrifice some soundness and complete

In the following rules,the internal components appear in red, as a reminder that
they represent properties that may have to be proved separately, or even (in the c
somecheck constructs and library routines) taken at face value rather than actu
proved.

The Check instruction

Eiffel has an instruction of the form

check some_assertion end

similar to the assert instruction of Algol W and C. Such an instruction can b
understood, for the purposes of present discussion, to produce no effect at
some_assertion happens to hold at the time of execution, and otherwise to produc
outcome so horrendous that we dare not even think about specifying it. Here ar
syntax, precondition and postcondition.

Check
-- Assertion verification

subset
Instruction

has
assumption: Assertion

end

§5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 23

t

s the

nces
precondition (c: Check) (a: Assertion): Boolean is
-- Possible only if the assumption holds under a

do
Result := (a => c.assumption)

-- Reminder: function "=>" is assertion implication
end

postcondition (c: Check) (a: Assertion): Assertion is
-- In normal cases, the instruction has no effect.

do
Result := a

end

The definition of the precondition ishighlighted in red to indicate that, as noted, i
may have to be ascertained separately or outside of the theory.

Instruction consistency

Consider an instructioni, an input assertionp and an output assertionq, The following
auxiliary function expresses thati, started in an initial state satisfyingp, will produce a
state satisfyingq:

consistent (i: Instruction) (p, q: Assertion): Boolean is
-- Will i, started with p, yield q?

do
Result := precondition (i) (p) and (postcondition (i) (p) => q)

end

The definition states that:p must satisfy the conditions needed to executei; and the
postcondition of executingi, starting withp satisfied, impliesq.

This function will be useful in discussing the semantics of routines.

Transposing an assertion to the context of the target

Consider a routine equipped with assertions applying to its attributes, such a
following in Eiffel notation:

my_procedure is
require

some_attribute /= Void
do

... Whatever ...
ensure

other_attribute /= Void
end

If we study the behavior of a call of the formmy_target .my_procedure relative
to a certain assertion that involves properties (non-void, equal) of the refere
involved, we must transpose the routine’s own assertions to the context ofmy_target. For
example the precondition means, in the context of the call, the property thatmy_target

PRELUDE TO A THEORY OF VOID§524

of

xt

g

orm
We
in the

en
. some_procedure is not void. If, as will be done next, we study the value
precondition (pc) (a) wherepc is the given call, usingmy_target as target, anda is some
assertion, we will want to make sure that the seta . nonvoid includes
my_target .some_attribute (not justsome_attribute, which makes sense in the conte
of the routine but not in the context of the caller).

This prompts us to define a function

infix "+++" (a: Assertion; v: Variable): Assertion

whose result is obtained froma by replacing, in each ofa .nonvoid, a . equal and
a . affected, every expressione by v. e. In other words we are transposing everythin
to the context of a call havingv as its target. Again, the formal definition of"+++" is
straightforward and not included here.

The Procedure_call instruction

It was mentioned at the beginning of this discussion that feature call, of the f
reference.feature (...), is the fundamental operation of object-oriented computation.
start with procedure calls; the next section considers functions. Remember that
syntactic domainRoutine, and hence in its subsetsProcedure andFunction, we have
assumed componentspre andpost, listing the assertions with which a routine has be
equipped.

Procedure_call
-- The basic object-oriented call

subset
Instruction

has
target: Variable
feature: Procedure

-- For the moment we ignore arguments
end

precondition (p: Procedure_call) (a: Assertion): Boolean is
-- Is it correct to call p under the initial condition a?

local
-- Auxiliary names for convenience:

feature_target :=p. target
feature_pre := (p. feature. pre)
feature_post := (p. feature. post)
feature_body := (p. feature. body)

do
Result :=

feature_target member (a .nonvoid) and
(a => (feature_pre +++ feature_target)) and
consistent (feature_body) (feature_pre, feature_post)

end

§5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 25

all
o the
its
ty is
ately.

ted

t
(

y the
iffel

tion

es
ition.
member is the set membership operator. This definition ofprecondition states that
the assertiona must guarantee that the target of the call (that is to sayreference in
reference.feature (...) must be non void — after all, this is what we are discussing
along), that the initial assertion must imply the routine’s precondition (transposed t
target, hence the+++ feature_target) and that the body of the routine must implement
specification as stated by the precondition and postcondition. This last proper
highlighted in red because it may be preferable, as explained earlier, to prove it separ

postcondition (p: Procedure_call) (a: Assertion): Assertion is

-- Effect of executing p under the initial condition a
-- (Initial version — will be improved next).

local
-- Auxiliary names for convenience:

feature_target :=p. target
feature_post := (p. feature. post)

do
Result := (feature_post +++ feature_target)

end

This definition ofpostcondition states that the call achieves the postcondition lis
in the routine, transposed to the context of the target.

Retaining unaffected properties

The definition of functionpostcondition for procedure calls, although useful, is no
powerful enough in practice because our reliance on a routine’s explicit assertionspre
andpost) prevents us from retaining any assertion clauses that are not affected b
routine. Consider a call executed in a state where the following assertion (in E
notation) holds:

one /= Void

and assume thatp has the postcondition

other /= Void

Then the rule allows us to deduce, as postcondition of the call, the property

target.other /= Void

This is correct, but not good enough. Assuming that there is no connec
whatsoever between referencesone andother, the original assertion will still hold after
the call, so that we should be able to deduce the postcondition

one /= Void and target.other /= Void

The definition ofpostcondition obtained so far does not give this, since it defin
the postcondition of the call on the sole basis of the routine’s own stated postcond

PRELUDE TO A THEORY OF VOID§526

on of

icity
ntions

the

are
This is where it pays off to have included in assertions theaffected component,
whose usefulness may not have been obvious so far. We replace the definiti
postcondition by:

postcondition (p: Procedure_call) (a: Assertion): Assertion is

-- Effect of executing p under the initial condition a

-- (Final version).
local

-- Auxiliary names for convenience:
feature_target := p. target

feature_post := (p. feature. post)

from_routine := (feature_post +++ feature_target)

do

Result := extend_unaffected (a, from_routine)

end

using a functionextend_unaffected (a, b: Assertion): Assertion whose result is obtained
from b as follows: add tob. nonvoid every element ofa. nonvoid which is not an
extension of an element ofb. affected (where the “extensions” ofv arev itself and any
expression of the formv. something); add tob. equal every pair ofa. equal of which
neither element is an extension of an element ofb. affected; and add tob. affected
every element ofa. affected.

Function calls

Along with procedure calls we must consider function calls. We assume for simpl
(but with no loss of generality, since the discussion can be transposed to the conve
of other languages) the Eiffel convention that a special variable (Result in Eiffel) is used
in function bodies to denote the function’s result.

There is little extra work to do if we restrict our attention to assignments of
following form (in Eiffel syntax):

some_variable := target . some_function

Then it suffices to apply the definitions obtained forProcedure_call, adapting the
postcondition definition to ensure that any property ofResult yields, through
substitution, a property ofsome_variable.

Loops

As with routines, we can prove properties of loops by making sure that loops
equipped with assertions, specifically a loop invariant as in Eiffel:

§5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS 27

e,

f
e
rpart
te sets
uding

of
too
Loop
-- Loops with their invariants

subset
Instruction

has
exit, invariant: Assertion
body: Instruction

-- For the moment we ignore arguments
end

Then:

precondition (l: Loop) (a: Assertion): Boolean is
-- Does a enable us to execute the loop properly?
-- Yes iff it guarantees initial satisfaction of the invariant,
-- and the loop body preserves the invariant

do
Result := (a => l.invariant) and

consistent (body) (l.invariant, l.invariant)
-- In a more complete version the preceding line would also
-- take exit into account. See the discussion below.

end

postcondition (l: Loop) (a: Assertion): Boolean is
-- The environment resulting from executing the loop:
-- both the invariant and the exit condition hold

do
Result := (assertion_and (l.invariant, l.exit))

end

In this function definition,assertion_and denotes a function, again easy to writ
which produces the boolean “and” of two asssertions: take the union of thenonvoid
sets,theequal sets, and theaffected sets, respectively. (As with the definition o
implication —“Implication”, page 14— this may at first seem counter-intuitive, sinc
we are used to think that the “and” operator of logic has “intersection” as its counte
in set theory; but union is indeed the right operator here since our assertions deno
of objects satisfying certain properties, so that anding two assertions means incl
the objects satisfying these properties on either side.)

Theconsistent property to prove in the second line of the body of the definition
precondition is (as the reader familiar with Hoare semantics will have noted)
demanding. It requires thatl.body always preservel.invariant, whereas in fact it only
needs to preserve this invariant whenl.exit initially holds. So it would be desirable to
replace this property by something like

(assertion_and (assertion_not (l.exit), l.invariant),
l.invariant)

PRELUDE TO A THEORY OF VOID§528

e

f

ouble,
—

tion

hich
e of

inz
where the functionassertion_not yields the negation of an assertion. Unfortunately w
cannot, in the model described here, expressassertion_not. (This has nothing to do with
the use of EFL.) The model for assertions enables us to state that thenonvoid set of
references known to be non-void is{a, b, c}; it provides not way to state the negation o
that property — that one or more ofa, b andc is void. Although it may be possible to
extend the assertion model to support negation, this does not seem worth the tr
since it appears unlikely that proving the kind of properties relevant for this article
that some references arenotvoid, or are equal, or have been affected by the computa
— would require the assumption, in the body of a loop, that some referencesarevoid (or
not equal, or not affected).

If this happens, remember that the property will be needed in a “red” proof, w
we will have either to take for granted or to prove through techniques that fall outsid
the present state of the Theory of Void.

Acknowledgements: this paper benefited from comments by John Potter, He
Schmidt, Richard Mitchell and Kim Waldén.

	 Prelude to a Theory of Void Bertrand Meyer Draft 1, June 1998
	ABSTRACT
	1 PURPOSE
	About the scope of this article
	Void calls
	Trusted components
	References and how they can lead to void calls
	The effect of a void call
	Avoiding void calls

	2 THEORETICAL FRAMEWORK
	Void-safe software elements
	Instructions and programs
	Mathematical basis and notation
	Assertions
	The functions of interest
	The aim of the game
	Soundness and completeness
	Dynamic aliasing
	Affected targets
	Routines
	A mathematical note
	Implication

	3 PROVING VOID-SAFETY: CONTROL STRUCTURES
	The Null instruction
	The Compound instruction
	The conditional instruction

	4 CREATION AND ASSIGNMENT
	The Creation instruction
	The Assignment instruction

	5 CALLS AND ASSERTION-EQUIPPED CONSTRUCTS
	Pragmatic considerations
	The Check instruction
	Instruction consistency
	Transposing an assertion to the context of the target
	The Procedure_call instruction
	Retaining unaffected properties
	Function calls
	Loops

