
s

Genericity Versus
Inheritance

Bertrand Meyer
Interactive Software Engineering, Inc., 270 Storke Road, Suite #7, Goleta CA 93117

ABSTRACT

Genericity, as in Ada or ML, and inheritance, as in
object-oriented languages, are two alternative tech­
niques for ensuring better extendibility, reusability,
and compatibility of software components. This ar­
ticle is a comparative analysis of these two methods.
It studies their similarities and differences and as­
sesses to what extent each may be simulated in a
language offering only the other. It shows what fea­
tures are needed to successfully combine the two ap­
proaches in an object-oriented language that also fea­
tures strong type checking. The discussion introduces
the principal aspects of the language EiffePM whose
design, resulting in part from this study, includes
multiple inheritance and a limited form of genericity
under full static typing.

OVERVIEW

Despite its name, today's software is usually
not soft enough: adapting it to new uses turns out
in most cases to be a harder endeavor than should
be. It is thus essential to find ways of enhancing such
software quality factors as extendibility (the ease

This article is a revised version of a paper presented at
OOPSLA (First ACM Symposium on Object-Oriented Program­
ming Systems, Languages and Applications, Portland, Oregon,
Sept. 29-0ct. 2, 1986), Ed. Norman Meyrowitz, published as Sig­
plan Notices, 21, 11, pp. 391-405.

Trademarks: Unix (AT&T); Ada (U.s. DoD); Eiffel (Inter­
active Software Engineering).

with which a software system may be changed to
account for modifications of its requirements), reus­
ability (the ability of a system to be reused, in whole
or in parts, for the construction of new systems), and
compatibility (the ease of combining a system with
others).

Good answers to these issues are not purely
technical, but must include economical and mana­
gerial components as well; and their technical as­
pects extend beyond programming language fea­
tures' to such obviously relevant concerns as
specification and design techniques. It would be wrong,
however, to underestimate the technical aspects and,
among these, the role played by proper programming
language features: any acceptable solution must in
the end be expressible in terms of programs, and
programming languages fundamentally shape the
software designers' way of thinking.

This article is a comparative analysis of two
classes of programming language features for en­
hancing extendibility, reusability, and compatibil­
ity. It assesses their respective strengths and weak­
nesses, examines which of their components are
equivalent and which are truly different, shows how
the two approaches complement each other, and ex­
plains how they have been combined in a particular
programming language design.

The two approaches studied are genericity and
inheritance; both address the above issues by allow­
ing the definition of flexible software elements ame­
nable to extension, reuse, and combination. The first
is a technique for defining elements that have more
than one interpretation, depending on parameters
representing types; the second makes it possible to

Journal of Pascal, Ada, & Modula-2, Vol. 7, No.2, pp. 13-30 (1988)
© 1988 by John Wiley & Sons, Inc. cce 0735-1232/88/020013-18$04.00

1

1

F

c

E

1\

[

3

I

Genericity versus Inheritance

define elements as extensions or restrictions of pre­
viously defined ones.

Both methods apply some form of polymor­
phism, a notion that may be defined as the ability
to define program entities that may take more than
one form. A simple form of polymorphism, used in
both cases, is overloading, the ability to attach more
than one meaning to the same name, ambiguities
being resolved by examining the context of each oc­
currence of the name, either at compile time (for
statically typed languages) or at run time.

Although the two approaches may be applied
outside the strict realm of programming, for example
to specification or design languages, we shall confine
our study to programming languages. In this field,
genericity is most notably present in Ada; inheri­
tance is a feature of object-oriented languages and
was introduced by Simula 67.

Ada and object-oriented languages have until
now aroused interest in rather different communi­
ties and it is not surprising that no comparative
analysis seems to have been published. (The only
related work that we know of is the as yet unpub­
lished, more theory-oriented article by Cardelli and
Wegner [6], of which we became aware as this paper
was going to press.) However, we feel that beyond
"cultural" differences the real goals pursued are the
same, so that it is fruitful to perform an in-depth
comparison of the technical solutions obtained on
both sides.

GENERICITY

Genericity as offered by Ada is present in few
other programming languages (examples include CLU
[10] and LPG [2]), but is offered by several formal
specification languages, such as Z [1], Clear [5], OBJ2
[9], and LM [15]. A variant of this approach was
developed in connection with the language ML [16,
7] and has been integrated into a number of func­
tional languages.

We shall concentrate on the Ada form, re­
stricting ourselves to type genericity~ that is to say
the ability to parameterize a software element (in
Ada, a package or subprogram) by one or more types.
Generic parameters have other, less interesting uses
in Ada, such as parameterized dimensions for arrays.

We shall distinguish between unconstrained
genericity, whereby no specific requirement is im­
posed on generic parameters, and constrained ge­
nericity, whereby a certain structure is required.

14 Journal of Pascal, Ada, & Modula-2, March/Apri11988

Unconstrained Genericity

In its simplest form, unconstrained genericity
may be seen as a technique to bypass the unneces·
sary requirements imposed by static type checking,

Consider the example of a simple procedure
for exchanging the values of two variables. In a Ian·
guage which is not statically typed, such as Lisp, we
would write something like the following, syntactic
differences notwithstanding:

procedure swap (x, y) is
t local

begin
t : = x; x : = y ; y : = t;

end swap

The type of the elements to be swapped and
of the local variable t does not have to be specified,
However, this may be too much freedom since a call
of the form swap (a, b), where a is, say, an integer!
and b a character string, will not be prohibited even
though it is probably an error.

To address this issue, statically typed Ian·
guages, such as Pascal, require programmers to ex­
plicitly declare the types of all variables and formai
parameters, and enforce a statically checkable type
compatibility constraint between actual and formal
parameters in calls and between source and target
in assignments. In such a language, the procedure
to exchange the values of two variables of type T
becomes:

procedure T _swap (x, y: 1 in out T) is
tT

begin
t : = x; x : = y ; y : = t;

end swap

Demanding that T be specified as a single type
averts type incompatibility errors, but has the un­
pleasant consequence of requiring a new procedure
declaration for each type for which a swap operation
is needed; in the absence of overloading, a different
name must be assigned to each such procedure, for
example int_swap, str _swap and so on. Such mul­
tiple declarations lengthen and obscure programs.
The example chosen is particularly bad since all the
declarations will be identical except for the two oc­
currences of T.

Static typing may be considered too restrictive
here: the only real requirement is that the two actual
parameters passed to any call of swap should be of

the same type; and that their type should also be
applied to the declaration of the local variable t.

A language with genericity provides a tradeoff
between too much freedom, as with untyped lan­
guages, and too much restraint, as with Pascal. In
such a language, one may declare T as a generic type
parameter to the swap procedure. In quasi-Ada, the
procedure may be declared as follows

generiC
type T is private;

procedure swap (x, y: 1 in out T) is
tT

begin
t : = x; x : = y ; y : = t;

end swap

The only difference with real Ada is that we
have merged together, for ease of presentation, the
two parts of an Ada subprogram declaration, header
and body; their separation in Ada comes from a con­
cern for information hiding, orthogonal to this
discussion.

The generic ... clause introduces type param­
eters. By specifying T as "private", the writer of this
procedure allows himself to apply to objects of type
T (x, y, and t) operations available on all types, such
as assignment or comparison, and these only.

A declaration such as the above does not ac­
tually introduce a procedure but rather a procedure
pattern; actual procedure instances are obtained by
providing actual type parameters, as in

procedure int_swap is new swap (INTEGER);
procedure str _swap is new swap (STRING);

etc. Now assuming that i andj are variables of type
INTEGER, sand t of type STRING, then of the fol­
lowing calls

inLswap (i, j);
str _swap (s, t);
inLswap (i, s);
str _swap (s, j);
str _swap (i, j);

all but the first two are statically incorrect.
More interesting than parameterized subpro­

grams are parameterized packages. Ada packages
(and their equivalents in other modular languages,
such as modules in Modula-2) are syntactical encap­
sulations of groups of related entities such as sub­
programs, types and variables. One of the most im-

Genericity versus Inheritance

portant applications of packages, and the only one
considered in this article, is data abstraction: each
package contains the implementation of a type and
of the operations applicable to elements of that type.

Ada packages may be declared with generic
parameters. For example, the following package pro­
vides stacks of elements of an arbitrary type T

generic
type T is private;

package STACKS is
type STACK (size: POSITIVE) is

record
space: array (1 .. size) of T;
index: NATURAL

end record;
function empty (s: 1 in STACK)

return BOOLEAN;
procedure push (t: 1in T; s: 1in out STACK);
procedure pop (s: 1 in out STACK);
function top (s: 1 in STACK) return T;

end STACKS

We have given only the public part ("specifi­
cation") of the package; the package implementation
("body"), which describes the subprogram bodies, must
be declared separately. For technical reasons having
to do with the problems of Ada compilation, the im­
plementation of the types supported by a package,
such as STACK here, is given in the public part. For
information hiding purposes, this implementation
may be given in the private clause of the public part,
a kind of purgatory between specification and body;
however we do not need this feature for the present
discussion.

As with generic subprograms, the above does
not define a package but a package pattern; actual
packages may be obtained by instantiation, as in

package INT _STACKS is
new STACKS (INTEGER);

package STR_STACKS is
new STACKS (STRING);

In a program unit that has access to both of
these instances of STACKS, dot notation may be
used to distinguish between namesake elements: for
example the type "stack of integers" will be denoted
by INT _STACKS .ST ACK, and the type "stack of
strings" by STR _STACKS .ST ACK,' the correspond­
ing "push" procedures are INT _STACKS .push and
STR _STACKS .push.

We may note again the compromise that ge-

Journal of Pascal, Ada, & Modula-2, March/April1988 15

1

F

1

c

v

E

[

3

I

::

Genericity versus Inheritance

neric declarations achieve between typed and un­
typed languages. STACKS provides a pattern for the
declaration of modules implementing stacks of ele­
ments of all possible types TJ while retaining the
possibility to enforce type checks: for example it will
not be possible to push an integer onto a stack of
strings.

Both examples above (swap and stack) evi­
dence a form of genericity which we call uncon­
strained since there is no specific requirement on the
types that may be used as actual generic parameters:
one may swap the values of variables of any type
and create stacks of values of any type-provided
all the values in a given stack are of the same type.

Other generic definitions, however, only make
sense if the actual generic parameters satisfy some
conditions. We call this form constrained genericity.

Constrained Genericity

As in the unconstrained case, we consider two
constrained examples, a subprogram and package.

Assume we want a generic function subpro­
gram to compute the minimum of two values. We
may use the pattern of swap:

generic
type T is private;
function minimum (x, y: T) return T is

begin
if x < = y then return x;
else return y end if;

end minimum

However, such a function declaration is not
always meaningful: it should only be instantiated
for types T on which a comparison operator < = is
defined. In an untyped language, we might defer
checking of this property until run-time, but this is
not acceptable in a language that enhances security
through static typing . We need a way to specify that
type T must be equipped with the right operation.

In Ada, this will be written by treating the
operator < = as a generic parameter of its own. Syn­
tactically it is a function; as a syntactic facility, it
is possible to invoke such a function using the usual
infix form if it is declared with a name in double
quotes, here "< =." Again the following declaration
becomes legal Ada if the public part and implemen­
tation are taken apart.

generic
type T is private;

with function "< =" (a, b: T)
return BOOLEAN is <>;

function minimum (x, y: T) return T is
begin

if x < = y then return x;
else return y end if;

end minimum

The keyword with introduces generic param­
eters representing subprograms, such as "< =".

We may instantiate minimum for any type,
say Tl, such that there exists a function, say TI_
le, of type function (a, b: Tl) return BOOLEAN:

function T1 _minimum is
new minimum (T1, T1_le);

If, on the other hand, function Tl_le is in fact
called "< = ," that is to say if its name and type match
those of the corresponding formal subprogram, then
it may be omitted from the list of actual parameters
to the generic instance. For example, type INTEGER
has a predefined "< = " function with the right type,
so that we can simply declare

function int _minimum is
new minimum (INTEGER);

This use of default subprograms with match·
ing names and types is made possible by the clause
is <> in the declaration of the formal subprogram,
here "< =". Operator overloading, as permitted (and
in fact encouraged) by the design of Ada, plays an
essential role here: many different types may have
a "< = " function.

This discussion of constrained genericity for
subprograms readily transposes to packages. As·
sume we need a generic package for handling ma­
trices of objects of any type T, with matrix sum and
product as basic operations. Such a definition only
makes sense if type T has a sum and a product of
its own, and each of these operations has a zero ele­
ment; these features of T will be needed in the im­
plementation of matrix sum and product. The public
part of the package may be written as follows

generic
type T is private;
zero: T;
unity: T;
with function" +" (a, b: T) return Tis <>;
with function "*" (a, b: T) return Tis <>;

package MATRICES is
type MATRIX (lines, columns: POSITIVE) is

16 Journal of Pascal, Ada, & Modula-2, March/April1988

array (1 .. lines, 1 .. columns) of T;
function "+" (m 1, m2: MATRIX)

return MA TRIX;
function "*" (m1, m2: MATRIX)

return MATRIX;
end MATRICES;

Typical instances of the package are

package INT _MATRICES is
new MATRICES (INTEGER, 0, 1);

package BOOL_MATRICES is new
MATRICES (BOOLEAN, false, true, "or", "and");

Again, actual parameters corresponding to
formal generic subprograms (here" +" and "*") may
be omitted for type INTEGER, which has matching
operations; but they must be included for BOOL­
EAN. (It is convenient to declare such parameters
last in the form list; otherwise keyword notation is
required in calls which omit the corresponding ac­
tual parameters.)

It is interesting here to show how the imple­
mentation part of such a package will look. It is
enough to give one of the function bodies in this
package; we take matrix product as an example.

package body MA TRICES is
........... other declarations
function "*" (m1, m2: T) is

result: MATRIX (m1'lines, m2'columns);
begin

if m1 'columns / = m2'lines then
raise INCOMPATIBLE_SIZES;

end if;
for i 1in m1'RANG£(1) loop

for j 1in m2'RANGE(2) loop
result (i, j) : = zero;
for k 1 in m l' RANGE(2) loop

result (i, j) : =

result (i, j) + m 1 (i, k) * m2 (k, j)
end loop;

end loop;
end loop;
return result

end "*";
end MATRICES;

Three comments are in order for the reader
not familiar with all the details of Ada:

• for a parameterized type such as MATRIX (lines,
columns: POSITIVE), a variable declaration
must provide actual parameters, e.g. mm: MA­
TRIX (l00, 75); their values may then be re-

Genericity versus Inheritance

trieved using the apostrophe notation as in
mm'lines which in this case has value 100;

• if a is an array, a'RANGE(i) denotes the range
of values in its i-th dimension; for example
ml'RANGE(l) above is the same as 1 . .. ml'lines;

• if requested to multiply two dimension-wise in­
compatible matrices, the program raises an ex­
ception; it does not execute the code that follows
the raise instruction. The package should in­
clude code to handle the exception.

The minimum and matrix examples are rep­
resentative of Ada techniques for constrained ge­
nericity. They also show a serious limitation of these
techniques: the fact that only syntactic constraints
may be expressed. All that a programmer may re­
quire is the presence of certain subprograms ("< =",
"+ ", "*" in the examples) with given types; but the
declarations are meaningless unless some semantic
constraints are also satisfied. For example, mini­
mum only makes sense if "< =" is a total order re­
lation on T; and the MATRICES package should not
be instantiated for a type T unless the operations
"+" and "*" not only have the right type (T x T ~
T) but also give T the structure of a ring (associa­
tivity, distributivity, zero a zero element for" +" and
unity for "*", etc).

To include such formal constraints, one has to
leave the realm of programming languages such as
Ada for such specification languages as Clear and
OBJ2 (the latter executable) or the experimental
programming language LPG.

Implicit Genericity

It is important to mention a form of genericity
quite different from the above Ada-style explicit pa­
rameterization: the implicit polymorphism exem­
plified by the work on the ML functional language
[16, 7].

This technique is based on the remark that
explicit genericity, as seen above, places an unnec­
essary burden on the programmer, who must give
generic types even when the context provides enough
information to deduce a correct typing. It may be
argued, for example, that the very first version (/11)
given for procedure swap, with no type declaration,
is acceptable as it stands: with adequate typing rules,
a compiler has enough information to deduce that x,
y, and t must have the same type. Why not then let
programmers omit type declarations when they are
not strictly ne.eded conceptually, and have the com­
piler check that all uses of an identifier are consistent?

This approach, sometimes called "unobtrusive

Journal of Pascal, Ada, & Modula-2, March/April1988 17

1

F

(

E

[

3

I

..

Genericity versus Inheritance

type checking", attempts to reconcile the freedom of
untyped languages with the security of typed ones.
It has been elegantly implemented in ML and other
functional languages. One may argue, of course, that
some obtrusiveness may be useful; the redundancy
entailed by explicit type declarations may enhance
program readability. Be it as it may, the question of
explicit or implicit genericity is not directly con­
nected to the present discussion; for the purposes of
comparison with inheritance, both forms of gener­
icityare somehow equivalent.

Without committing ourselves as to which form
is best, we have chosen to rely on the explicit Ada
form, which, for our study, has the obvious advan­
tage that generic parameters stand out more visibly.

INHERITANCE

The inheritance technique was introduced in
1967 by Simula 67 [3, 8, 11]. It has been widely
imitated in other object-oriented languages.

As with genericity, we will mostly introduce
this technique through examples. We shall rely on
the notation of the object-oriented language Eiffel
[13,12,14].* Much of the discussion would transpose
to other object-oriented languages; however Eiffel's
emphasis on static typing, and its design as an object­
oriented language for actual software engineering
applications (as opposed to, say, artificial intelli­
gence or exploratory programming) make it partic­
ularly suitable for this discussion. Only the elements
of Eiffel which are essential to this article are in­
troduced; more details may be found in the refer­
ences quoted.

The fundamental idea of inheritance is that
new software elements may be defined as extensions
of previously defined ones, which should not have to
be modified for the occasion.

This concept blends particularly well with the
object-oriented approach, in which basic software
elements (modules) are implementations of abstract
data types: the extensions of software elements men­
tioned above will then correspond to refinements of
hierarchies of abstract data types.

The basic tenet of object-oriented languages
may be described as the idea that modules not only
contain abstract data type implementations (an ef-

*Eiffel and the associated compiler and environment are
products of Interactive Software Engineering, Inc., Goleta
(California).

18 Journal of Pascal, Ada, & Modula-2, March/April1988

fect which may be achieved in any language offering
modular features and information hiding, such as
Ada or Modula-2), but are such implementations. In
other words, the defining equality of object-oriented
languages is

Module == Type

This dogmatic identification of two apparently
distinct programming notions, one syntactic, the other
semantic, may appear too strict and indeed has some
disadvantages. But it also gives object-oriented pro­
gramming languages and the associated design
method a strong conceptual integrity, and provides
powerful techniques for satisfying the software qual­
ity requirements mentioned above.

As an example of such a module-type, called
a class in Eiffel as in Simula and many other object·
oriented languages, consider the following outline of
an implementation of "special files" in the Unix sense,
that is to say, files associated with devices

class DEVICE export
open, close, opened

feature
open (file_descriptor: INTEGER) is

do

end; -- open
close is

do

end; -- close
opened: BOOLEAN

end -- class DEVICE

This class is the implementation of an ab­
stract data type characterized by three "features,"
open, close, and opened. There are two kind of fea­
tures: attributes and routines. Routines, like open
and close here, are operations applicable to objects
of the class; routines are further divided into pro­
cedures which, as the two shown here, perform some
actions, and functions (seen in later examples), which
return a value. Attribute features, like opened here,
are data elements associated with each object of the
type.

As a type, a class such as DEVICE may be
used to declare objects; their features may then be
accessed through dot notation, as in

d1: DEVICE; i1: INTEGER
d1.Create;

d1.open (fl);
if d1.opened then

Create is a universal procedure applicable to
all classes; it allocates the necessary space for an
object such as dl. Further initialization, if needed,
may be described in a possibly parameterized pro­
cedure declared in the class with the name Create.

Note that each routine always has, besides its
normal list of arguments, a special argument, the
object to which the procedure is applied (dl in the
above calls). This is characteristic of object-oriented
languages: every operation is relative to a distin­
guished object. Within the class, unqualified feature
names implicitly refer to this object; the predefined
name Current may be used when an explicit refer­
ence is needed.

These comments account for the "type" aspect
of a class. From the "module" standpoint, it should
be noted that the class is the only program struc­
turing facility of Eiffel; thus the above example use
of DEVICE must be in some class, say C. A class
such as C which declares entities (that is to say fea­
tures, routine parameters, or function results) of type
DEVICE is said to be a client of DEVICE. The ex­
port clause lists the features of a class which are
accessible to clients, in read-only mode for attributes
and execution mode for routines (here all features
shown are exported). Since information hiding is not
a concern for this discussion, we shall omit export
... clauses in the sequel.

The notion of inheritance is a natural exten­
sion to this basic framework. Assume we want next
to define the notion of tape device. For our purposes,
a tape unit has all the properties of devices, as rep­
resented by the three features of class DEVICE, plus
the ability to (say) rewind its tape. Rather than re­
defining a new class from scratch, we may declare
class TAPE as an extension of DEVICE, as follows

class TAPE inherit DEVICE feature
rewind is

do end
end -- class TAPE

With this declaration, objects of type TAPE
automatically possess (by "inheritance") all the fea­
tures of DEVICE objects, plus their own (here re­
wind). We say that TAPE is an heir to DEVICE,
which is a parent of TAPE. The "descendants" of a
class are the class itself and the descendants of its
heirs; the reverse notion is that of "ancestor."

A class may of course have more than one heir;

Genericity versus Inheritance

for example, DEVICE could have DISK as another
heir, with its own specific features (such as direct
access read, etc.). In Eiffel, classes may also have
more than one parent: this is known as multiple
inheritance, a very powerful technique for reusabil­
ity, allowing the comb ina tion of more than one pre­
viously developed environment. Eiffel also intro­
duces the technique of "repeated inheritance," making
it possible to inherit more than once from the same
class.

From the module viewpoint, the ancestor re­
lation is a program structuring mechanism; from the
type viewpoint, it yields a rule on legal assignments.
The rule is simple: an assignment

x:= y

where x and yare of class types, is permitted if and
only if the type of x is an ancestor of the type of y.
Thus the above assignment is legal if, for example,
x has been declared as a device and y as a tape. This
may be explained by noting that the inheritance re­
lation is really the "is-a" relation [4]: every tape is
a device, but every device is not a tape.

It sometimes happens that a feature of a class
should be implemented differently in some de­
scendants of the class. For example, there could be
a special "open" mechanism for tape devices. Eiffel
allows such redefinitions, as follows

class TAPE inherit
DEVICE redefine open

feature
open (file_descriptor: INTEGER) is

do special open for tape devices end;
rewind is

do end
end -- class TAPE

This possibility must be seen in the light of
the assignment rule: if x is a device, then the call

x.open (f1)

may be executed differently depending on the as­
signments performed on x before the call: for ex­
ample, after x: = y, wherey is a tape, the tape version
should be executed. Such feature redefinitions are
common in Eiffel programming, which also allows a
parameterless function to be redefined as an attri­
bute (which is useful for changing representations
in program refinement).

This facility characterizes the powerful brand

Journal of Pascal, Ada, & Modula-2, March/April1988 19

•

(

E

[

3

I

,.

Genericity versus Inheritance

of polymorphism offered by object-oriented lan­
guages with inheritance: the same feature reference
may have several interpretations depending on the
actual form of the object at run-time. To achieve this
effect, many object-oriented languages have re­
nounced static type checking; Eiffel, however, is stat­
ically typed (and the binding of feature names to
actual features is done statically whenever possible).

The remarkable benefits of the inheritance
technique with respect to reusability, extendibility,
and compatibility come from the fact that software
elements such as DEVICE are both usable as they
are (they may be compiled as part of an executable
program) and still amenable to extensions (if used
as ancestors of new classes). Thus, a compromise
between usability and flexibility, fundamental for
the qualities mentioned, is achieved.

One more property of Eiffel, borrowed from
Simula, will be useful for the discussion below: de­
ferred features (corresponding to Simula's "virtual
procedures"). Deferred features correspond to oper­
ations that must be provided on all objects of a class,
but whose implementation may only be given in par­
ticular descendants of the class.

Assume for example that, as under Unix, de­
vices are a special kind of files; DEVICE should thus
be an heir to class FILE, whose other heirs may be
TEXT _FILE (itself with heirs NORMAL and DI­
RECTORY) and BINARY _FILE. Figure 1 shows
the inheritance graph, a tree in this case.

Any file may be opened or closed; but how
these operations are performed depends on whether
the file is a device, a directory etc. Thus, at the FILE
level we declare the corresponding procedures as de­
ferred, giving only a header and handing over the
burden of actual implementation to descendant classes

Fig. 1. Inheritance graph for files.

20 Journal of Pascal, Ada, & Modula-2, March/April1988

class FILE feature
open (file_descriptor: INTEGER) is deferred end;
close is deferred end;

end -- class FILE

Descendants of FILE should provide actual
definitions of open and close. The rules of the lan­
guage prohibit application of these features to ob­
jects for which they might not be defined.

An interesting application of this technique
is Ada or Modula-like separation between interface
and implementation of a module: although an Eiffel
class is normally defined as a single piece, the effect
of Ada's two-level declaration (specification and body)
may be achieved by declaring a first class with de­
ferred features only, and a second one, heir to the
first, with the implementation of these features. This
technique has an important advantage over its Ada
equivalent: it allows different implementations of
the same feature to coexist in a single software system.

SIMULATING INHERITANCE WITH
GENERICITY

To compare genericity with inheritance, we
shall study how, if in any way, the effect of each
feature may be simulated in a language offering the
other.

First consider a language such as Ada, offer­
ing genericity but not inheritance. Can it be made
to achieve the effects of inheritance?

The easy part is the overloading. In a lan­
guage such as Ada or Algol 68 where the same sub­
program name may be reused as many times as needed
provided it is applied too perands of different types,
there is no difficulty in defining types such as TAPE,
DISK, etc., each with its own version of open, close
etc.:

procedure open
(p: 1in out TAPE; descriptor: 1in INTEGER);

procedure close (p: 1in out DISK);
etc.

Provided the subprograms are distinguished
by the type of at least one operand, as is the case
here, no ambiguity will arise.

Yet this solution falls short of providing true
polymorphic entities as in languages with inheri­
tance, where, as discussed above, an operation may
be executed differently depending on the form of its
operand at run-time (even though it is possible, at

least in Eiffel, to check at compile time that the
operation is defined in all possible cases). A typical
example is the call d.close, which will be carried out
differently after the assignments d : = di and d : =

ta, where di is a DISK and ta a TAPE. The Ada-like
form of overloading does not provide anything like
this remarkable possibility.

The only feature of Ada which could be used
to emulate this property of object-oriented languages
is in fact shared with Pascal and has nothing to do
with overloading or genericity; it is the record with
variant fields. We could for example define some­
thing like

type DEVICE (unit: DEVICE_ TYPE) is
record

....... fields common to all device types
case unit is

when tape = > fields for tape devices

when disk = > fields for disk devices ;
....... other cases ;

end case
end record

where DEVICE_TYPE is an enumeration type with
elements tape, disk, etc. Then there would be a single
version of each the procedures on devices (open, close
etc.), each containing a case discrimination of the
form

case d' unit is
when tape = > action for tape devices ;
when disk = > action for disk devices ;
....... other cases ;

end case

Such a solution, however, is unacceptable from
a software engineering viewpoint; it runs contrary
to the criteria of extendibility, reusability, and com­
patibility. Not only does it scatter case discrimina­
tions (here on DEVICE_TYPE) all over the pro­
gram; worse yet, it closes the set of possible choices:
as opposed to the Eiffel class DEVICE which can at
any time be used as parent or a new class, the Ada
type DEVICE has a fixed list of variants, one for
each element of the enumeration type DEVICE_
TYPE. To add a new case, one must change the dec­
laration of DEVICE, invalidating any program unit
that relied on it.

So the answer to the question posed at the
beginning of this section-can inheritance be sim­
ulated with genericity?-is no.

Genericity versus Inheritance

SIMULATING GENERICITY WITH
INHERITANCE

We now address the reverse problem: can we
achieve the effect of Ada-style genericity in an ob­
ject-oriented language with inheritance?

As before, we use Eiffel as our vehicle for ex­
pressing object-oriented techniques. As explained
later, Eiffel does provide a generic parameter mech­
anism (included in the language as a result of the
study reported here); but of course, since the object
of this section is to analyze how one may simulate
genericity with inheritance, we must temporarily
refrain from using the Eiffel generic mechanism. The
reader should thus be warned that the solutions pre­
sented in this section are substantially more complex
than those obtainable with full Eiffel, described in
the next section.

The simulation turns out to be easier, or at
least less artificial, for constrained genericity-a
surprising result since unconstrained genericity is
conceptually simpler. Thus we begin with the con­
strained case.

Constrained Genericity: Overview

The idea is to associate with a constrained
formal generic type parameter a class. This is a nat­
ural thing to do since a constrained generic type may
be viewed, together with its constraining operations,
as an abstract data type. Consider for example the
generic clauses in our two constrained examples,
minimum and matrices:

generic
type T is private;
with function" < =" (a, b: T)

return BOOLEAN is <>;

generic
type T is private;
zero: T;
unity: T;
with function" +" (a, b: T) is <>;
with function "*" (a, b: T) is <>;

We may view these clauses as the definitions
of two abstract data types say COMPARABLE and
RING; the former is characterized by a comparison
operation "< = ", and the latter by features zero, un­
ity, "+" and "*".

In an object-oriented language, such types may

Journal of Pascal, Ada, & Modula-2, March/April1988 21

•

1

F

(

E

[

3

I

I~

Genericity versus Inheritance

be directly represented as classes. We cannot define
these classes entirely, for there is no universal im­
plementation of "< = ", "+ ", etc.; rather, they are to
be used as ancestors of other classes, corresponding
to actual generic parameters. The deferred feature
mechanism of Eiffel provides exactly what is needed
to express such classes

class COMPARABLE feature
Ie (other: COMPARABLE): BOOLEAN

is deferred end
end -- class COMPARABLE

-- Ie corresponds to "< = ";
-- there are no infix functions in Eiffel.

class RING feature
plus (other: RING) is deferred end;
times (other: RING) is deferred end;
zero: RING;
unity: RING

end -- class RING

The comment made earlier about the lack of
semantic specification in Ada constrained genericity
would seem to apply here too: we have not specified
any of the required properties on le, plus, etc. Eiffel
does, however, permit the specification of such prop­
erties in the form of preconditions and postcon­
ditions on routines. Simple examples of this facility
will be given later on.

The reader will also have noted that plus and
times are defined here as procedures rather than
functions; the convention we will follow in the Eiffel
examples is that r.plus (r 1) is an instruction that
performs a side-effect on r, adding to its value the
value ofr 1, rather than an expression returning the
sum of these values (and similarly for times). In con­
trast, the Ada operators" + " and "*" were functions.
The difference is not essential and we use procedures
in Eiffel mainly for brevity. Subject to the following
discussion, the examples may be changed into func­
tions, as in

plus (other: RING): RING is deferred end;

Constrained Genericity: Subprograms

A subprogram such as minimum may now be
written by specifying its arguments to be of type
COMPARABLE. Based on the Ada pattern, the func­
tion would be declared as

22 Journal of Pascal, Ada, & Modula-2, March/April1988

minimum (one: COMPARABLE; other:
COMPARABLE):

COMPARABLE is
-- Minimum of one and other

do end

In an object-oriented language, however, every
routine (Eiffel term for subprogram) appears in a
class and is relative to the "current" object of that
class; thus it seems preferable to include minimum
in class COMPARABLE, argument one becoming
the implicit current object. The class becomes

class COMPARABLE feature
Ie (other: COMPARABLE): BOOLEAN is

deferred
end;
minimum (other: COMPARABLE): COMPARABLE
is

-- Minimum of current element and other
do

if Ie (other) then Result: = Current
else Result: = other end

end -- minimum
end -- class COMPARABLE

(The predefined variable Result contains the result
to be returned by any function in which it appears;
it is implicitly declared of the function's result type,
here COMPARABLE.) To compute the minimum of
two elements, we must declare them of some des­
cendant type of COMPARABLE. For example, we
may declare

class INT _COMPARABLE inherit
COMPARABLE

feature
Ie (other: INT _COMPARABLE): BOOLEAN is

-- Is current element less than
-- or equal to other?

do Result: = value < = other. value end
value; INTEGER;

-- Value associated with current element
change _ value (new: T) is

-- Make new the value associated
-- with current element
do value: = new end;

end -- class INT _COMPARABLE

To find the minimum of two integers, we may
now apply function minimum, not to arguments of
type integer, but to arguments of type INT _COM­
PARABLE, say icl and ic2, as follows

ie3 : = ie1.minimum (ie2)

To use the generic le and minimum functions,
we have to renounce direct references to integers,
using INT _COMPARABLE entities instead; hence
the need for attribute value and routine change_
value to access and modify the associated integer
values.

We would similarly introduce heirs of COM­
PARABLE, say STR_COMPARABLE, REAL_
COMPARABLE, and so on, for each type for which
a version of minimum is desired.

Of course, having to declare similar features
value and change_ value for all descendants of COM­
PARABLE is unpleasant. But by paying this rela­
tively small price in terms of ease of program writ­
ing-renouncing the direct use of predefined types­
we seem to achieve the effect of genericity.

There is a hitch, however, if we are concerned
about static typing. We clearly want to disallow a
call such as

ie1.minimum (c)

where c is a COMPARABLE but not an INT _COM­
PARABLE. Function le has indeed been redefined
to accept only INT _COMPARABLE arguments; the
rules of Eiffel permit such redefinition of an entity
of a class in a descendant of that class, if the new
type is itself, as here, a descendant of the original
type. But minimum has not been redefined; in fact
this is the whole point of the game: to make sure
that minimum is a polymorphic feature, applicable
to all kinds of "comparable" objects. So, regrettably,
c is in fact a legal argument as used above.

To ensure type consistency we must redefine
minimum in INT _COMPARABLE so that its ar­
guments and result are of type INT _COMPARA­
BLE. The body of the routine does not change: only
its header has to be modified. The class declaration
may thus be rewritten as follows

class INT _COMPARABLE inherit
COMPARABLE

rename minimum as general_minimum;
redefine minimum

feature
Ie (other: INT _COMPARABLE): BOOLEAN is

...... As in 1271 ;
minimum (other: INT _COMPARABLE):

INT _COMPARABLE
is

-- Minimum of current element and other

Genericity versus Inheritance

do
Result: = general_minimum (other)

end; -- minimum
value: INTEGER; -- As above
change _ value (new: T) is -- As above

do value: = new end;
end -- class INT _COMPARABLE

We have used here the renaming mechanism
of Eiffel; the rename ... subclause of the inherit ...
clause makes it possible to access the features of the
ancestor class (COMPARABLE) even though they
are redefined in the descendant. Eiffel prohibits
overloading of names within a class, so that re­
naming is necessary to allow use of both sets of fea­
tures in the class. (Another use of renaming is in
multiple inheritance, to remove name clashes when
features are inherited from more than one class).

What we have done is to redefine the header
of minimum-not its body, which remains the orig­
inal one, made accessible under the name general_
minimum. This seems to take care of the static typ­
ing conflict, while introducing yet more complication.

However, the careful reader will have noted
that a serious typing problem remains. The call to
general_minimum is correct with respect to its ar­
gument other: since general_minimum (that is to
say, COMPARABLE's version of minimum, as given
on p. expects COMPARABLE objects, an entity like
other declared of the descendant type INT _COM­
PARABLE is an acceptable substitute under the as­
signment rule. But there is a problem with the result
of the function: general_minimum returns a COM­
PARABLE whereas INT _COMPARABLE's version
of minimum should return an INT _COMPARABLE.

ie3 : = ic 1.minimurh (ie2)

ic3 should be an INT _COMPARABLE; the assign­
ment is illegal if the right-hand side returns just a
COMPARABLE. In fact, the permitted type combi­
nations in assignments are the inverse ones: the source
should be of a descendant type from the target.

With what we have seen so far there is no way
to resolve this issue other than by redefining mini­
mum completely-not only its header, but its body
as well-so that it will indeed return an INT _COM­
PARABLE. This of course defeats the whole purpose
of genericity: a similar redefinition must be repeated
in each descendant of COMPARABLE, with all in­
stances of minimum identical except for the type
declarations of arguments and results.

We shall only be able to provide a satisfactory

Journal of Pascal, Ada, & Modula-2, March/April1988 23

Genericity versus Inheritance

solution to this problem by introducing declaration
by association.

Constrained Genericity: Packages

The previous discussion transposes to pack­
ages. We use a class to represent the matrix abstrac­
tion implemented in Ada by the MATRICES package

class MATRIX feature
impl: ARRAY2 [RING];
entry (i: INTEGER: j: INTEGER): RING is

-- Value of the (i, j) entry of the matrix
do Result: = impl.entry (i, j) end;

enter (i: INTEGER; j: INTEGER; v: RING) is
-- Assign value v
-- to entry (i, j) of the matrix

do impl. enter (i, j, v) end;
plus (other: MATRIX) is

-- Add other to current matrix
local

t1: RING
do

......... loop
......... Ioop

t1 : = entry (i, j);
t1.plus (other. entry (i, j));
enter (i, j, t1)

end
end

end; -- plus
times (other: MATRIX) is

-- Multiply current matrix by other
local do end

end -- class MATRIX

Here ARRA Y2 [T] denotes a predefined Eiffel
class whose elements are two-dimensional arrays of
type T. Array types are treated in Eiffel as class
types; the basic operations on an element a of type
ARRA Y2 are a.entry (i, j), which returns the i, j
entry of array a (that is to say, a [i, j] in standard
Pascal notation), and a.enter (i, j, v), which assigns
value v to this entry (that is to say, a [i, j] : = v).
Corresponding operations are declared above for
matrices.

We have left out some details (such as how
the dimensions of a matrix are set) but outlined the
plus procedure, exhibiting the object-oriented form
of overloading: the internal call to plus is the oper­
ation on RING, not MATRIX. Similarly, routines
enter and entry are used in both their ARRAY2 and
MATRIX versions.

24 Journal of Pascal, Ada, & Modula-2, March/April1988

To define the equivalent of the Ada generic
package instantiation

package BOOL_MATRICES is
MATRICES (BOOLEAN, false, true, "or",

"and");

we must declare the "ring" corresponding to booleans

class BOOL_RING inherit
RING redefine zero, unity

freeze zero, unity feature
value: BOOLEAN;
change_value (b: BOOLEAN) is

-- Assign value b to current element
do value: = bend;

plus (other: BOOL_RING) is
-- Boolean addition: or

do change_value (value or other. value) end;
times (other: BOOL_RING) is

-- Boolean multiplication: and
do change_value (value and other. value) end;

zero: BOOL_RING is
-- Zero element for boolean addition

do
Result. Create;
Result. change _ value (false)

end; -- zero
unity: BOOL_RING is

-- Zero element for boolean multiplication
do

Result. Create;
Result. change _ value (true)

end -- unity
end -- class BOOL_RING

Note that zero and unity are redefined as func­
tions returning a value of type BOOL_RING. How­
ever, these are actually constant functions: the clause
freeze ... , not seen before, indicates that zero and
unity are evaluated just once and their values shared
among all instances of the class. This is how con­
stants of class types may be introduced in Eiffel.

How do we provide the equivalent to the Ada
package instantiation for boolean matrices recalled
above? The same reasoning that was applied to class
COMPARABLE and function minimum prevents us
from keeping MATRIX as it is if type checking is a
concern: we want to make sure that an integer ele­
ment, say, may not be entered into a boolean matrix.
To achieve this, we define an heir BOOL_MATRIX
of MATRIX, where routines entry, enter, plus and *
are redefined to act only on objects of type BOOL­
RING rather than any RING. As with minimum,

only the headers of the routines have to be changed,
not their implementations; this is achieved as fol­
lows, using again renaming to allow access to re­
defined features of the parent class.

class BOOL_MATRIX
inherit

MATRIX
rename entry as general_matrix _entry,

enter as general_matrix _enter,
plus as general_matrix _plus,
times as general_matrix_times

redefine impl, entry, enter, plus, times
feature

impl: ARRAY2 [BOOL_RING];
entry (i: INTEGER; j: INTEGER): BOOl_RING is

-- Value of the (i, j) entry of the matrix
do Result: = general_matrix _entry (i, j) end;

... and similarly for enter, plus and times ...
end --class BOOL_MATRIX

The reader may note the same problem for the
result of function entry as previously discussed for
minimum: this result should be of type BOOL_RING,
but general_matrix_entry will only return a RING.
With the language features seen so far, all we can
do is to redefine the body of entry, making it a copy
of the body of general_ matrix_entry rather than a
call to this routine; then the result will be of the
right type. Note that the problem only arises for
functions, so the other routines of the class are not
affected.

This problem notwithstanding, the construc­
tion achieves with inheritance the effect of con­
strained genericity. The price to pay is a certain
heaviness in expression; note in particular that what
has been done for BOOL_MATRIX must be repeated
for any descendant of MATRIX representing a ge­
neric instantiation, as INT _MATRIX, REAL_MA­
TRIX, etc. Furthermore, features value and change
_value must be declared anew in each descendant of
the associated class RING. We shall see later how
such heaviness may be removed.

Unconstrained Genericity

The mechanism for simulating unconstrained
genericity is the same; this case is simply seen as a
special form of constrained genericity, with an empty
set of constaints. As above, formal type parameters
will be interpreted as abstract data types, but here
with no relevant operations. The technique works,
but suffers from the heaviness mentioned above, be-

Genericity versus Inheritance

coming less tolerable here as the dummy types do
not correspond to any obviously relevant data
abstraction.

Let us apply the previous technique to both
our unconstrained examples, swap and stack, begin­
ning with the latter. We need a class, say STACK­
ABLE, describing objects that may be pushed onto
and retrieved from a stack. Since this is true of any
object, this class has no property beyond its name:

class STACKABLE end

We may now declare a class STACK, whose
operations apply to ST ACKABLE objects

class STACK feature
space: ARRAY [STACKABLE];
index; INTEGER;
size: INTEGER;
empty: BOOLEAN is

-- Is the stack empty?
do Result: = (index = 0) end;

push (x: STACKABLE) is
-- Add x on top of the stack

require
index < size

do
index : = index + 1 ;
space. enter (x, index)

end; -- push
top: STACKABLE is

-- Last element pushed
require

not empty
do

Result: = space. entry (index)
end; -- top

pop is
-- Remove last element pushed

require
not empty

do
index: = index - 1

end; -- pop
Create (m: INTEGER) is

-- Create stack with space for m values
do

space.Create (1, m);
size := m

end .- Create
end -- class STACK

The require ... clauses illustrate how routine
preconditions (which must be satisfied by actual pa-

Journal of Pascal, Ada, & Modula-2, March/April 1988 25

!
II
IiIj Genericity versus Inheritance

11
1

!
II
I
j

f!

i
i

1\
I
!

(I
I

\1
I

I
EI
!

~l
I q
I

3

I

rameters upon entry to a routine) are written in
Eiffel. Postconditions and class invariants may also
be expressed (in ensure ... and invariant ... clauses).
This aspect of the language falls beyond the scope
of this discussion; see Meyer [12] for more details.

STACK relies on the predefined class ARRA Y
for one-dimensional arrays, whose main procedures
are entry. enter, and Create; the latter takes two ar­
guments and allocates the array with the values of
these arguments as bounds. The Create procedure
for stacks takes just one argument (the stack size).

To instantiate this definition for stacks of spe­
cific types, we apply the same techniques as above:
define descendants of STACKABLE, such as

class INT _STACKABLE inherit
STACKABLE

feature
value: INTEGER;
change_value (n: INTEGER) is

-- Make n the value of the current element
do value : = n end

end -- INT _STACKABLE

and similarly STR _STACKABLE, etc.
Here we run again into the typing problem

evidenced by minimum and BOOL_MATRIX. Stacks
declared simply of type STACK cannot be statically
guaranteed to contain only objects of a certain class
of "stackables," say INT _STACKABLE; and we have
the problem of the type of the result returned by
function top. In the following sequence

s: STACK; ins: INT _STACKABLE

s.Create (10);
ins.Create; ins.change_value (50);
s.push (ins);
ins := s.top

the last assignment has a left-hand side of type
INT _STACKABLE and a right-hand side of type
STACKABLE; this is typewise wrong even though
the code seems quite legitimate semantically (one
pushes the value of a variable and retrieves it im­
mediately into the same variable).

For both these reasons, it is necessary to do
as in the previous examples, that is to say declare
heirs to STACK, such as INT _STACK, STR _STACK
etc. Features of STACK will be redefined in each of
these classes, but only to adapt the types of their
arguments and, in the case of top, of the result. Thus
for example, INT _STACK will contain feature re­
definitions such as

space: ARRAY [INT _STACKABLE];
push ((X: INT _ STACKABL~) is

do general_stack _push (x) end;

etc. (the reader may complete this example based on
the MATRIX case).

The other unconstrained example, procedure
swap, may be treated along the same lines; a class
SWAPP ABLE will be introduced. The treatment is
left to the reader.

GENERICITY AND INHERITANCE IN
EIFFEL

We may draw the following conclusions from
the previous discussion.

• Inheritance is the more powerful mechanism,
There is no way to provide a reasonable sim·
ulation with genericity.

• The equivalent of generic subprograms or pack·
ages may be expressed in a language with in·
heritance, but one does not avoid the need for
certain spurious duplications of code. The extra
verbosity is particularly hard to justify in the
case of unconstrained genericity, for which the
simulation mechanism is just as complex as for
the conceptually more difficult constrained case,

• Type checking introduces difficulties in the use
of inheritance to express generic objects,

To address these issues, Eiffel offers a limited
form of genericity and the notion of declaration by
association. (The specification language LM, asso·
ciated with the M specification method [15], relies
on a similar tradeoff.)

Simple Genericity

Since unconstrained genericity is both the
simpler case and the one for which the pure inher·
itance solution is least acceptable, it seems adequate
to provide a specific mechanism for this case, distinct
from the inheritance mechanism. Consequently, Eif·
fel classes may have unconstrained generic paramo
eters. A class may be defined as

class C [T1, T2, , Tn]

where the parameters represent arbitrary types
(simple or class). An actual use of the class will use
actual type parameters, as in

x: C [INTEGER, RING, ... , DEVICE]

26 Journal of Pascal, Ada, & Modula-2, March/April1988

We have in fact already encountered such par­
ameterized classes: the basic classes ARRAY and
ARRA Y2 are naturally generic. It should also be
noted (although the present paper is about concepts
rather than implementation) that Eiffel compilation
techniques make it possible to generate a single ob­
ject module for a parameterized class, as opposed to
Ada techniques which treat generic packages as ma­
cros to be expanded anew for each instantiation.

The examples of the previous sections provide
obvious cases where generic parameters are useful.
For instance COMPARABLE becomes

class COMPARABLE [T] feature
Ie (other: COMPARABLE [T]): BOOLEAN is

deferred
end;
minimum (other: COMPARABLE [T]):

COMPARABLE [T] is
... As in /26/ ... ;

value: T;
change _ value (new: T) is do value : = new end

end -- class COMPARABLE

Here we see an immediate and important ben­
efit of generic parameters: we can solve almost com­
pletely the problem of type checking by specifying
that the arguments to le and minimum and the local
variable m are of type COMPARABLE [T], for the
same T as the class itself. Thus we rid ourselves of
the necessity to redefine, at least formally, minimum
for each descendant of COMPARABLE, which plagued
our previous attempts. The generic parameter T also
allows us to lift the declarations of features value
and change_value from the various descendants of
COMPARABLE to a single instance in COMPA­
RABLE itself.

However, we have not yet found a proper type
for minimum's result, which remains a COMPA­
RABLE[T] even in descendants; more on this below.

To define INT _COMPARABLE all we have
to write now is

class INT _COMPARABLE inherit
COMPARABLE [INTEGER]

feature
Ie (other: INT _COMPARABLE): BOOLEAN is

-- Is current element less than or equal to
other?

do Result: = value < = other. value end
end -- class INT _COMPARABLE

The other examples are treated similarly

Genericity versus Inheritance

class RING [n feature
plus (other: RING [T]) is deferred end;
times (other: RING [T]) is deferred end;
zero: RING [n;
unity: RING [T];
value: T;
change_value (new: T) is do value: = new end

end -- class RING
class MATRIX [n feature

impl: ARRAY2 [RING [n;
entry (i: INTEGER; j: INTEGER): RING [T] is

... As before '" (see /31/);
... and similarly for enter, plus and times ...

end -- class MATRIX

Note how the use of a generic parameter in
two related classes, RING and MATRIX, makes it
possible to ensure type consistency (all elements of
a matrix will be of type RING [T] for the same T).
As with COMPARABLE, the declarations of fea­
tures value and change_value have been factored
out: they now appear in class MATRIX rather than
being repeated in all its descendants.

In the unconstrained case, the need for dummy
classes disappears; class STACKABLE and its heirs
INT _STACKABLE, STR_STACKABLE, etc. are not
needed any more, since STACK may be rewritten as

class STACK [n feature
space: ARRAY [n;
index: INTEGER;
size: INTEGER;
... The rest of the class as in /351
... except that T is used in lieu of STACKABLE ...

end -- class STACK

There is also no more need for classes such as
INT _STACK, STRING _STACK, etc.; simply use
STACK [INTEGER], STACK [STRING], and so on.
The typing problem for top disappears since the re­
sult of this function is now simply of type T.

A remarkable degree of simplification has been
achieved. Auxiliary classes are not needed any more
for unconstrained genericity. However, we do not
introduce constrained genericity in the language: this
feature would be redundant with the inheritance
mechanism. To provide the equivalent of a con­
strained formal generic parameter, we retain the
technique introduced earlier: declare a special class
whose features correspond to the constraints (that is
to say, the with subprograms in Ada terminology),
and declare any corresponding actual parameters as
descendants of this class. Providing the class with

Journal of Pascal, Ada, & Modula-2, March/April1988 27

1

f

(

\.

E

[

3

Genericity versus Inheritance

generic parameters simplifies its use and partly solves
the type checking problem.

Declaration by Association

Let us look more closely at the remaining part
of the type checking problem. Consider again class
COMPARABLE as defined last. Keeping in mind
that COMPARABLE is intended for use as an ances­
tor for more specific classes, we do not really want
other (in both functions), m and the result of mini­
mum to be of type COMPARABLE [T]: what is re­
quired of these entities is to be of the type of the
"current" entity, whatever this may be in a descen­
dant of COMPARABLE. When this type changes,
we want the other entities to follow suit.

This possibility is achieved in Eiffel through
the mechanism of declaration by association. Let a
class C contain a declaration of the form

x: 0

where D is a class type. We may then declare another
entity as

y: like x

Such a declaration means the following: the
type of y is the same as the type of x; if x is redefined
in a descendant class of C as being of a class type
D', which must be a descendant of D, theny will be
considered to have been redefined likewise. Note that
this is a purely static mechanism; it may be viewed
as an abbreviation allowing the redeclaration of just
one from a group of related entities to stand for the
redeclaration of the whole group.

When this distinguished entity, x above, is
redeclared, it "drags" along all entities declared like
it. We call it the anchor of the association. The
anchor may be the current entity, as in

y: like Current

This readily applies to the previous example

class COMPARABLE [T] feature -- Contrast with
139/
Ie (other: like Current): BOOLEAN is

deferred
end;
minimum (other: like Current): like Current is

do ... see 1261 ... end;

28 Journal of Pascal, Ada, & Modula-2, March/April1988

value: T;
change_value (new: T) is do value: = new end

end -- class COMPARABLE

Note how this device solves at once all the
remaining type checking problems: not only are Ie

and minimum constrained to act, in all descendants
of COMPARABLE, on homogeneous entities (com.
paring only integers with integers, strings with
strings, etc.); it also ensures that the result of min.
imum is of the right type, that of its arguments.

The same technique readily applies to the other
cases. For example, RING becomes

class RING [7] feature
plus (other: like Current) is deferred end;
times (other: like Current) is deferred end;
zero: like Current;
unity: like Current;
value: T;
change_value (new: T) is do value: = new end

end -- class RING

In contrast with the STACK case, we do need
here, because of the deferred procedures, to explicitly
declare descendants of RING for various implemen­
tations of plus and times; for example

class BaaL_RING inherit
RING [BOOLEAN]

redefine zero, unity
freeze

zero, unity
feature

..... as in /321
end -- class BOOL_RING

Artificial Anchors

For MATRIX, a small addition is necessary
to ensure that all entities of type RING [T] are al­
ways redefined consistently.

When a group of entities are redefined to­
gether by association, one of the entities must serve
as the anchor for the association. In the final versions
obtained above for COMPARABLE and RING, the
current element is the anchor.

In MATRIX, the entities to be redefined are
of a type, namely RING, different from the current
class. In such a case, the class usually contains a
feature of the required type which can serve as an­
chor. For example, the basic Eiffel library [12] in-

cludes an implementation oflinked lists through two
classes: LINKED_LIST [T] for the lists themselves
and LINKABLE [T] for list cells (a cell contains a
value of type T and a reference to another cell). The
implementation of a list contains a reference first_
element to the first cell of the list; first_element is
used as anchor for other LINKABLE entities of class
LINKED _LIST and redefined in descendants of
LINKED _LIST, such as the classes for two-way lists
and trees (both viewed as special cases of linked
lists).

Class MATRIX, however, has no feature of
type RING; the reason is that "ring" elements are
entered into the matrix indirectly, as arguments to
procedure entry. Thus, we cannot avoid the need for
a dummy feature of type RING serving as anchor:

class MATRIX [T] freeze anchor feature
anchor: RING [T];
imp I: ARRAY2 [like anchor];
entry (i: INTEGER; j: INTEGER): like anchor

is .. , As before ... (/31 I) ... ;
enter (i: INTEGER; j: INTEGER; v: like anchor)

is .. , As before ... ;
plus (other: like Current) is ... As before ... ;
times (other: like Current) is ... As before ... ;

end -- class MA TRIX

(Listing anchor in the freeze clause avoids the waste
of run-time space that would result from physically
storing an anchor within each object of the class.)
Here too specialized classes must be declared for var­
ious generic instances of MATRIX. However, the
declarations are now trivial: all that needs to be done
is to redefine anchor. For example

class BaaL_MATRIX inherit
MATRIX [BOOLEAN] redefine anchor

feature
anchor: BaaL_RING

end -- class BOOL_MA TRIX

Such a redeclaration closely models the correspond­
ing Ada package instantiation (/12/).

CONCLUSION

Genericity and inheritance are two important
techniques towards the software quality goals men­
tioned at the beginning of this article. We have tried
to show which of their features are equivalent, and
which are complementary.

Providing a programming language with the

Genericity versus Inheritance

full extent of both inheritance and Ada-like gener­
icity would, as we think this discussion has shown,
result in a redundant and overly complex design; but
including only inheritance would make it too diffi­
cult for programmers to handle the simple cases for
which unconstrained genericity offers an elegant
expression mechanism, like in the stack example.

Thus we have put the borderline at uncon­
strained genericity. Eiffel classes may have uncon­
strained generic parameters; constrained generic pa­
rameters are treated through inheritance.

Declaration by association completes this ar­
chitecture by allowing for completely static type
checking, while retaining the necessary flexibility.

We hope to have achieved in this design a good
balance between the facilities offered by two impor­
tant but very different techniques for the imple­
mentation of extendible, compatible, and reusable soft­
ware.

Acknowledgments

This work benefited from comments by Vin­
cent Cazala and was done in part as the author was
with the University of California, Santa Barbara.

References

1. Jean-Raymond Abrial, Stephen A. Schuman, and Ber­
trand Meyer, "A Specification Language," in On the
Construction of Programs, ed. R. McNaughten and R.C.
McKeag, Cambridge University Press, 1980.

2. Didier Bert, "Manuel de Reference du Langage LPG,
Version 1.2," Rapport R-408, IFIAG, IMAG Institute
(Grenoble University), Grenoble, December 1983.

3. Graham Birtwistle, Ole-Johan Dahl, Bjorn Myrhaug,
and Kristen Nygaard, SimulaBegin, Studentliteratur
and Auerbach Publishers, 1973.

4. Ronald J. Brachman, "What IS-A and isn't: An Anal­
ysis of Taxonomic Links in Semantic Networks," Com­
puter(lEEE), vol. 16, no. 10, pp. 67-73, October 1983.

5. Rod M. Burstall and Joe A. Goguen, "An Informal
Introduction to Specifications using Clear," in The
Correctness Problem in Computer Science, ed. R.S. Boyer
and J.S. Moore, pp. 185-213, Springer-Verlag, New
York,1981.

6. Luca Cardelli and Peter Wegner, "On understanding
Types, Data Abstraction and Polymorphism," Com­
puting Surveys (to appear).

7. Luca Cardelli, "Basic Polymorphic Typechecking,"
AT&T Bell Laboratories Computing Science Techni­
cal Report, 1984, 1986. (Revised version, to appear).

8. Ole..Johan Dahl, Bj¢rn Myrhaug, and Kristen Ny-

Journal of Pascal, Ada, & Modula-2, March/April1988 29

1

(

v

E

[

3

T

I

Genericity versus Inheritance

gaard (Simula) Common Base Language, Norsk Reg­
nesentral (Norwegian Computing Center), Oslo, Feb­
ruary 1984.

9. K. Futatsugi, Joseph A. Goguen, Jean-Pierre Jouan­
naud, and Jose Messeguer, "Principles of OBJ2," in
Proceedings o{ the 1985 ACM Symposium on Princi­
ples of Programming Languages, vol. 12, pp. 52-66,
1985.

10. Barbara H. Liskov, R. Atkinson, T. Bloom, E. Moss,
J.C. Schaffert, R. Scheifler, and Alan Snyder, CLU
Reference Manual, Springer-Verlag, Berlin-New York,
1981.

11. Bertrand Meyer, "Quelques concepts importants des
langages de programmation modernes et leur expres­
sion en Simula 67," Bulletin de la Direction des Etudes
et Recherches d'Electricite de France, Serie C (In{or­
matique), no. 1, pp. 89-150, Clamart (France), 1979.
Also in GROPLAN 9, AFCET, 1979.

12. Bertrand Meyer, Ei{{el: a Language {or So{tware En­
gineering, Technical Report TRCS86-4, Interactive

30 Journal of Pascal, Ada, & Modula-2, March/April1988

Software Engineering, Version 2.1, August 1986, No.
vember 1985 (Revised, August 1986).

13. Bertrand Meyer, "Eiffel: Programming for Reusabilitv
and Extendibility," ACM Sigplan Notices, 1987. (T~
appear)

14. Bertrand Meyer, Object-oriented Software Construc_
tion, 1987. (To appear)

15. Bertrand Meyer, "M: A System Description Method"
Technical Report TRCS85-15, University of Califo~.
nia, Santa Barbara, Computer Science Department
May 1985. '

16. Robin Milner, "A Theory of Type Polymorphism in
Programming," Journal of Computer and System Sci.
ences, vol. 17, pp. 348-375, 1978.

17. Rishiyur S. Nikhil, "Practical Polymorphism," in
Functional Programming Languages and Computer
Architecture, Nancy (France), 16-19 September 1985
Lecture Notes in Computer Science 201, ed. Jean-Pie~
Jouannaud, pp. 319-333, Springer-Verlag, Berlin-New
York, 1985.

