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ABSTRACT 

Genericity, as in Ada or ML, and inheritance, as in 
object-oriented languages, are two alternative tech­
niques for ensuring better extendibility, reusability, 
and compatibility of software components. This ar­
ticle is a comparative analysis of these two methods. 
It studies their similarities and differences and as­
sesses to what extent each may be simulated in a 
language offering only the other. It shows what fea­
tures are needed to successfully combine the two ap­
proaches in an object-oriented language that also fea­
tures strong type checking. The discussion introduces 
the principal aspects of the language EiffePM whose 
design, resulting in part from this study, includes 
multiple inheritance and a limited form of genericity 
under full static typing. 

OVERVIEW 

Despite its name, today's software is usually 
not soft enough: adapting it to new uses turns out 
in most cases to be a harder endeavor than should 
be. It is thus essential to find ways of enhancing such 
software quality factors as extendibility (the ease 
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ming Systems, Languages and Applications, Portland, Oregon, 
Sept. 29-0ct. 2, 1986), Ed. Norman Meyrowitz, published as Sig­
plan Notices, 21, 11, pp. 391-405. 
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with which a software system may be changed to 
account for modifications of its requirements), reus­
ability (the ability of a system to be reused, in whole 
or in parts, for the construction of new systems), and 
compatibility (the ease of combining a system with 
others). 

Good answers to these issues are not purely 
technical, but must include economical and mana­
gerial components as well; and their technical as­
pects extend beyond programming language fea­
tures' to such obviously relevant concerns as 
specification and design techniques. It would be wrong, 
however, to underestimate the technical aspects and, 
among these, the role played by proper programming 
language features: any acceptable solution must in 
the end be expressible in terms of programs, and 
programming languages fundamentally shape the 
software designers' way of thinking. 

This article is a comparative analysis of two 
classes of programming language features for en­
hancing extendibility, reusability, and compatibil­
ity. It assesses their respective strengths and weak­
nesses, examines which of their components are 
equivalent and which are truly different, shows how 
the two approaches complement each other, and ex­
plains how they have been combined in a particular 
programming language design. 

The two approaches studied are genericity and 
inheritance; both address the above issues by allow­
ing the definition of flexible software elements ame­
nable to extension, reuse, and combination. The first 
is a technique for defining elements that have more 
than one interpretation, depending on parameters 
representing types; the second makes it possible to 
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Genericity versus Inheritance 

define elements as extensions or restrictions of pre­
viously defined ones. 

Both methods apply some form of polymor­
phism, a notion that may be defined as the ability 
to define program entities that may take more than 
one form. A simple form of polymorphism, used in 
both cases, is overloading, the ability to attach more 
than one meaning to the same name, ambiguities 
being resolved by examining the context of each oc­
currence of the name, either at compile time (for 
statically typed languages) or at run time. 

Although the two approaches may be applied 
outside the strict realm of programming, for example 
to specification or design languages, we shall confine 
our study to programming languages. In this field, 
genericity is most notably present in Ada; inheri­
tance is a feature of object-oriented languages and 
was introduced by Simula 67. 

Ada and object-oriented languages have until 
now aroused interest in rather different communi­
ties and it is not surprising that no comparative 
analysis seems to have been published. (The only 
related work that we know of is the as yet unpub­
lished, more theory-oriented article by Cardelli and 
Wegner [6], of which we became aware as this paper 
was going to press.) However, we feel that beyond 
"cultural" differences the real goals pursued are the 
same, so that it is fruitful to perform an in-depth 
comparison of the technical solutions obtained on 
both sides. 

GENERICITY 

Genericity as offered by Ada is present in few 
other programming languages (examples include CLU 
[10] and LPG [2]), but is offered by several formal 
specification languages, such as Z [1], Clear [5], OBJ2 
[9], and LM [15]. A variant of this approach was 
developed in connection with the language ML [16, 
7] and has been integrated into a number of func­
tional languages. 

We shall concentrate on the Ada form, re­
stricting ourselves to type genericity~ that is to say 
the ability to parameterize a software element (in 
Ada, a package or subprogram) by one or more types. 
Generic parameters have other, less interesting uses 
in Ada, such as parameterized dimensions for arrays. 

We shall distinguish between unconstrained 
genericity, whereby no specific requirement is im­
posed on generic parameters, and constrained ge­
nericity, whereby a certain structure is required. 
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Unconstrained Genericity 

In its simplest form, unconstrained genericity 
may be seen as a technique to bypass the unneces· 
sary requirements imposed by static type checking, 

Consider the example of a simple procedure 
for exchanging the values of two variables. In a Ian· 
guage which is not statically typed, such as Lisp, we 
would write something like the following, syntactic 
differences notwithstanding: 

procedure swap (x, y) is 
t local 

begin 
t : = x; x : = y ; y : = t; 

end swap 

The type of the elements to be swapped and 
of the local variable t does not have to be specified, 
However, this may be too much freedom since a call 
of the form swap (a, b), where a is, say, an integer! 
and b a character string, will not be prohibited even 
though it is probably an error. 

To address this issue, statically typed Ian· 
guages, such as Pascal, require programmers to ex­
plicitly declare the types of all variables and formai 
parameters, and enforce a statically checkable type 
compatibility constraint between actual and formal 
parameters in calls and between source and target 
in assignments. In such a language, the procedure 
to exchange the values of two variables of type T 
becomes: 

procedure T _swap (x, y: 1 in out T) is 
tT 

begin 
t : = x; x : = y ; y : = t; 

end swap 

Demanding that T be specified as a single type 
averts type incompatibility errors, but has the un­
pleasant consequence of requiring a new procedure 
declaration for each type for which a swap operation 
is needed; in the absence of overloading, a different 
name must be assigned to each such procedure, for 
example int_swap, str _swap and so on. Such mul­
tiple declarations lengthen and obscure programs. 
The example chosen is particularly bad since all the 
declarations will be identical except for the two oc­
currences of T. 

Static typing may be considered too restrictive 
here: the only real requirement is that the two actual 
parameters passed to any call of swap should be of 



the same type; and that their type should also be 
applied to the declaration of the local variable t. 

A language with genericity provides a tradeoff 
between too much freedom, as with untyped lan­
guages, and too much restraint, as with Pascal. In 
such a language, one may declare T as a generic type 
parameter to the swap procedure. In quasi-Ada, the 
procedure may be declared as follows 

generiC 
type T is private; 

procedure swap (x, y: 1 in out T) is 
tT 

begin 
t : = x; x : = y ; y : = t; 

end swap 

The only difference with real Ada is that we 
have merged together, for ease of presentation, the 
two parts of an Ada subprogram declaration, header 
and body; their separation in Ada comes from a con­
cern for information hiding, orthogonal to this 
discussion. 

The generic ... clause introduces type param­
eters. By specifying T as "private", the writer of this 
procedure allows himself to apply to objects of type 
T (x, y, and t) operations available on all types, such 
as assignment or comparison, and these only. 

A declaration such as the above does not ac­
tually introduce a procedure but rather a procedure 
pattern; actual procedure instances are obtained by 
providing actual type parameters, as in 

procedure int_swap is new swap (INTEGER); 
procedure str _swap is new swap (STRING); 

etc. Now assuming that i andj are variables of type 
INTEGER, sand t of type STRING, then of the fol­
lowing calls 

inLswap (i, j); 
str _swap (s, t); 
inLswap (i, s); 
str _swap (s, j); 
str _swap (i, j); 

all but the first two are statically incorrect. 
More interesting than parameterized subpro­

grams are parameterized packages. Ada packages 
(and their equivalents in other modular languages, 
such as modules in Modula-2) are syntactical encap­
sulations of groups of related entities such as sub­
programs, types and variables. One of the most im-
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portant applications of packages, and the only one 
considered in this article, is data abstraction: each 
package contains the implementation of a type and 
of the operations applicable to elements of that type. 

Ada packages may be declared with generic 
parameters. For example, the following package pro­
vides stacks of elements of an arbitrary type T 

generic 
type T is private; 

package STACKS is 
type STACK (size: POSITIVE) is 

record 
space: array (1 .. size ) of T; 
index: NATURAL 

end record; 
function empty (s: 1 in STACK) 

return BOOLEAN; 
procedure push (t: 1in T; s: 1in out STACK); 
procedure pop (s: 1 in out STACK); 
function top (s: 1 in STACK) return T; 

end STACKS 

We have given only the public part ("specifi­
cation") of the package; the package implementation 
("body"), which describes the subprogram bodies, must 
be declared separately. For technical reasons having 
to do with the problems of Ada compilation, the im­
plementation of the types supported by a package, 
such as STACK here, is given in the public part. For 
information hiding purposes, this implementation 
may be given in the private clause of the public part, 
a kind of purgatory between specification and body; 
however we do not need this feature for the present 
discussion. 

As with generic subprograms, the above does 
not define a package but a package pattern; actual 
packages may be obtained by instantiation, as in 

package INT _STACKS is 
new STACKS (INTEGER); 

package STR_STACKS is 
new STACKS (STRING); 

In a program unit that has access to both of 
these instances of STACKS, dot notation may be 
used to distinguish between namesake elements: for 
example the type "stack of integers" will be denoted 
by INT _STACKS .ST ACK, and the type "stack of 
strings" by STR _STACKS .ST ACK,' the correspond­
ing "push" procedures are INT _STACKS .push and 
STR _STACKS .push. 

We may note again the compromise that ge-
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neric declarations achieve between typed and un­
typed languages. STACKS provides a pattern for the 
declaration of modules implementing stacks of ele­
ments of all possible types TJ while retaining the 
possibility to enforce type checks: for example it will 
not be possible to push an integer onto a stack of 
strings. 

Both examples above (swap and stack) evi­
dence a form of genericity which we call uncon­
strained since there is no specific requirement on the 
types that may be used as actual generic parameters: 
one may swap the values of variables of any type 
and create stacks of values of any type-provided 
all the values in a given stack are of the same type. 

Other generic definitions, however, only make 
sense if the actual generic parameters satisfy some 
conditions. We call this form constrained genericity. 

Constrained Genericity 

As in the unconstrained case, we consider two 
constrained examples, a subprogram and package. 

Assume we want a generic function subpro­
gram to compute the minimum of two values. We 
may use the pattern of swap: 

generic 
type T is private; 
function minimum (x, y: T) return T is 

begin 
if x < = y then return x; 
else return y end if; 

end minimum 

However, such a function declaration is not 
always meaningful: it should only be instantiated 
for types T on which a comparison operator < = is 
defined. In an untyped language, we might defer 
checking of this property until run-time, but this is 
not acceptable in a language that enhances security 
through static typing . We need a way to specify that 
type T must be equipped with the right operation. 

In Ada, this will be written by treating the 
operator < = as a generic parameter of its own. Syn­
tactically it is a function; as a syntactic facility, it 
is possible to invoke such a function using the usual 
infix form if it is declared with a name in double 
quotes, here "< =." Again the following declaration 
becomes legal Ada if the public part and implemen­
tation are taken apart. 

generic 
type T is private; 

with function "< =" (a, b: T) 
return BOOLEAN is <>; 

function minimum (x, y: T) return T is 
begin 

if x < = y then return x; 
else return y end if; 

end minimum 

The keyword with introduces generic param­
eters representing subprograms, such as "< =". 

We may instantiate minimum for any type, 
say Tl, such that there exists a function, say TI_ 
le, of type function (a, b: Tl) return BOOLEAN: 

function T1 _minimum is 
new minimum (T1, T1_le); 

If, on the other hand, function Tl_le is in fact 
called "< = ," that is to say if its name and type match 
those of the corresponding formal subprogram, then 
it may be omitted from the list of actual parameters 
to the generic instance. For example, type INTEGER 
has a predefined "< = " function with the right type, 
so that we can simply declare 

function int _minimum is 
new minimum (INTEGER); 

This use of default subprograms with match· 
ing names and types is made possible by the clause 
is <> in the declaration of the formal subprogram, 
here "< =". Operator overloading, as permitted (and 
in fact encouraged) by the design of Ada, plays an 
essential role here: many different types may have 
a "< = " function. 

This discussion of constrained genericity for 
subprograms readily transposes to packages. As· 
sume we need a generic package for handling ma­
trices of objects of any type T, with matrix sum and 
product as basic operations. Such a definition only 
makes sense if type T has a sum and a product of 
its own, and each of these operations has a zero ele­
ment; these features of T will be needed in the im­
plementation of matrix sum and product. The public 
part of the package may be written as follows 

generic 
type T is private; 
zero: T; 
unity: T; 
with function" +" (a, b: T) return Tis <>; 
with function "*" (a, b: T) return Tis <>; 

package MATRICES is 
type MATRIX (lines, columns: POSITIVE) is 
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array (1 .. lines, 1 .. columns) of T; 
function "+" (m 1, m2: MATRIX) 

return MA TRIX; 
function "*" (m1, m2: MATRIX) 

return MATRIX; 
end MATRICES; 

Typical instances of the package are 

package INT _MATRICES is 
new MATRICES (INTEGER, 0, 1); 

package BOOL_MATRICES is new 
MATRICES (BOOLEAN, false, true, "or", "and"); 

Again, actual parameters corresponding to 
formal generic subprograms (here" +" and "*") may 
be omitted for type INTEGER, which has matching 
operations; but they must be included for BOOL­
EAN. (It is convenient to declare such parameters 
last in the form list; otherwise keyword notation is 
required in calls which omit the corresponding ac­
tual parameters.) 

It is interesting here to show how the imple­
mentation part of such a package will look. It is 
enough to give one of the function bodies in this 
package; we take matrix product as an example. 

package body MA TRICES is 
........... other declarations ............ . 
function "*" (m1, m2: T) is 

result: MATRIX (m1'lines, m2'columns); 
begin 

if m1 'columns / = m2'lines then 
raise INCOMPATIBLE_SIZES; 

end if; 
for i 1in m1'RANG£(1) loop 

for j 1in m2'RANGE(2) loop 
result (i, j) : = zero; 
for k 1 in m l' RANGE(2) loop 

result (i, j) : = 

result (i, j) + m 1 (i, k) * m2 (k, j) 
end loop; 

end loop; 
end loop; 
return result 

end "*"; 
end MATRICES; 

Three comments are in order for the reader 
not familiar with all the details of Ada: 

• for a parameterized type such as MATRIX (lines, 
columns: POSITIVE), a variable declaration 
must provide actual parameters, e.g. mm: MA­
TRIX (l00, 75); their values may then be re-

Genericity versus Inheritance 

trieved using the apostrophe notation as in 
mm'lines which in this case has value 100; 

• if a is an array, a'RANGE(i) denotes the range 
of values in its i-th dimension; for example 
ml'RANGE(l) above is the same as 1 . .. ml'lines; 

• if requested to multiply two dimension-wise in­
compatible matrices, the program raises an ex­
ception; it does not execute the code that follows 
the raise instruction. The package should in­
clude code to handle the exception. 

The minimum and matrix examples are rep­
resentative of Ada techniques for constrained ge­
nericity. They also show a serious limitation of these 
techniques: the fact that only syntactic constraints 
may be expressed. All that a programmer may re­
quire is the presence of certain subprograms ("< =", 
"+ ", "*" in the examples) with given types; but the 
declarations are meaningless unless some semantic 
constraints are also satisfied. For example, mini­
mum only makes sense if "< =" is a total order re­
lation on T; and the MATRICES package should not 
be instantiated for a type T unless the operations 
"+" and "*" not only have the right type (T x T ~ 
T) but also give T the structure of a ring (associa­
tivity, distributivity, zero a zero element for" +" and 
unity for "*", etc). 

To include such formal constraints, one has to 
leave the realm of programming languages such as 
Ada for such specification languages as Clear and 
OBJ2 (the latter executable) or the experimental 
programming language LPG. 

Implicit Genericity 

It is important to mention a form of genericity 
quite different from the above Ada-style explicit pa­
rameterization: the implicit polymorphism exem­
plified by the work on the ML functional language 
[16, 7]. 

This technique is based on the remark that 
explicit genericity, as seen above, places an unnec­
essary burden on the programmer, who must give 
generic types even when the context provides enough 
information to deduce a correct typing. It may be 
argued, for example, that the very first version (/11) 
given for procedure swap, with no type declaration, 
is acceptable as it stands: with adequate typing rules, 
a compiler has enough information to deduce that x, 
y, and t must have the same type. Why not then let 
programmers omit type declarations when they are 
not strictly ne.eded conceptually, and have the com­
piler check that all uses of an identifier are consistent? 

This approach, sometimes called "unobtrusive 
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type checking", attempts to reconcile the freedom of 
untyped languages with the security of typed ones. 
It has been elegantly implemented in ML and other 
functional languages. One may argue, of course, that 
some obtrusiveness may be useful; the redundancy 
entailed by explicit type declarations may enhance 
program readability. Be it as it may, the question of 
explicit or implicit genericity is not directly con­
nected to the present discussion; for the purposes of 
comparison with inheritance, both forms of gener­
icityare somehow equivalent. 

Without committing ourselves as to which form 
is best, we have chosen to rely on the explicit Ada 
form, which, for our study, has the obvious advan­
tage that generic parameters stand out more visibly. 

INHERITANCE 

The inheritance technique was introduced in 
1967 by Simula 67 [3, 8, 11]. It has been widely 
imitated in other object-oriented languages. 

As with genericity, we will mostly introduce 
this technique through examples. We shall rely on 
the notation of the object-oriented language Eiffel 
[13,12,14].* Much of the discussion would transpose 
to other object-oriented languages; however Eiffel's 
emphasis on static typing, and its design as an object­
oriented language for actual software engineering 
applications (as opposed to, say, artificial intelli­
gence or exploratory programming) make it partic­
ularly suitable for this discussion. Only the elements 
of Eiffel which are essential to this article are in­
troduced; more details may be found in the refer­
ences quoted. 

The fundamental idea of inheritance is that 
new software elements may be defined as extensions 
of previously defined ones, which should not have to 
be modified for the occasion. 

This concept blends particularly well with the 
object-oriented approach, in which basic software 
elements (modules) are implementations of abstract 
data types: the extensions of software elements men­
tioned above will then correspond to refinements of 
hierarchies of abstract data types. 

The basic tenet of object-oriented languages 
may be described as the idea that modules not only 
contain abstract data type implementations (an ef-

*Eiffel and the associated compiler and environment are 
products of Interactive Software Engineering, Inc., Goleta 
(California). 
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fect which may be achieved in any language offering 
modular features and information hiding, such as 
Ada or Modula-2), but are such implementations. In 
other words, the defining equality of object-oriented 
languages is 

Module == Type 

This dogmatic identification of two apparently 
distinct programming notions, one syntactic, the other 
semantic, may appear too strict and indeed has some 
disadvantages. But it also gives object-oriented pro­
gramming languages and the associated design 
method a strong conceptual integrity, and provides 
powerful techniques for satisfying the software qual­
ity requirements mentioned above. 

As an example of such a module-type, called 
a class in Eiffel as in Simula and many other object· 
oriented languages, consider the following outline of 
an implementation of "special files" in the Unix sense, 
that is to say, files associated with devices 

class DEVICE export 
open, close, opened 

feature 
open (file_descriptor: INTEGER) is 

do 

end; -- open 
close is 

do 

end; -- close 
opened: BOOLEAN 

end -- class DEVICE 

This class is the implementation of an ab­
stract data type characterized by three "features," 
open, close, and opened. There are two kind of fea­
tures: attributes and routines. Routines, like open 
and close here, are operations applicable to objects 
of the class; routines are further divided into pro­
cedures which, as the two shown here, perform some 
actions, and functions (seen in later examples), which 
return a value. Attribute features, like opened here, 
are data elements associated with each object of the 
type. 

As a type, a class such as DEVICE may be 
used to declare objects; their features may then be 
accessed through dot notation, as in 

d1: DEVICE; i1: INTEGER 
d1.Create; 



d1.open (fl); 
if d1.opened then .... 

Create is a universal procedure applicable to 
all classes; it allocates the necessary space for an 
object such as dl. Further initialization, if needed, 
may be described in a possibly parameterized pro­
cedure declared in the class with the name Create. 

Note that each routine always has, besides its 
normal list of arguments, a special argument, the 
object to which the procedure is applied (dl in the 
above calls). This is characteristic of object-oriented 
languages: every operation is relative to a distin­
guished object. Within the class, unqualified feature 
names implicitly refer to this object; the predefined 
name Current may be used when an explicit refer­
ence is needed. 

These comments account for the "type" aspect 
of a class. From the "module" standpoint, it should 
be noted that the class is the only program struc­
turing facility of Eiffel; thus the above example use 
of DEVICE must be in some class, say C. A class 
such as C which declares entities (that is to say fea­
tures, routine parameters, or function results) of type 
DEVICE is said to be a client of DEVICE. The ex­
port clause lists the features of a class which are 
accessible to clients, in read-only mode for attributes 
and execution mode for routines (here all features 
shown are exported). Since information hiding is not 
a concern for this discussion, we shall omit export 
... clauses in the sequel. 

The notion of inheritance is a natural exten­
sion to this basic framework. Assume we want next 
to define the notion of tape device. For our purposes, 
a tape unit has all the properties of devices, as rep­
resented by the three features of class DEVICE, plus 
the ability to (say) rewind its tape. Rather than re­
defining a new class from scratch, we may declare 
class TAPE as an extension of DEVICE, as follows 

class TAPE inherit DEVICE feature 
rewind is 

do ...... end 
end -- class TAPE 

With this declaration, objects of type TAPE 
automatically possess (by "inheritance") all the fea­
tures of DEVICE objects, plus their own (here re­
wind). We say that TAPE is an heir to DEVICE, 
which is a parent of TAPE. The "descendants" of a 
class are the class itself and the descendants of its 
heirs; the reverse notion is that of "ancestor." 

A class may of course have more than one heir; 
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for example, DEVICE could have DISK as another 
heir, with its own specific features (such as direct 
access read, etc.). In Eiffel, classes may also have 
more than one parent: this is known as multiple 
inheritance, a very powerful technique for reusabil­
ity, allowing the comb ina tion of more than one pre­
viously developed environment. Eiffel also intro­
duces the technique of "repeated inheritance," making 
it possible to inherit more than once from the same 
class. 

From the module viewpoint, the ancestor re­
lation is a program structuring mechanism; from the 
type viewpoint, it yields a rule on legal assignments. 
The rule is simple: an assignment 

x:= y 

where x and yare of class types, is permitted if and 
only if the type of x is an ancestor of the type of y. 
Thus the above assignment is legal if, for example, 
x has been declared as a device and y as a tape. This 
may be explained by noting that the inheritance re­
lation is really the "is-a" relation [4]: every tape is 
a device, but every device is not a tape. 

It sometimes happens that a feature of a class 
should be implemented differently in some de­
scendants of the class. For example, there could be 
a special "open" mechanism for tape devices. Eiffel 
allows such redefinitions, as follows 

class TAPE inherit 
DEVICE redefine open 

feature 
open (file_descriptor: INTEGER) is 

do ..... special open for tape devices .... end; 
rewind is 

do ...... end 
end -- class TAPE 

This possibility must be seen in the light of 
the assignment rule: if x is a device, then the call 

x.open (f1) 

may be executed differently depending on the as­
signments performed on x before the call: for ex­
ample, after x: = y, wherey is a tape, the tape version 
should be executed. Such feature redefinitions are 
common in Eiffel programming, which also allows a 
parameterless function to be redefined as an attri­
bute (which is useful for changing representations 
in program refinement). 

This facility characterizes the powerful brand 
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of polymorphism offered by object-oriented lan­
guages with inheritance: the same feature reference 
may have several interpretations depending on the 
actual form of the object at run-time. To achieve this 
effect, many object-oriented languages have re­
nounced static type checking; Eiffel, however, is stat­
ically typed (and the binding of feature names to 
actual features is done statically whenever possible). 

The remarkable benefits of the inheritance 
technique with respect to reusability, extendibility, 
and compatibility come from the fact that software 
elements such as DEVICE are both usable as they 
are (they may be compiled as part of an executable 
program) and still amenable to extensions (if used 
as ancestors of new classes). Thus, a compromise 
between usability and flexibility, fundamental for 
the qualities mentioned, is achieved. 

One more property of Eiffel, borrowed from 
Simula, will be useful for the discussion below: de­
ferred features (corresponding to Simula's "virtual 
procedures"). Deferred features correspond to oper­
ations that must be provided on all objects of a class, 
but whose implementation may only be given in par­
ticular descendants of the class. 

Assume for example that, as under Unix, de­
vices are a special kind of files; DEVICE should thus 
be an heir to class FILE, whose other heirs may be 
TEXT _FILE (itself with heirs NORMAL and DI­
RECTORY) and BINARY _FILE. Figure 1 shows 
the inheritance graph, a tree in this case. 

Any file may be opened or closed; but how 
these operations are performed depends on whether 
the file is a device, a directory etc. Thus, at the FILE 
level we declare the corresponding procedures as de­
ferred, giving only a header and handing over the 
burden of actual implementation to descendant classes 

Fig. 1. Inheritance graph for files. 
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class FILE feature 
open (file_descriptor: INTEGER) is deferred end; 
close is deferred end; 

end -- class FILE 

Descendants of FILE should provide actual 
definitions of open and close. The rules of the lan­
guage prohibit application of these features to ob­
jects for which they might not be defined. 

An interesting application of this technique 
is Ada or Modula-like separation between interface 
and implementation of a module: although an Eiffel 
class is normally defined as a single piece, the effect 
of Ada's two-level declaration (specification and body) 
may be achieved by declaring a first class with de­
ferred features only, and a second one, heir to the 
first, with the implementation of these features. This 
technique has an important advantage over its Ada 
equivalent: it allows different implementations of 
the same feature to coexist in a single software system. 

SIMULATING INHERITANCE WITH 
GENERICITY 

To compare genericity with inheritance, we 
shall study how, if in any way, the effect of each 
feature may be simulated in a language offering the 
other. 

First consider a language such as Ada, offer­
ing genericity but not inheritance. Can it be made 
to achieve the effects of inheritance? 

The easy part is the overloading. In a lan­
guage such as Ada or Algol 68 where the same sub­
program name may be reused as many times as needed 
provided it is applied too perands of different types, 
there is no difficulty in defining types such as TAPE, 
DISK, etc., each with its own version of open, close 
etc.: 

procedure open 
(p: 1in out TAPE; descriptor: 1in INTEGER); 

procedure close (p: 1in out DISK); 
etc. 

Provided the subprograms are distinguished 
by the type of at least one operand, as is the case 
here, no ambiguity will arise. 

Yet this solution falls short of providing true 
polymorphic entities as in languages with inheri­
tance, where, as discussed above, an operation may 
be executed differently depending on the form of its 
operand at run-time (even though it is possible, at 



least in Eiffel, to check at compile time that the 
operation is defined in all possible cases). A typical 
example is the call d.close, which will be carried out 
differently after the assignments d : = di and d : = 

ta, where di is a DISK and ta a TAPE. The Ada-like 
form of overloading does not provide anything like 
this remarkable possibility. 

The only feature of Ada which could be used 
to emulate this property of object-oriented languages 
is in fact shared with Pascal and has nothing to do 
with overloading or genericity; it is the record with 
variant fields. We could for example define some­
thing like 

type DEVICE (unit: DEVICE_ TYPE) is 
record 

....... fields common to all device types ....... . 
case unit is 

when tape = > ...... fields for tape devices 

when disk = > ...... fields for disk devices ..... ; 
....... other cases ...... ; 

end case 
end record 

where DEVICE_TYPE is an enumeration type with 
elements tape, disk, etc. Then there would be a single 
version of each the procedures on devices (open, close 
etc.), each containing a case discrimination of the 
form 

case d' unit is 
when tape = > ..... action for tape devices ..... ; 
when disk = > ..... action for disk devices ..... ; 
....... other cases ...... ; 

end case 

Such a solution, however, is unacceptable from 
a software engineering viewpoint; it runs contrary 
to the criteria of extendibility, reusability, and com­
patibility. Not only does it scatter case discrimina­
tions (here on DEVICE_TYPE) all over the pro­
gram; worse yet, it closes the set of possible choices: 
as opposed to the Eiffel class DEVICE which can at 
any time be used as parent or a new class, the Ada 
type DEVICE has a fixed list of variants, one for 
each element of the enumeration type DEVICE_ 
TYPE. To add a new case, one must change the dec­
laration of DEVICE, invalidating any program unit 
that relied on it. 

So the answer to the question posed at the 
beginning of this section-can inheritance be sim­
ulated with genericity?-is no. 

Genericity versus Inheritance 

SIMULATING GENERICITY WITH 
INHERITANCE 

We now address the reverse problem: can we 
achieve the effect of Ada-style genericity in an ob­
ject-oriented language with inheritance? 

As before, we use Eiffel as our vehicle for ex­
pressing object-oriented techniques. As explained 
later, Eiffel does provide a generic parameter mech­
anism (included in the language as a result of the 
study reported here); but of course, since the object 
of this section is to analyze how one may simulate 
genericity with inheritance, we must temporarily 
refrain from using the Eiffel generic mechanism. The 
reader should thus be warned that the solutions pre­
sented in this section are substantially more complex 
than those obtainable with full Eiffel, described in 
the next section. 

The simulation turns out to be easier, or at 
least less artificial, for constrained genericity-a 
surprising result since unconstrained genericity is 
conceptually simpler. Thus we begin with the con­
strained case. 

Constrained Genericity: Overview 

The idea is to associate with a constrained 
formal generic type parameter a class. This is a nat­
ural thing to do since a constrained generic type may 
be viewed, together with its constraining operations, 
as an abstract data type. Consider for example the 
generic clauses in our two constrained examples, 
minimum and matrices: 

generic 
type T is private; 
with function" < =" (a, b: T) 

return BOOLEAN is <>; 

generic 
type T is private; 
zero: T; 
unity: T; 
with function" +" (a, b: T) is <>; 
with function "*" (a, b: T) is <>; 

We may view these clauses as the definitions 
of two abstract data types say COMPARABLE and 
RING; the former is characterized by a comparison 
operation "< = ", and the latter by features zero, un­
ity, "+" and "*". 

In an object-oriented language, such types may 
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be directly represented as classes. We cannot define 
these classes entirely, for there is no universal im­
plementation of "< = ", "+ ", etc.; rather, they are to 
be used as ancestors of other classes, corresponding 
to actual generic parameters. The deferred feature 
mechanism of Eiffel provides exactly what is needed 
to express such classes 

class COMPARABLE feature 
Ie (other: COMPARABLE): BOOLEAN 

is deferred end 
end -- class COMPARABLE 

-- Ie corresponds to "< = "; 
-- there are no infix functions in Eiffel. 

class RING feature 
plus (other: RING) is deferred end; 
times (other: RING) is deferred end; 
zero: RING; 
unity: RING 

end -- class RING 

The comment made earlier about the lack of 
semantic specification in Ada constrained genericity 
would seem to apply here too: we have not specified 
any of the required properties on le, plus, etc. Eiffel 
does, however, permit the specification of such prop­
erties in the form of preconditions and postcon­
ditions on routines. Simple examples of this facility 
will be given later on. 

The reader will also have noted that plus and 
times are defined here as procedures rather than 
functions; the convention we will follow in the Eiffel 
examples is that r.plus (r 1) is an instruction that 
performs a side-effect on r, adding to its value the 
value ofr 1, rather than an expression returning the 
sum of these values (and similarly for times). In con­
trast, the Ada operators" + " and "*" were functions. 
The difference is not essential and we use procedures 
in Eiffel mainly for brevity. Subject to the following 
discussion, the examples may be changed into func­
tions, as in 

plus (other: RING): RING is deferred end; 

Constrained Genericity: Subprograms 

A subprogram such as minimum may now be 
written by specifying its arguments to be of type 
COMPARABLE. Based on the Ada pattern, the func­
tion would be declared as 
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minimum (one: COMPARABLE; other: 
COMPARABLE): 

COMPARABLE is 
-- Minimum of one and other 

do ..... end 

In an object-oriented language, however, every 
routine (Eiffel term for subprogram) appears in a 
class and is relative to the "current" object of that 
class; thus it seems preferable to include minimum 
in class COMPARABLE, argument one becoming 
the implicit current object. The class becomes 

class COMPARABLE feature 
Ie (other: COMPARABLE): BOOLEAN is 

deferred 
end; 
minimum (other: COMPARABLE): COMPARABLE 
is 

-- Minimum of current element and other 
do 

if Ie (other) then Result: = Current 
else Result: = other end 

end -- minimum 
end -- class COMPARABLE 

---

(The predefined variable Result contains the result 
to be returned by any function in which it appears; 
it is implicitly declared of the function's result type, 
here COMPARABLE.) To compute the minimum of 
two elements, we must declare them of some des­
cendant type of COMPARABLE. For example, we 
may declare 

class INT _COMPARABLE inherit 
COMPARABLE 

feature 
Ie (other: INT _COMPARABLE): BOOLEAN is 

-- Is current element less than 
-- or equal to other? 

do Result: = value < = other. value end 
value; INTEGER; 

-- Value associated with current element 
change _ value (new: T) is 

-- Make new the value associated 
-- with current element 
do value: = new end; 

end -- class INT _COMPARABLE 

To find the minimum of two integers, we may 
now apply function minimum, not to arguments of 
type integer, but to arguments of type INT _COM­
PARABLE, say icl and ic2, as follows 



-------

ie3 : = ie1.minimum (ie2) 

To use the generic le and minimum functions, 
we have to renounce direct references to integers, 
using INT _COMPARABLE entities instead; hence 
the need for attribute value and routine change_ 
value to access and modify the associated integer 
values. 

We would similarly introduce heirs of COM­
PARABLE, say STR_COMPARABLE, REAL_ 
COMPARABLE, and so on, for each type for which 
a version of minimum is desired. 

Of course, having to declare similar features 
value and change_ value for all descendants of COM­
PARABLE is unpleasant. But by paying this rela­
tively small price in terms of ease of program writ­
ing-renouncing the direct use of predefined types­
we seem to achieve the effect of genericity. 

There is a hitch, however, if we are concerned 
about static typing. We clearly want to disallow a 
call such as 

ie1.minimum (c) 

where c is a COMPARABLE but not an INT _COM­
PARABLE. Function le has indeed been redefined 
to accept only INT _COMPARABLE arguments; the 
rules of Eiffel permit such redefinition of an entity 
of a class in a descendant of that class, if the new 
type is itself, as here, a descendant of the original 
type. But minimum has not been redefined; in fact 
this is the whole point of the game: to make sure 
that minimum is a polymorphic feature, applicable 
to all kinds of "comparable" objects. So, regrettably, 
c is in fact a legal argument as used above. 

To ensure type consistency we must redefine 
minimum in INT _COMPARABLE so that its ar­
guments and result are of type INT _COMPARA­
BLE. The body of the routine does not change: only 
its header has to be modified. The class declaration 
may thus be rewritten as follows 

class INT _COMPARABLE inherit 
COMPARABLE 

rename minimum as general_minimum; 
redefine minimum 

feature 
Ie (other: INT _COMPARABLE): BOOLEAN is 

...... As in 1271 ..... ; 
minimum (other: INT _COMPARABLE): 

INT _COMPARABLE 
is 

-- Minimum of current element and other 

Genericity versus Inheritance 

do 
Result: = general_minimum (other) 

end; -- minimum 
value: INTEGER; -- As above 
change _ value (new: T) is -- As above 

do value: = new end; 
end -- class INT _COMPARABLE 

We have used here the renaming mechanism 
of Eiffel; the rename ... subclause of the inherit ... 
clause makes it possible to access the features of the 
ancestor class (COMPARABLE) even though they 
are redefined in the descendant. Eiffel prohibits 
overloading of names within a class, so that re­
naming is necessary to allow use of both sets of fea­
tures in the class. (Another use of renaming is in 
multiple inheritance, to remove name clashes when 
features are inherited from more than one class). 

What we have done is to redefine the header 
of minimum-not its body, which remains the orig­
inal one, made accessible under the name general_ 
minimum. This seems to take care of the static typ­
ing conflict, while introducing yet more complication. 

However, the careful reader will have noted 
that a serious typing problem remains. The call to 
general_minimum is correct with respect to its ar­
gument other: since general_minimum (that is to 
say, COMPARABLE's version of minimum, as given 
on p. expects COMPARABLE objects, an entity like 
other declared of the descendant type INT _COM­
PARABLE is an acceptable substitute under the as­
signment rule. But there is a problem with the result 
of the function: general_minimum returns a COM­
PARABLE whereas INT _COMPARABLE's version 
of minimum should return an INT _COMPARABLE. 

ie3 : = ic 1.minimurh (ie2) 

ic3 should be an INT _COMPARABLE; the assign­
ment is illegal if the right-hand side returns just a 
COMPARABLE. In fact, the permitted type combi­
nations in assignments are the inverse ones: the source 
should be of a descendant type from the target. 

With what we have seen so far there is no way 
to resolve this issue other than by redefining mini­
mum completely-not only its header, but its body 
as well-so that it will indeed return an INT _COM­
PARABLE. This of course defeats the whole purpose 
of genericity: a similar redefinition must be repeated 
in each descendant of COMPARABLE, with all in­
stances of minimum identical except for the type 
declarations of arguments and results. 

We shall only be able to provide a satisfactory 
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solution to this problem by introducing declaration 
by association. 

Constrained Genericity: Packages 

The previous discussion transposes to pack­
ages. We use a class to represent the matrix abstrac­
tion implemented in Ada by the MATRICES package 

class MATRIX feature 
impl: ARRAY2 [RING]; 
entry (i: INTEGER: j: INTEGER): RING is 

-- Value of the (i, j) entry of the matrix 
do Result: = impl.entry (i, j) end; 

enter (i: INTEGER; j: INTEGER; v: RING) is 
-- Assign value v 
-- to entry (i, j) of the matrix 

do impl. enter (i, j, v) end; 
plus (other: MATRIX) is 

-- Add other to current matrix 
local 

t1: RING 
do 

......... loop 
......... Ioop 

t1 : = entry (i, j); 
t1.plus (other. entry (i, j)); 
enter (i, j, t1) 

end 
end 

end; -- plus 
times (other: MATRIX) is 

-- Multiply current matrix by other 
local ....... do ...... end 

end -- class MATRIX 

Here ARRA Y2 [T] denotes a predefined Eiffel 
class whose elements are two-dimensional arrays of 
type T. Array types are treated in Eiffel as class 
types; the basic operations on an element a of type 
ARRA Y2 are a.entry (i, j), which returns the i, j 
entry of array a (that is to say, a [i, j] in standard 
Pascal notation), and a.enter (i, j, v), which assigns 
value v to this entry (that is to say, a [i, j] : = v). 
Corresponding operations are declared above for 
matrices. 

We have left out some details (such as how 
the dimensions of a matrix are set) but outlined the 
plus procedure, exhibiting the object-oriented form 
of overloading: the internal call to plus is the oper­
ation on RING, not MATRIX. Similarly, routines 
enter and entry are used in both their ARRAY2 and 
MATRIX versions. 
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To define the equivalent of the Ada generic 
package instantiation 

package BOOL_MATRICES is 
MATRICES (BOOLEAN, false, true, "or", 

"and"); 

we must declare the "ring" corresponding to booleans 

class BOOL_RING inherit 
RING redefine zero, unity 

freeze zero, unity feature 
value: BOOLEAN; 
change_value (b: BOOLEAN) is 

-- Assign value b to current element 
do value: = bend; 

plus (other: BOOL_RING) is 
-- Boolean addition: or 

do change_value (value or other. value) end; 
times (other: BOOL_RING) is 

-- Boolean multiplication: and 
do change_value (value and other. value) end; 

zero: BOOL_RING is 
-- Zero element for boolean addition 

do 
Result. Create; 
Result. change _ value (false) 

end; -- zero 
unity: BOOL_RING is 

-- Zero element for boolean multiplication 
do 

Result. Create; 
Result. change _ value (true) 

end -- unity 
end -- class BOOL_RING 

Note that zero and unity are redefined as func­
tions returning a value of type BOOL_RING. How­
ever, these are actually constant functions: the clause 
freeze ... , not seen before, indicates that zero and 
unity are evaluated just once and their values shared 
among all instances of the class. This is how con­
stants of class types may be introduced in Eiffel. 

How do we provide the equivalent to the Ada 
package instantiation for boolean matrices recalled 
above? The same reasoning that was applied to class 
COMPARABLE and function minimum prevents us 
from keeping MATRIX as it is if type checking is a 
concern: we want to make sure that an integer ele­
ment, say, may not be entered into a boolean matrix. 
To achieve this, we define an heir BOOL_MATRIX 
of MATRIX, where routines entry, enter, plus and * 
are redefined to act only on objects of type BOOL­
RING rather than any RING. As with minimum, 



only the headers of the routines have to be changed, 
not their implementations; this is achieved as fol­
lows, using again renaming to allow access to re­
defined features of the parent class. 

class BOOL_MATRIX 
inherit 

MATRIX 
rename entry as general_matrix _entry, 

enter as general_matrix _enter, 
plus as general_matrix _plus, 
times as general_matrix_times 

redefine impl, entry, enter, plus, times 
feature 

impl: ARRAY2 [BOOL_RING]; 
entry (i: INTEGER; j: INTEGER): BOOl_RING is 

-- Value of the (i, j) entry of the matrix 
do Result: = general_matrix _entry (i, j) end; 

... and similarly for enter, plus and times ... 
end --class BOOL_MATRIX 

The reader may note the same problem for the 
result of function entry as previously discussed for 
minimum: this result should be of type BOOL_RING, 
but general_matrix_entry will only return a RING. 
With the language features seen so far, all we can 
do is to redefine the body of entry, making it a copy 
of the body of general_ matrix_entry rather than a 
call to this routine; then the result will be of the 
right type. Note that the problem only arises for 
functions, so the other routines of the class are not 
affected. 

This problem notwithstanding, the construc­
tion achieves with inheritance the effect of con­
strained genericity. The price to pay is a certain 
heaviness in expression; note in particular that what 
has been done for BOOL_MATRIX must be repeated 
for any descendant of MATRIX representing a ge­
neric instantiation, as INT _MATRIX, REAL_MA­
TRIX, etc. Furthermore, features value and change 
_value must be declared anew in each descendant of 
the associated class RING. We shall see later how 
such heaviness may be removed. 

Unconstrained Genericity 

The mechanism for simulating unconstrained 
genericity is the same; this case is simply seen as a 
special form of constrained genericity, with an empty 
set of constaints. As above, formal type parameters 
will be interpreted as abstract data types, but here 
with no relevant operations. The technique works, 
but suffers from the heaviness mentioned above, be-
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coming less tolerable here as the dummy types do 
not correspond to any obviously relevant data 
abstraction. 

Let us apply the previous technique to both 
our unconstrained examples, swap and stack, begin­
ning with the latter. We need a class, say STACK­
ABLE, describing objects that may be pushed onto 
and retrieved from a stack. Since this is true of any 
object, this class has no property beyond its name: 

class STACKABLE end 

We may now declare a class STACK, whose 
operations apply to ST ACKABLE objects 

class STACK feature 
space: ARRAY [STACKABLE]; 
index; INTEGER; 
size: INTEGER; 
empty: BOOLEAN is 

-- Is the stack empty? 
do Result: = (index = 0) end; 

push (x: STACKABLE) is 
-- Add x on top of the stack 

require 
index < size 

do 
index : = index + 1 ; 
space. enter (x, index) 

end; -- push 
top: STACKABLE is 

-- Last element pushed 
require 

not empty 
do 

Result: = space. entry (index) 
end; -- top 

pop is 
-- Remove last element pushed 

require 
not empty 

do 
index: = index - 1 

end; -- pop 
Create (m: INTEGER) is 

-- Create stack with space for m values 
do 

space.Create (1, m); 
size := m 

end .- Create 
end -- class STACK 

The require ... clauses illustrate how routine 
preconditions (which must be satisfied by actual pa-
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rameters upon entry to a routine) are written in 
Eiffel. Postconditions and class invariants may also 
be expressed (in ensure ... and invariant ... clauses). 
This aspect of the language falls beyond the scope 
of this discussion; see Meyer [12] for more details. 

STACK relies on the predefined class ARRA Y 
for one-dimensional arrays, whose main procedures 
are entry. enter, and Create; the latter takes two ar­
guments and allocates the array with the values of 
these arguments as bounds. The Create procedure 
for stacks takes just one argument (the stack size). 

To instantiate this definition for stacks of spe­
cific types, we apply the same techniques as above: 
define descendants of STACKABLE, such as 

class INT _STACKABLE inherit 
STACKABLE 

feature 
value: INTEGER; 
change_value (n: INTEGER) is 

-- Make n the value of the current element 
do value : = n end 

end -- INT _STACKABLE 

and similarly STR _STACKABLE, etc. 
Here we run again into the typing problem 

evidenced by minimum and BOOL_MATRIX. Stacks 
declared simply of type STACK cannot be statically 
guaranteed to contain only objects of a certain class 
of "stackables," say INT _STACKABLE; and we have 
the problem of the type of the result returned by 
function top. In the following sequence 

s: STACK; ins: INT _STACKABLE 

s.Create (10); 
ins.Create; ins.change_value (50); 
s.push (ins); 
ins := s.top 

the last assignment has a left-hand side of type 
INT _STACKABLE and a right-hand side of type 
STACKABLE; this is typewise wrong even though 
the code seems quite legitimate semantically (one 
pushes the value of a variable and retrieves it im­
mediately into the same variable). 

For both these reasons, it is necessary to do 
as in the previous examples, that is to say declare 
heirs to STACK, such as INT _STACK, STR _STACK 
etc. Features of STACK will be redefined in each of 
these classes, but only to adapt the types of their 
arguments and, in the case of top, of the result. Thus 
for example, INT _STACK will contain feature re­
definitions such as 

space: ARRAY [INT _STACKABLE]; 
push ((X: INT _ STACKABL~) is 

do general_stack _push (x) end; 

etc. (the reader may complete this example based on 
the MATRIX case). 

The other unconstrained example, procedure 
swap, may be treated along the same lines; a class 
SWAPP ABLE will be introduced. The treatment is 
left to the reader. 

GENERICITY AND INHERITANCE IN 
EIFFEL 

We may draw the following conclusions from 
the previous discussion. 

• Inheritance is the more powerful mechanism, 
There is no way to provide a reasonable sim· 
ulation with genericity. 

• The equivalent of generic subprograms or pack· 
ages may be expressed in a language with in· 
heritance, but one does not avoid the need for 
certain spurious duplications of code. The extra 
verbosity is particularly hard to justify in the 
case of unconstrained genericity, for which the 
simulation mechanism is just as complex as for 
the conceptually more difficult constrained case, 

• Type checking introduces difficulties in the use 
of inheritance to express generic objects, 

To address these issues, Eiffel offers a limited 
form of genericity and the notion of declaration by 
association. (The specification language LM, asso· 
ciated with the M specification method [15], relies 
on a similar tradeoff.) 

Simple Genericity 

Since unconstrained genericity is both the 
simpler case and the one for which the pure inher· 
itance solution is least acceptable, it seems adequate 
to provide a specific mechanism for this case, distinct 
from the inheritance mechanism. Consequently, Eif· 
fel classes may have unconstrained generic paramo 
eters. A class may be defined as 

class C [T1, T2, .... , Tn] ..... 

where the parameters represent arbitrary types 
(simple or class). An actual use of the class will use 
actual type parameters, as in 

x: C [INTEGER, RING, ... , DEVICE] 
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We have in fact already encountered such par­
ameterized classes: the basic classes ARRAY and 
ARRA Y2 are naturally generic. It should also be 
noted (although the present paper is about concepts 
rather than implementation) that Eiffel compilation 
techniques make it possible to generate a single ob­
ject module for a parameterized class, as opposed to 
Ada techniques which treat generic packages as ma­
cros to be expanded anew for each instantiation. 

The examples of the previous sections provide 
obvious cases where generic parameters are useful. 
For instance COMPARABLE becomes 

class COMPARABLE [T] feature 
Ie (other: COMPARABLE [T]): BOOLEAN is 

deferred 
end; 
minimum (other: COMPARABLE [T]): 

COMPARABLE [T] is 
... As in /26/ ... ; 

value: T; 
change _ value (new: T) is do value : = new end 

end -- class COMPARABLE 

Here we see an immediate and important ben­
efit of generic parameters: we can solve almost com­
pletely the problem of type checking by specifying 
that the arguments to le and minimum and the local 
variable m are of type COMPARABLE [T], for the 
same T as the class itself. Thus we rid ourselves of 
the necessity to redefine, at least formally, minimum 
for each descendant of COMPARABLE, which plagued 
our previous attempts. The generic parameter T also 
allows us to lift the declarations of features value 
and change_value from the various descendants of 
COMPARABLE to a single instance in COMPA­
RABLE itself. 

However, we have not yet found a proper type 
for minimum's result, which remains a COMPA­
RABLE[T] even in descendants; more on this below. 

To define INT _COMPARABLE all we have 
to write now is 

class INT _COMPARABLE inherit 
COMPARABLE [INTEGER] 

feature 
Ie (other: INT _COMPARABLE): BOOLEAN is 

-- Is current element less than or equal to 
other? 

do Result: = value < = other. value end 
end -- class INT _COMPARABLE 

The other examples are treated similarly 
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class RING [n feature 
plus (other: RING [T]) is deferred end; 
times (other: RING [T]) is deferred end; 
zero: RING [n; 
unity: RING [T]; 
value: T; 
change_value (new: T) is do value: = new end 

end -- class RING 
class MATRIX [n feature 

impl: ARRAY2 [RING [n; 
entry (i: INTEGER; j: INTEGER): RING [T] is 

... As before '" (see /31/); 
... and similarly for enter, plus and times ... 

end -- class MATRIX 

Note how the use of a generic parameter in 
two related classes, RING and MATRIX, makes it 
possible to ensure type consistency (all elements of 
a matrix will be of type RING [T] for the same T). 
As with COMPARABLE, the declarations of fea­
tures value and change_value have been factored 
out: they now appear in class MATRIX rather than 
being repeated in all its descendants. 

In the unconstrained case, the need for dummy 
classes disappears; class STACKABLE and its heirs 
INT _STACKABLE, STR_STACKABLE, etc. are not 
needed any more, since STACK may be rewritten as 

class STACK [n feature 
space: ARRAY [n; 
index: INTEGER; 
size: INTEGER; 
... The rest of the class as in /351 
... except that T is used in lieu of STACKABLE ... 

end -- class STACK 

There is also no more need for classes such as 
INT _STACK, STRING _STACK, etc.; simply use 
STACK [INTEGER], STACK [STRING], and so on. 
The typing problem for top disappears since the re­
sult of this function is now simply of type T. 

A remarkable degree of simplification has been 
achieved. Auxiliary classes are not needed any more 
for unconstrained genericity. However, we do not 
introduce constrained genericity in the language: this 
feature would be redundant with the inheritance 
mechanism. To provide the equivalent of a con­
strained formal generic parameter, we retain the 
technique introduced earlier: declare a special class 
whose features correspond to the constraints (that is 
to say, the with subprograms in Ada terminology), 
and declare any corresponding actual parameters as 
descendants of this class. Providing the class with 
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generic parameters simplifies its use and partly solves 
the type checking problem. 

Declaration by Association 

Let us look more closely at the remaining part 
of the type checking problem. Consider again class 
COMPARABLE as defined last. Keeping in mind 
that COMPARABLE is intended for use as an ances­
tor for more specific classes, we do not really want 
other (in both functions), m and the result of mini­
mum to be of type COMPARABLE [T]: what is re­
quired of these entities is to be of the type of the 
"current" entity, whatever this may be in a descen­
dant of COMPARABLE. When this type changes, 
we want the other entities to follow suit. 

This possibility is achieved in Eiffel through 
the mechanism of declaration by association. Let a 
class C contain a declaration of the form 

x: 0 

where D is a class type. We may then declare another 
entity as 

y: like x 

Such a declaration means the following: the 
type of y is the same as the type of x; if x is redefined 
in a descendant class of C as being of a class type 
D', which must be a descendant of D, theny will be 
considered to have been redefined likewise. Note that 
this is a purely static mechanism; it may be viewed 
as an abbreviation allowing the redeclaration of just 
one from a group of related entities to stand for the 
redeclaration of the whole group. 

When this distinguished entity, x above, is 
redeclared, it "drags" along all entities declared like 
it. We call it the anchor of the association. The 
anchor may be the current entity, as in 

y: like Current 

This readily applies to the previous example 

class COMPARABLE [T] feature -- Contrast with 
139/ 
Ie (other: like Current): BOOLEAN is 

deferred 
end; 
minimum (other: like Current): like Current is 

do ... see 1261 ... end; 
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value: T; 
change_value (new: T) is do value: = new end 

end -- class COMPARABLE 

Note how this device solves at once all the 
remaining type checking problems: not only are Ie 

and minimum constrained to act, in all descendants 
of COMPARABLE, on homogeneous entities (com. 
paring only integers with integers, strings with 
strings, etc.); it also ensures that the result of min. 
imum is of the right type, that of its arguments. 

The same technique readily applies to the other 
cases. For example, RING becomes 

class RING [7] feature 
plus (other: like Current) is deferred end; 
times (other: like Current) is deferred end; 
zero: like Current; 
unity: like Current; 
value: T; 
change_value (new: T) is do value: = new end 

end -- class RING 

In contrast with the STACK case, we do need 
here, because of the deferred procedures, to explicitly 
declare descendants of RING for various implemen­
tations of plus and times; for example 

class BaaL_RING inherit 
RING [BOOLEAN] 

redefine zero, unity 
freeze 

zero, unity 
feature 

..... as in /321 ....... . 
end -- class BOOL_RING 

Artificial Anchors 

For MATRIX, a small addition is necessary 
to ensure that all entities of type RING [T] are al­
ways redefined consistently. 

When a group of entities are redefined to­
gether by association, one of the entities must serve 
as the anchor for the association. In the final versions 
obtained above for COMPARABLE and RING, the 
current element is the anchor. 

In MATRIX, the entities to be redefined are 
of a type, namely RING, different from the current 
class. In such a case, the class usually contains a 
feature of the required type which can serve as an­
chor. For example, the basic Eiffel library [12] in-



cludes an implementation oflinked lists through two 
classes: LINKED_LIST [T] for the lists themselves 
and LINKABLE [T] for list cells (a cell contains a 
value of type T and a reference to another cell). The 
implementation of a list contains a reference first_ 
element to the first cell of the list; first_element is 
used as anchor for other LINKABLE entities of class 
LINKED _LIST and redefined in descendants of 
LINKED _LIST, such as the classes for two-way lists 
and trees (both viewed as special cases of linked 
lists). 

Class MATRIX, however, has no feature of 
type RING; the reason is that "ring" elements are 
entered into the matrix indirectly, as arguments to 
procedure entry. Thus, we cannot avoid the need for 
a dummy feature of type RING serving as anchor: 

class MATRIX [T] freeze anchor feature 
anchor: RING [T]; 
imp I: ARRAY2 [like anchor]; 
entry (i: INTEGER; j: INTEGER): like anchor 

is .. , As before ... (/31 I) ... ; 
enter (i: INTEGER; j: INTEGER; v: like anchor) 

is .. , As before ... ; 
plus (other: like Current) is ... As before ... ; 
times (other: like Current) is ... As before ... ; 

end -- class MA TRIX 

(Listing anchor in the freeze clause avoids the waste 
of run-time space that would result from physically 
storing an anchor within each object of the class.) 
Here too specialized classes must be declared for var­
ious generic instances of MATRIX. However, the 
declarations are now trivial: all that needs to be done 
is to redefine anchor. For example 

class BaaL_MATRIX inherit 
MATRIX [BOOLEAN] redefine anchor 

feature 
anchor: BaaL_RING 

end -- class BOOL_MA TRIX 

Such a redeclaration closely models the correspond­
ing Ada package instantiation (/12/). 

CONCLUSION 

Genericity and inheritance are two important 
techniques towards the software quality goals men­
tioned at the beginning of this article. We have tried 
to show which of their features are equivalent, and 
which are complementary. 

Providing a programming language with the 
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full extent of both inheritance and Ada-like gener­
icity would, as we think this discussion has shown, 
result in a redundant and overly complex design; but 
including only inheritance would make it too diffi­
cult for programmers to handle the simple cases for 
which unconstrained genericity offers an elegant 
expression mechanism, like in the stack example. 

Thus we have put the borderline at uncon­
strained genericity. Eiffel classes may have uncon­
strained generic parameters; constrained generic pa­
rameters are treated through inheritance. 

Declaration by association completes this ar­
chitecture by allowing for completely static type 
checking, while retaining the necessary flexibility. 

We hope to have achieved in this design a good 
balance between the facilities offered by two impor­
tant but very different techniques for the imple­
mentation of extendible, compatible, and reusable soft­
ware. 

Acknowledgments 

This work benefited from comments by Vin­
cent Cazala and was done in part as the author was 
with the University of California, Santa Barbara. 

References 

1. Jean-Raymond Abrial, Stephen A. Schuman, and Ber­
trand Meyer, "A Specification Language," in On the 
Construction of Programs, ed. R. McNaughten and R.C. 
McKeag, Cambridge University Press, 1980. 

2. Didier Bert, "Manuel de Reference du Langage LPG, 
Version 1.2," Rapport R-408, IFIAG, IMAG Institute 
(Grenoble University), Grenoble, December 1983. 

3. Graham Birtwistle, Ole-Johan Dahl, Bjorn Myrhaug, 
and Kristen Nygaard, SimulaBegin, Studentliteratur 
and Auerbach Publishers, 1973. 

4. Ronald J. Brachman, "What IS-A and isn't: An Anal­
ysis of Taxonomic Links in Semantic Networks," Com­
puter(lEEE), vol. 16, no. 10, pp. 67-73, October 1983. 

5. Rod M. Burstall and Joe A. Goguen, "An Informal 
Introduction to Specifications using Clear," in The 
Correctness Problem in Computer Science, ed. R.S. Boyer 
and J.S. Moore, pp. 185-213, Springer-Verlag, New 
York,1981. 

6. Luca Cardelli and Peter Wegner, "On understanding 
Types, Data Abstraction and Polymorphism," Com­
puting Surveys (to appear). 

7. Luca Cardelli, "Basic Polymorphic Typechecking," 
AT&T Bell Laboratories Computing Science Techni­
cal Report, 1984, 1986. (Revised version, to appear). 

8. Ole..Johan Dahl, Bj¢rn Myrhaug, and Kristen Ny-

Journal of Pascal, Ada, & Modula-2, March/April1988 29 



1 

( 

v 

E 

[ 

3 

T 

I 

Genericity versus Inheritance 

gaard (Simula) Common Base Language, Norsk Reg­
nesentral (Norwegian Computing Center), Oslo, Feb­
ruary 1984. 

9. K. Futatsugi, Joseph A. Goguen, Jean-Pierre Jouan­
naud, and Jose Messeguer, "Principles of OBJ2," in 
Proceedings o{ the 1985 ACM Symposium on Princi­
ples of Programming Languages, vol. 12, pp. 52-66, 
1985. 

10. Barbara H. Liskov, R. Atkinson, T. Bloom, E. Moss, 
J.C. Schaffert, R. Scheifler, and Alan Snyder, CLU 
Reference Manual, Springer-Verlag, Berlin-New York, 
1981. 

11. Bertrand Meyer, "Quelques concepts importants des 
langages de programmation modernes et leur expres­
sion en Simula 67," Bulletin de la Direction des Etudes 
et Recherches d'Electricite de France, Serie C (In{or­
matique), no. 1, pp. 89-150, Clamart (France), 1979. 
Also in GROPLAN 9, AFCET, 1979. 

12. Bertrand Meyer, Ei{{el: a Language {or So{tware En­
gineering, Technical Report TRCS86-4, Interactive 

30 Journal of Pascal, Ada, & Modula-2, March/April1988 

Software Engineering, Version 2.1, August 1986, No. 
vember 1985 (Revised, August 1986). 

13. Bertrand Meyer, "Eiffel: Programming for Reusabilitv 
and Extendibility," ACM Sigplan Notices, 1987. (T~ 
appear) 

14. Bertrand Meyer, Object-oriented Software Construc_ 
tion, 1987. (To appear) 

15. Bertrand Meyer, "M: A System Description Method" 
Technical Report TRCS85-15, University of Califo~. 
nia, Santa Barbara, Computer Science Department 
May 1985. ' 

16. Robin Milner, "A Theory of Type Polymorphism in 
Programming," Journal of Computer and System Sci. 
ences, vol. 17, pp. 348-375, 1978. 

17. Rishiyur S. Nikhil, "Practical Polymorphism," in 
Functional Programming Languages and Computer 
Architecture, Nancy (France), 16-19 September 1985 
Lecture Notes in Computer Science 201, ed. Jean-Pie~ 
Jouannaud, pp. 319-333, Springer-Verlag, Berlin-New 
York, 1985. 


