
Agile vs. Structured Distributed Software
Development: A Case Study

H.-Christian Estler Martin Nordio Carlo A. Furia Bertrand Meyer
Chair of Software Engineering, ETH Zurich, Switzerland

E-mail: firstname.lastname@inf.ethz.ch

Johannes Schneider*
IBM Research, Zurich, Switzerland

E-mail: joh@zurich.ibm.com

Abstract—This paper presents a case study on the impact
of development processes on the success of globally distributed
software projects. The study compares agile (Scrum, XP, etc.) vs.
structured (RUP, waterfall) processes to determine if the choice
of process impacts: the overall success and economic savings
of distributed projects; the importance customers attribute to
projects; the motivation of the development teams; and the
amount of real-time or asynchronous communication required
during project development.

The case study includes data from 66 projects developed in
Europe, Asia, and the Americas. The results show no significant
difference between the outcome of projects following agile pro-
cesses and structured processes, suggesting that agile and struc-
tured processes can be equally effective for globally distributed
development. The paper also discusses several qualitative aspects
of distributed software development such as the advantages of
nearshore vs. offshore, the preferred communication patterns,
and some common critical aspects.

Index Terms—Distributed software development, Outsourcing,
Agile, Empirical study

I. INTRODUCTION AND OVERVIEW

The importance of choosing the right development process
to ensure the successful and timely completion of distributed
software projects cannot be understated. . . Or can it? This
paper presents an extensive case study analyzing the impact
of different development processes on the success of software
projects carried out by globally distributed development teams.

Globally distributed software development (GSD) has be-
come a common practice in today’s software industry; com-
panies cross the barriers introduced by distance, cultural
differences, and time zones, looking for the most skilled
personnel and the most cost-effective solutions. GSD may
exacerbate several of the criticalities already present in tra-
ditional local software development, and it often generates its
own peculiar challenges originating in the difficulty of carrying
out the traditional parts of a software development project—
requirements elicitation, API design, project management,
team communication, etc.—in environments where members
of the same team live and work in different countries, or even
in different continents.

Given the challenges and peculiarities introduced by GSD, it
is interesting to peruse the standard methods and practices that
have been successful in traditional local software development,
determining if they can be applied with positive results also in

(*) Work conducted while affiliated with ETH Zurich

globally distributed settings. From the perspective of empirical
research in software engineering, this general line of inquiry
materializes in questions of the form “What is the impact
of X on the quality of GSD projects”, where “X” is a
practice, method, or technique, and “quality” may refer to
different aspects such as timeliness, customer satisfaction,
or cost effectiveness. Examples of GSD issues investigated
empirically along these lines include the usage of contracts
for API design [24], the effect of time zones on various
phases of development [14], [10], [21] and on productivity
and quality [28], [5], and the impact of geographic dispersion
on several quality metrics [29].

The case study presented in this paper focuses on devel-
opment processes to find out whether the choice of process
has a significant impact on qualities such as programmer
productivity and development cost-effectiveness in GSD. To
our knowledge, this is one of very few empirical studies
that explicitly investigates the impact of agile vs. structured
processes on GSD project quality.

A software development process is a scheme to structure
and manage the various aspects of development (requirements
elicitation, design, implementation, verification, maintenance,
etc.). Software engineering [12], [27], [26] has traditionally
targeted so-called structured processes1, such as the Rational
Unified Process (RUP), the waterfall model, or the spiral
model. Structured processes are characterized by a focus on
rigorously defined practices, extensive documentation, and
detailed planning and management. More recently, a surge of
agile development processes have been introduced to over-
come some of the limitations and unsatisfactory aspects of
structured processes. Agile processes [16], [9], such as Scrum
or eXtreme Programming (XP), emphasize the importance of
effective informal communication among developers and of
iterative improvement of implementations, and they cham-
pion small cohesive development teams over large structured
units. The relative merits and applicability of structured vs.
agile processes in local software development are fairly well-
understood [18], [15], [3], [19], [6]: for example, for applica-
tions whose requirements are accurately known and not subject

1Other names for such processes are: heavyweight, plan-driven, disciplined.
In this article, we will consistently use the term “structured” to denote “non-
agile” processes; this is merely a terminological convention and does not entail
that agile processes have no structure whatsoever, or that structured processes
are completely inflexible.

to radical changes, a structured development may offer more
controllability and better scalability; on the other hand, agile
processes may be preferable when requirements are subject
to frequent change and achieving a formal and structured
communication with stakeholders is difficult or unrealistic.

The present paper’s study re-considers the “structured vs.
agile” dichotomy in the context of GSD, and tries to under-
stand whether one of the two development approaches is more
appropriate to organize software development carried out by
globally distributed teams. It is clear that the results obtained
in non-distributed contexts may not hold in distributed settings,
where it is not obvious how to enforce some of the principles
underlying structured or agile methods. Agile processes, in
particular, often require that [16]:

• all project phases include communication with customers;
• face-to-face exchanges be preferred as the most efficient

and effective method of communicating.

On the other hand, structured processes often emphasize the
importance of maintaining accurate documentation, which can
be problematic when cultural and language differences are in
place. Correspondingly, effectively applying the principles of
agile rather than structured development in a distributed setting
has been the subject of much software engineering research
[32], [25].

The question remains, however, of what are the relative
merits of structured and agile processes for GSD, and whether
one of them is more likely to be effective. The present paper
targets this question with a study involving over 31 companies
(of size from small to large) for a total of 66 software projects
developed in Europe, Asia, and the Americas. The degree
of distribution ranges from merely outsourced projects—
where management remains in the company’s headquarters
while the actual development team operates in a different
country—to highly distributed development projects—where
members of the same team reside in different countries.
According to the answers collected through questionnaires
and interviews, we have classified the development process
used in each project into agile or structured, and we have
analyzed the correlation between process type and measures
of achieved overall success, importance for the company, cost-
effectiveness, developer motivation, and amount of personal
communication. Our results show that the differences in any
of these measures between agile and structured processes are
negligible and with no statistical significance. Therefore, our
study suggests that agile and structured processes can be
equally effective (or ineffective) for GSD, and the sources of
significant differences in project outcome should be sought in
other project characteristics.

The rest of the paper is organized as follows. Section II
presents the research questions investigated in the case study.
Section III describes the data collection process and the
research methodology. Section IV presents the quantitative re-
sults of the study, whereas Section V is devoted to a somehow
informal discussion of other aspects for which only qualitative
data is available. Sections VI and Section VII respectively

describe threats to validity and related work. Section VIII
summarizes and describes future work.

II. RESEARCH QUESTIONS

While the benefits of deploying structured vs. agile pro-
cesses have been extensively studied in the context of tra-
ditional local development, their applicability to and impact
on globally distributed development are still largely unknown.
This paper contributes to filling this knowledge gap by inves-
tigating the impact of using different processes—structured
rather than agile—on the outcome of software projects carried
out in distributed settings. This leads to the following funda-
mental research question:

RQ: In software development carried out in glob-
ally distributed settings, what is the impact of
adopting structured vs. agile processes on the
overall success, cost-effectiveness, team motiva-
tion, importance for customers, and amount of
communication?

For each aspect (overall success, cost-effectiveness, etc.),
we formulate a null-hypothesis that states the absence of
correlation between development process type and outcome;
all hypotheses refer to development projects in distributed
settings.
HA

0 There is no difference in the overall success of
projects developed using agile methods vs. projects
developed using structured methods.

HB
0 There is no difference in the importance (i.e., critical-

ity for customers) of projects assigned to development
using agile methods vs. projects assigned to develop-
ment using structured methods.

HC
0 There is no difference in the motivation of teams fol-

lowing agile processes vs. teams following structured
processes.

HD
0 There is no difference in the estimated economic

savings achieved in projects developed using agile
methods vs. projects developed using structured meth-
ods.

HE
0 There is no difference in the amount of real-time

communication (e.g., in person or by phone) required
by projects developed using agile methods vs. projects
developed using structured methods.

HF
0 There is no difference in the amount of asynchronous

communication (e.g., emails or wikis) required in
projects developed using agile methods vs. projects
developed using structured methods.

If we manage to falsify, with a degree of statistical signifi-
cance, any null-hypothesis, we show evidence in support of
the corresponding alternative hypothesis: the choice of agile
rather than structured development processes has an impact on
the outcome of a certain aspect of GSD projects.

The following section describes how data was collected
to support or falsify the hypotheses above. In addition to
quantitative hypotheses, we have also investigated the research
question RQ qualitatively in Section V.

2

III. RESEARCH METHODOLOGY

The data was collected in two phases2. In the first phase,
we sent out questionnaires to companies in Europe, Asia,
and the Americas, about their offshore and distributed de-
velopment projects. In the second phase, we interviewed
representatives of several companies located in Switzerland,
also about distributed development projects. Both the ques-
tionnaires and the interviews targeted distributed projects,
collecting data about: their success for the companies, their
cost-effectiveness, team motivation, importance for customers,
amount of communication, and whether they were organized
according to a structured or agile process. We did not distin-
guish among different types of agile (e.g., Scrum vs. extreme
programming) or different types of structured (e.g., RUP vs.
waterfall) processes; this is consistent with the observation
that, while different processes may involve different practices,
the principles underlying agile rather than structured methods
are normally visibly different and straightforward to identify in
practice. The complete data set contains information about 66
distributed projects (with various degrees of distribution), of
which 36 deployed agile methods and 30 structured methods.

A. Questionnaires

In the first phase, we contacted companies in various
countries and continents worldwide through questionnaires;
each questionnaire targeted one software project, containing
several questions about the project.

We sent out the questionnaires to over 60 contacts world-
wide, and we received replies about 48 projects developed
by companies in the USA (14 projects), Nordic countries
(12 projects), Germany (6 projects), the UK (4 projects),
Russia (1 project), the Netherlands (1 project), Latin America
(1 project), and Switzerland (3 projects, from companies other
than those involved in the interviews of the second phase)—
the countries of origin of the remaining 6 projects were
unspecified. 22 of the 48 projects were in collaboration with
remote units in Russia, 20 in India, 2 in Argentina, and 1 in
each of China, Bulgaria, Hungary, Romania.

The information in the questionnaires was provided by 19
high managers, 19 project leaders, and 10 software engineers,
architects and researchers. 19 projects out of 48 followed
structured processes, and 29 applied agile processes.

B. Interviews

In the second phase, we contacted 13 Swiss software com-
panies including: 3 large companies with more than 10’000
employees worldwide; 8 mid-size companies with 200 to
900 employees each; and 2 small companies with less than
100 employees. 6 of the companies also develop hardware
products.

We individually interviewed 18 employees from these 13
companies, that have experience with globally distributed
development. Of the 18 employees, 9 were high managers

2The data-set is available at http://se.inf.ethz.ch/data/icgse12.zip. Statistical
analysis was performed using IBM SPSS v. 20.

(CEOs, CTOs, or business unit leaders), 9 were project man-
agers and senior software engineers.

Each interview discussed a recently completed software
project the interviewee had been involved with. All the projects
were in collaboration with distributed units from companies in
Western Europe, Eastern Europe, Russia, or Asia. In 12 of the
18 projects, the units outside Switzerland were subsidiaries of
the main company; the collaboration in the other 6 projects
can be characterized as off-shore development provided by
external companies. Finally, 11 projects out of 18 followed
structured processes, and 7 applied agile processes.

The questions asked during the interviews were similar
to those used in the questionnaires; it was much harder,
however, to get quantitative data from the interviews, because
the interviewees were often evasive when asked to characterize
precisely measures such as the success or economic savings of
a project, and only gave generic answers such as “the project
was successful” or “the savings were small”. For this reason,
we used the data from the interviews only in the qualitative
analysis of Section V.

IV. QUANTITATIVE RESULTS

This section presents the quantitative data analysis of the
hypotheses presented in Section II on the data of the ques-
tionnaires (see Section III); subsections IV-A to IV-F discuss
the six hypotheses HA

0 to HF
0 .

The initial data-set included information about 48 projects;
we removed one of them, as it consisted of a questionnaire
with clearly bogus answers, leaving us with data about 47
projects. Some questionnaires were incomplete, in that an-
swers to some questions were missing. The analysis that
follows excludes the missing answers for each question; there-
fore, the number of projects evaluated may vary from question
to question.

We performed analyses for each of the hypotheses HA
0

to HF
0 , in order to determine whether our data showed

a statistically significant difference between answers about
projects using agile processes and answers about projects using
structured processes.

The questionnaire consisted of multiple-choice questions;
given the nature of the available choices, we should consider
the emerging data as ordinal but not interval-scale. For each
answer, we visually inspected the distribution of data and we
performed a Shapiro-Wilk normality test; none of them gave
evidence to consider the underlying distributions as normal. In
all, the presence of ordinal data and non-normal distributions
suggests to deploy the Mann-Whitney-Wilcoxon U test, a non-
parametric statistical hypothesis test [2], [31].

Each hypothesis HX
0 , for X = A, . . . , F , refers to a

certain quantity (overall success, importance, motivation, etc.),
measured by the corresponding random variables AGX and
STX—respectively in agile and structured projects. For ex-
ample, HC

0 tests the motivation of teams, hence AGC models
team motivation in agile projects and STC models team
motivation in structured projects. With this notation, the null

3

hypothesis HX
0 is expressible as:

HX
0 : P

(
AGX > STX

)
= P

(
STX > AGX

)
;

that is, the probability that random samples of quantity X are
larger in agile projects than in structured projects equals the
probability that the samples are larger in structured projects
than in agile projects. Correspondingly, the alternative hypoth-
esis HX

1 is that there is a difference in probability, that is:

HX
1 : P

(
AGX > STX

)
6= P

(
STX > AGX

)
.

Notice that we do not directly test for differences in medians
and means of the random variables AGX and STX using
the U test, because that would require that the underlying
distributions of AGX and STX have the same shape; however,
our data does not meet this requirement.

Given a significance level α = 0.05, the U test gives a
probability p that the data supports the null hypothesis: if
p < α, the data gives evidence to reject the null hypothesis,
if p > α, one can not reject the null hypothesis. Figure 2
shows the overall picture: in summary, we never reject the null-
hypothesis, that is there is no evidence to distinguish between
using agile vs. structured processes; the following subsections
describe the results for each hypothesis in detail.

A. Overall Success
For each project out of a total of 47, question A asks to

rank the overall success of the project on a scale from 1 to
10, where 1 is “complete failure” and 10 is “full success”. The
answers were as follows:3

Median Min/Max Mean Rank Mean Std.dev
Agile 29 8 7/10 23.14 8.34 1.078
Struc. 18 9 5/10 25.39 8.44 1.381

The U test gives U = 236 and p = 0.571; as p � α, we
do not reject the null hypothesis HA

0 .

B. Project Importance
For each project out of a total of 47, question B asks to rank

the importance of the project for the customer on a scale from
1 to 10, where 1 is “unimportant” and 10 is “very critical”.
The answers were as follows:

Median Min/Max Mean Rank Mean Std.dev.
Agile 29 9 4/10 23.95 8.69 1.417
Struc. 18 9 7/10 24.08 8.83 1.043

The U test gives U = 259 and p = 0.973; as p � α, we
do not reject the null hypothesis.

C. Team Motivation
For each project out of a total of 44, question C asks to

rank the motivation of the team working on the project on a
scale from 1 to 10, where 1 is “not at all” and 10 is “very
much”. The answers were as follows:

Median Min/Max Mean Rank Mean Std.dev.
Agile 28 8.5 5/10 22.3 8.61 1.449
Struc. 16 9.5 4/10 22.84 8.5 1.932

The U test gives U = 218 and p = 0.887; as p � α, we
do not reject the null hypothesis.

3In all following tables, we report sample mean and standard deviation even
if the data is on an ordinal scale.

D. Economic Savings

For each project out of a total of 31, question D asks to rank
the estimated economic savings—achieved with distributed
development compared to entirely local development—on the
following scale:4

SAVINGS RANK
Saved more than 50% 6
Saved 25% to 50% 5
Saved 10% to 25% 4
About even -10% to 10% 3
Lost 10% to 25% 2
Lost more than 25% 1
Don’t know –

The answers were as follows:
Median Min/Max Mean Rank Mean Std.dev.

Agile 15 5 4/6 18 5 0.655
Struc. 16 4.5 4/6 14.13 4.69 0.793

The U test gives U = 90 and p = 0.247; as p� α, we do
not reject the null hypothesis.

E. Amount of Real-Time Communication

For each project out of a total of 47, question E asks to rank
the estimated amount of real-time communication—occurring
during project development—on the following scale:

R-T COMMUNICATION RANK
more than 30 times per year 7
15 to 30 times per year 6
10 to 14 times per year 5
6 to 9 times per year 4
3 to 5 times per year 3
1 to 2 times per year 2
Never 1

The answers were as follows:
Median Min/Max Mean Rank Mean Std.dev.

Agile 29 3 1/7 23.62 4.1 2.273
Struc. 18 4 1/7 24.61 4.33 2.376

The U test gives U = 250 and p = 0.805; as p � α, we
do not reject the null hypothesis.

F. Amount of Asynchronous Communication

For each project out of a total of 47, question E asks to
rank the estimated amount of asynchronous communication—
occurring during project development—on the following scale:

ASYNCHRONOUS COMMUNICATION RANK
10 or more hours per week 5
6 to 9 hours per week 4
3 to 5 hours per week 3
1 to 2 hours per week 2
< 1 hour per week 1

The answers were as follows:
Median Min/Max Mean Rank Mean Std. dev.

Agile 29 3 1/5 24.48 3.38 1.293
Struc. 18 3 2/5 23.22 3.22 0.943

The U test gives U = 247 and p = 0.76; as p� α, we do
not reject the null hypothesis.

4“Don’t know” answers were excluded from the analysis.

4

6%

28%

22%

28%

11%

28%

39%

17%

22%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Success

5 7 8 9 10

3%

3%
7%

11%

24%

28%

28%

28%

34%

33%

0% 20% 40% 60% 80% 100%

Agile

Structured

Importance

4 6 7 8 9 10

6%

4%

6%

4%
14%

13%

29%

19%

7%

6%

43%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Motivation

4 5 6 7 8 9 10

20%

50%

60%

31%

20%

19%

0% 20% 40% 60% 80% 100%

Agile

Structured

Savings

Saved 10-25% Saved 25-50% More than 50%

10%

6%

24%

33%

17%

11%

7%
3%

6%

10%

11%

28%

33%

0% 20% 40% 60% 80% 100%

Agile

Structured

Real-Time Communication

Never 1-2 times per year 3-5 6-9 10-14 15-30 > 30

3% 28%

22%

28%

44%

10%

22%

31%

11%

0% 20% 40% 60% 80% 100%

Agile

Structured

Asynchronous Communication

< 1 hour per week 1-2 3-5 6-9 10 or more

Fig. 1. Bar charts for the data corresponding to hypotheses HA
0 to HF

0 ; see Section IV-A to IV-F for a detailed analysis.

Fig. 2. Boxplots for the data corresponding to hypotheses HA
0 to HF

0 ; see Section IV-A to IV-F for a detailed analysis.

5

V. QUALITATIVE RESULTS

This section discusses various aspects of distributed soft-
ware development that emerged from all the data we collected:
the costs of nearshore vs. offshore development, the average
success and quality achieved in distributed projects, the role
of personnel skills and of communication patterns, the criteria
for choosing development process, the typical team size, and
various critical issues.

Unlike the results of Section IV, the data is mostly qualita-
tive and it deals with aspects complementary to the choice of
development process that also affect the outcome and success
of projects. Sections V-1 through V-5 report data from the
interviews only (for a total of 18 projects, see Section III),
whereas the other Sections V-6 through V-8 also include data
from the questionnaires (totaling 66 projects).

1) Costs of Nearshore vs. Offshore: The conventional wis-
dom is that nearshore development (where developers work
close to customers, in terms of time zones and distance) makes
team coordination and collaboration with customers easier, but
it is significantly more expensive than offshore development
(which can use less expensive developers in countries such
as India and China). The interviews with Swiss companies
representatives revealed, however, that most companies that
prefer nearshore development do it for legal reasons and
because it reduces the amount of traveling, rather than directly
to reduce costs.

In fact, our data does not show correlation between costs
and location: the overall costs in nearshore development are
not necessarily higher than in offshore development. While the
salaries of programmers in Asia is typically between 1/5 and
1/3 of the corresponding positions in Switzerland, the overall
project costs are also affected by factors such as productivity,
communication and management overhead, and various costs
for setting up and maintaining offices, which weakens the
dependence between total costs and location.

Similarly, our data shows no significant cost differences
between globally distributed projects (where members of the
same development team operate in different locations) and
outsourced projects (where management is in a location, and
all development takes place in a different location): compared
with purely local development, globally distributed projects
reported savings for an average 28% and a standard deviation
of 11%5; outsourced projects reported very similar savings
for an average of 33% and a standard deviation of 11%6.
The overhead (for communication, management, and office
costs) is also almost identical in globally distributed and
in outsourced projects, ranging between 35% and 45%. For
example, creating a new unit in an outsourced location requires
2 to 5 months to setup the office, plus another 3 months to
become productive; the investment pays back after 3-4 years
on average.

2) Project Success: Out of the 18 projects surveyed in
the interviews: 11 are considered “complete success”; 5 are

5Data about 8 projects.
6Data about 10 projects.

“overall success” which, however, suffered non-trivial prob-
lems during development. The major sources of problems and
difficulties were: unqualified personnel, cultural and commu-
nication difficulties, deficiencies of the infrastructure, insuffi-
cient interaction among units. The major sources of success
were: skilled personnel and effective team building (after a
solid team is established, the members will work proficiently
even if distributed in different locations).

3) Project Quality: The overall quality of the majority of
projects was reported as “good” or better, but our interviews
revealed that development problems related to quality are not
uncommon, especially at the beginning of projects (reported
in over 50% of the projects). It seems that quality correlates
positively with timeliness: late projects are unlikely to achieve
a good quality; nonetheless, compromises on quality are
often accepted to meet deadlines. We observed no significant
differences between nearshore and offshore development.

4) Personnel Skills: Personnel skills are a major factor
of project success. Most interviewees think that personnel
skills decrease with distance: the most skilled personnel is in
Switzerland, followed by the personnel in nearshore locations
(typically, Eastern Europe), and then by personnel in offshore
locations (India and China). The deterioration of skills is
attributed to difficulties in communication and collaboration,
and more generally to the challenges introduced by distributed
software engineering.

5) Communication Patterns: Effective communication is
another major factor of project success, and in fact 13 out of 18
projects required a weekly (virtual) meeting among all project
members. Figure 3 shows the means of communication used
in the 18 projects, classified by their richness (i.e., perceived
effectiveness) and synchrony. Most of the communication
among developers takes place using instant messaging, which
is preferred over voice calls and face-to-face communication
because it helps bypass communication obstacles—for exam-
ple, strong accents—and because it is a good compromise
between real-time and asynchronous communication. Time
zones were not reported as an issue for communication.

Fig. 3. Communication means categorized by richness and synchrony.

6) Development Process: Does the choice of development
process used (agile vs. structured) affect the way the various

6

activities (from requirements to maintenance) are assigned to
onshore rather than offshore units? Figure 4 shows7 only a
slight difference in the system design (where offshoring is
higher with agile processes) and unit testing (where offshoring
is higher with structured processes) phases; the data is about
66 projects.

Fig. 4. Allocation (percentage of activity assigned to offshore units) of
development activities in agile and structured processes.

7) Team Size: Figure 5 shows the team size of the 66
projects of our study. On average, agile projects have smaller
teams than structured projects: most agile projects deploy
teams of 30 people or fewer, whereas structured projects tend
to have larger teams, and 5 of them even used teams including
more than 120 people.

Fig. 5. Team size in agile and structured projects.

8) Critical Issues: Figure 6 displays the main problematic
aspects emerged in distributed projects, classified in agile
and structured projects: communication problems; cultural dif-
ferences; management problems; and problems with keeping
projects on schedule.

Agile projects seem to have experienced fewer communi-
cation problems than structured projects (28% of the agile
project had “medium” communication problems, against 47%
of the structured projects). Cultural differences often are only
a moderate problem in both agile and structured projects, with

7We did not provide a definition of the various activities to interviewees.

over 60% of structured and 40% of agile projects reporting to
problem at all in this area. Difficulties in project management
seem to be more frequent in structured projects: 21% of the
structured (resp. 14% of the agile) projects reported “medium”
management problems and 7% of the structured (resp. 0%
of the agile) reported “severe” management problems. The
difficulties encountered in keeping projects on schedule are
very similar in structured and agile projects.

VI. THREATS TO VALIDITY

We discuss the threats to validity in two categories: internal
and external. Internal validity refers to whether the study
supports the findings. External validity refers to whether the
findings can be generalized.

A. Internal Validity

A number of threats to internal validity may surface in
studies based on surveys and interviews. Interviews feature
a trade-off between minimizing “interviewer effects” [11]—
the interviewer giving subtle clues about preferred answers—
and ensuring quality of answers. The last author of this paper
carried out the interviews using brief and schematic questions
(like those used in the questionnaires) in order to minimize
interviewer effects. With some interviewees, however, this
resulted in insufficiently clear or vague answers. For example,
several interviewees responded to multiple-choice questions
with open answers that did not stick to the available choices.
In these cases, the interviewer sometimes tried to improve
the quality of answers by using a more dialectical style of
inquiry, possibly at the risk of introducing interviewer effects.
We cannot guarantee that the optimal trade-off was achieved
in all cases.

Another potential threat to internal validity is the risk that
the granularity of multiple-choice answers (in questionnaires
and interviews) is too coarse. In particular, the dichotomy
between agile and structured processes does not allow for
“hybrid processes”, which may be used in practice. Also,
the different backgrounds of study participants could have
resulted in different interpretations of the same ordinal scales
(for example, the “overall success” of the same project would
be ranked at a different level on a scale of 1 to 10 by different
individuals). Finally, the absence of a control group and the
fact that we did not have direct access to data about projects
make it impossible to evaluate the genuineness of the data
collected with interviews and questionnaires: we do not know
how precise (and objective) the assessment of quantities such
as “overall success” or “economic savings” was, nor whether
processes classified as “agile” (resp. “structured”) properly
followed the agile (resp. structured) principles and practices.

While these threats are inherent in studies based on ques-
tionnaires and interviews (like this paper’s), we have reasons
to assume they had only limited impact. First, participants
were asked to report on a single (agile or structured) GSD
project, hence they had a chance to select one “champion”
that unambiguously fits the agile or structured paradigm, rather
than a hybrid. Furthermore, the differences among agile (or

7

Fig. 6. Critical issues in globally distributed projects, classified in agile and structured: communication problems (top left); cultural differences (top right);
management problems (bottom left); problems with keeping to the schedule (bottom right).

among structured) processes are likely to be small compared to
the differences between any one agile and any one structured
process. In fact, agile processes emerged as a reaction [16]
against mainstream development practices, hence the “agile
vs. structured” classification is reasonably robust. About the
remaining threats, the rank and experience of most participants
to the study positively reflect on the chances of having
obtained quantitative estimates of fair and uniform quality.

B. External Validity

The major threats to external validity for studies based
on surveys come from insufficient coverage or responsive-
ness. Coverage measures to what extent the data-set supports
generalization of the findings. Responsiveness quantifies the
amount of “non-respondents”, that is contacts who received
a questionnaire but did not reply with meaningful data. A
low responsiveness is a threat to external validity, as non-
respondents may exhibit some characteristics relevant for the
study and underrepresented among respondents.

In our study, we sent out questionnaires to over 60 contacts
and we received 48 replies (one was discarded). Even though
we do not know for sure whether some of the contacts
forwarded the questionnaires to others (the replies were anony-

mous for confidentiality reasons), the figures seem to indicate
a low risk of bias due to lack of responsiveness.

Assessing the coverage is harder for our study. The data
collected through interviews was limited to projects developed
by Swiss companies; the online questionnaires reached 18
different companies worldwide, but the vast majority of these
companies have their headquarters in Europe or North Amer-
ica. We cannot prove that the experience of our respondents is
representative of the entire population of distributed software
projects, which may affect the generalizability of our findings.

VII. RELATED WORK

This section presents related work in three areas: empirical
studies on agile processes in local development settings (Sec-
tion VII-A), on the issues and challenges raised by distributed
development (Section VII-B), and on applying agile processes
in distributed settings (Section VII-C). Section I lists general
references on development processes and their role in the
software development life-cycle.

A. Agile Processes for Local Development

The effectiveness of agile processes in collocated projects
has been widely investigated empirically. Müller and

8

Tichy [18] studied the outcome of extreme programming
practices in a programming course for graduate students. Their
data characterizes the performance of 12 students grouped in
pairs, each pair carrying out a 40-hour programming project
and 3 smaller assignments (totaling about 600 minutes of
work). The study showed that groups using extreme pro-
gramming produced high-quality code, but it also exposed
some difficulties in applying this agile methodology at best
in practice.

Hulkko and Abrahamsson [15] also analyzed extreme pro-
gramming practices, and in particular pair programming. Their
study involved both students and professional programmers in
a controlled setting, where they developed implementations of
size up to 8000 lines of code. The results provided no evidence
that pair programming practices improve productivity or the
quality of the produced code, compared with programmers
working solo.

Bergel and Nagappan [3] surveyed the results of pair pro-
gramming practices at Microsoft. Professional programmers,
testers, and manager with about 10 years of experience took
part in the survey; the majority reported that pair programming
works well for them and produces higher-quality code.

Bhat and Nagappan [4] conducted an empirical study
about test-driven development—another practice of extreme
programming—at Microsoft. The study compared test-driven
development against more traditional practices, showing an
increase in code quality but also in development time (by about
15%) with the adoption of test-driven development.

Nawrocki et al. [19] compared development with extreme
programming against development following CMM level 2.
Their study, targeting university students, revealed that CMM
implementations are more stable and contain fewer bugs, but
programmers following CMM practices perceive their job as
more tedious.

B. Empirical Studies on Distributed Development

Empirical studies on globally distributed development have
analyzed different aspects, including communication patterns,
the effect of time zones, and achievable quality and produc-
tivity.

Several studies focused on the amount and type of com-
munication required by distributed projects. For example,
Allen [1] reported that the frequency of communication among
engineers whose offices are more than 30 meters apart drops
to almost the same level as that of engineers separated by
several miles. In the same vein, Carmel [7] identified loss of
communication as one of four major risk factors that can lead
to the failure of distributed software projects.

Herbsleb and Mockus [13] analyzed the impact of globally
distributed development on the amount of communication
needed to agree on and implement requests for modifications
of existing implementations. They found that, when developers
are geographically distributed, the overall time increases by
a factor of 2.5 on average. If, however, the effect of other
variables such as the number of people involved in a task and
the size of the required modifications is properly taken into

account, the differences in communication time between dis-
tributed and collocated teams are no longer significant. Other
findings were that communications is much more frequent
among collocated than among remote developers; and that
the size of the social network (i.e., the number of colleagues
a developer ever interacts with) is significantly smaller for
programmers working in distributed teams.

In previous work of ours [21], we studied the effect of
time zones and locations on communication within distributed
teams; we performed the study as part of our DOSE [23], [22]
university course. We found that the amount of communication
is larger in two-location projects than in projects distributed
across three locations; and that it decreases the more time
zones separate the developers of a distributed team.

Other studies of distributed development focus on achiev-
able quality. For example, Bird et al. [5] present a case study
on the development of Windows Vista, comparing the failures
of components developed by distributed teams with those
of components developed by collocated teams. Their results
show no significant differences in the two cases. Spinellis [30]
examined how distributed development affects defect density,
coding styles, and productivity in an open source project. He
found that there is little or no correlation between geographic
distribution and these quality metrics.

None of these studies targeted the type of processes adopted
in distributed development, which is instead the focus of the
present paper. Taking a different angle, Cataldo et al. [8] an-
alyzed the mutual impact of process maturity and distribution
on project quality. Their study classified companies according
to their CMMI level, showing that the advantages of processes
at higher maturity levels decrease with the distribution of
teams. They do not compare structured and agile processes,
as the present paper does.

C. Agile Processes for Distributed Development

There are some clear challenges involved in applying ag-
ile processes—such as Scrum and extreme programming—
to distributed projects. Researchers have proposed changes
to agile practices that render them applicable in globally
distributed settings. Correspondingly, the remainder of this
section summarizes a few empirical studies that have analyzed
distributed projects using agile methods. The present paper
complements such work, as it compares the impact of agile
methods against that of structured methods for distributed
development.

Layman et al. [17] studied the communication practices of
extreme programming teams distributed between the USA and
the Czech Republic. The developers created an environment
for informal communication in a distributed setting, which
helped develop user-story specifications and solve technical
problems quickly and efficiently. Face-to-face communication
was effectively replaced by other means of communication.

Paasivaara et al. [25] studied how Scrum is performed in
distributed projects. Their interview of 19 team members in
3 companies in Finland identified best practices, benefits, and

9

challenges involved in the various Scrum activities such as
“daily scrum”, “sprints”, and “sprint planning meeting”.

Sureshchandra et al. [32] developed another evaluation of
agile processes, targeting only one company. Besides survey-
ing best practices and lessons learned, they make a brief
comparison of the productivity (measured as lines of code
over time) of 15 projects using agile and non agile processes,
and they report a 10% increase in the productivity with agile
methods.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a case study analyzing the impact of software
processes on distributed development. We have examined a
total of 66 industry projects, classified them into agile and
structured, and evaluated the correlation between process type
and success, importance, and economic savings of projects,
team motivation, and real-time and asynchronous communica-
tion. The collected data suggests that the correlations between
process type and these other measures are negligible and
without statistical significance: choosing an agile rather than
a structured process does not appear to be a crucial decision
for globally distributed projects.

As future work, we plan to investigate various agile and
structured projects in more detail, to determine which agile
practices are followed in practice, and to identify common
practices across different projects. We also plan to study
how developers write programs in distributed settings and, in
particular, how they communicate and coordinate API changes.
This study will be performed with our CloudStudio IDE [20],
which supports software development in the cloud with real-
time concurrent editing.

Acknowledgments: The authors thank all the participants
to the study, and the anonymous reviewers for useful com-
ments. This research has been partially funded by the Gebert-
Rüf Stiftung.

REFERENCES

[1] T. J. Allen. Managing the Flow of Technology. MIT Press, 1977.
[2] A. Arcuri and L. Briand. A Pactical Guide for Using Statistical Tests

to Assess Randomized Algorithms in Software Engineering. In ICSE,
pages 1–10. ACM, 2011.

[3] A. Begel and N. Nagappan. Pair Programming: What’s in it for Me? In
ESEM, pages 120–128. ACM, 2008.

[4] T. Bhat and N. Nagappan. Evaluating the Efficacy of Test-Driven
Development: Industrial Case Studies. In ISESE, pages 356–363. ACM,
2006.

[5] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy. Does
Distributed Development Affect Software Quality? An Empirical Case
Study of Windows Vista. In ICSE, pages 518–528. IEEE, 2009.

[6] B. Boehm and R. Turner. Balancing Agility and Discipline: A Guide
for the Perplexed. Addison-Wesley, 2004.

[7] E. Carmel. Global Software Teams: Collaborating Across Borders and
Time Zones. Prentice Hall PTR, 1999.

[8] M. Cataldo and S. Nambiar. On the Relationship between Process
Maturity and Geographic Distribution: an Empirical Aanalysis of their
Impact on Software Quality. In ESEC/FSE, pages 101–110. ACM, 2009.

[9] D. Cohen, M. Lindvall, and P. Costa. An Introduction to Agile Methods.
Advances in Computers, pages 1–66, 2004.

[10] J. A. Espinosa, N. Nan, and E. Carmel. Do Gradations of Time Zone
Separation Make a Difference in Performance? A First Laboratory Study.
In ICGSE, pages 12–22. IEEE, 2007.

[11] F. J. Fowler and T. W. Mangione. Standardized Survey Interviewing:
Minimizing Interviewer-Related Error. Sage Publications Inc., 1989.

[12] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software
Engineering. Prentice Hall, 2nd edition, 2002.

[13] J. Herbsleb and A. Mockus. An Empirical Study of Speed and
Communication in Globally Distributed Software Development. IEEE
Transactions on Software Engineering, 29(6):481–494, 2003.

[14] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter. Distance,
dependencies, and delay in a global collaboration. In Proceedings of
the 2000 ACM conference on Computer supported cooperative work,
CSCW ’00, pages 319–328, New York, NY, USA, 2000. ACM.

[15] H. Hulkko and P. Abrahamsson. A Multiple Case Study on the Impact of
Pair Programming on Product Quality. In ICSE, pages 495–504. ACM,
2005.

[16] K. Beck et al. Manifesto for Agile Software Development. http://www.
agilemanifesto.org, Apr. 2001.

[17] L. Layman, L. Williams, D. Damian, and H. Bures. Essential Com-
munication Practices for Extreme Programming in a Global Software
Development Team. Information and Software Technology, 48(9):781–
794, 2006.

[18] M. M. Müller and W. F. Tichy. Case Study: Extreme Programming in
a University Environment. In ICSE, pages 537–544. IEEE, 2001.

[19] J. R. Nawrocki, B. Walter, and A. Wojciechowski. Comparison of CMM
Level 2 and eXtreme Programming. In ECSQ, pages 288–297. Springer-
Verlag, 2002.

[20] M. Nordio, H.-C. Estler, C. A. Furia, and B. Meyer. Collaborative
Software Development on the Web, 2011. arXiv:1105.0768v3.

[21] M. Nordio, H.-C. Estler, B. Meyer, J. Tschannen, C. Ghezzi, and
E. Di Nitto. How do Distribution and Time Zones affect Software
Development? A Case Study on Communication. In ICGSE. IEEE,
2011.

[22] M. Nordio, C. Ghezzi, B. Meyer, E. D. Nitto, G. Tamburrelli, J. Tschan-
nen, N. Aguirre, and V. Kulkarni. Teaching Software Engineering using
Globally Distributed Projects: the DOSE course. In CTGDSD. ACM,
2011.

[23] M. Nordio, R. Mitin, and B. Meyer. Advanced Hands-on Training for
Distributed and Outsourced Software Engineering. In ICSE, pages 555–
558. ACM, 2010.

[24] M. Nordio, R. Mitin, B. Meyer, C. Ghezzi, E. D. Nitto, and G. Tambur-
relli. The Role of Contracts in Distributed Development. In SEAFOOD,
volume 35 of LNBIP, pages 117–129. Springer, 2009.

[25] M. Paasivaara, S. Durasiewicz, and C. Lassenius. Using Scrum in
Distributed Agile Development: A Multiple Case Study. In ICGSE,
pages 195 –204. IEEE, 2009.

[26] S. L. Pfleeger and J. Atlee. Software Engineering: Theory and Practice.
Prentice Hall, 3rd edition, 2005.

[27] R. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 7th edition, 2009.

[28] N. Ramasubbu and R. Balan. Globally Distributed Software Develop-
ment Project Performance: An Empirical Analysis. In ESEC/FSE, pages
125–134. ACM, 2007.

[29] N. Ramasubbu, M. Cataldo, R. K. Balan, and J. D. Herbsleb. Con-
figuring Global Software Teams: A Multi-Company Analysis of Project
Productivity, Quality, and Profits. In ICSE, pages 261–270. ACM, 2011.

[30] D. Spinellis. Global Software Development in the FreeBSD Project. In
GSD, pages 73–79. ACM, 2006.

[31] P. Sprent and N. Smeeton. Applied Nonparametric Statistical Methods.
Texts in Statistical Science. Chapman & Hall/CRC, 2007.

[32] K. Sureshchandra and J. Shrinivasavadhani. Adopting Agile in Dis-
tributed Development. In ICGSE, pages 217 –221. IEEE, 2008.

10

