
Chapter 2 
The New Culture of Software 
Development: 
Reflections on the practice of object-oriented design 

Bertrand Meyer 
Interactive Software Engineering, Inc. 

ABSTRACT: Object-oriented techniques, when applied seriously and on a broad scale, reflect 
a new culture of software engineering. which may be called the component culture. After 
contrasting this new culture with the more traditional project culture, this article examines some 
of the technical. economical and managerial implications of the new approach. 
The discussion explores the fundamental object-oriented processes of abstraction and extraction 
(recognizing inheritance structures a posteriori). and introduces a new lifecyclemodel which seems 
to fit best with object-oriented development of reusable software: the Cluster Model. 

2.1 OVERVIEW 

Object-oriented design is an old idea and a new idea. Simula introduced the basic concepts 
more than twenty years ago, time for a few generations when measured against the rate of 
evolution of the computer industry. Only recently, however, have object-oriented tech­
niques been exposed to enough people and applied to enough projects to yield a concrete 
idea of the practical power, benefits and requirements of the approach. 

This article describes some of the issues that arise when the object-oriented approach 
is implemented on a significant scale. It argues that object-oriented techniques imply a new 
culture of software development, and studies how this new culture can, for the time being, 
coexist with the old. 

The basis for this discussion is the observation of a large number of object-oriented 
applications over a period of many years, initially in Simula, and then in Eiffel. Some of 
these applications were developed under my leadership; others were built by fellow users 
(trained by us or by others) and by users of our tools. No attempt has been made to transpose 
this experience to environments other than Eiffel. 



52 The new culture of software development: Reflections on the practice of object-oriented design 

2.2 THE TWO CULTURES 

Object-orientedness is not just a programming style but the implementation of a certain 
view of what software development should be. Taken seriously, this view implies 
profound rethinking of the software process. 

How profound this is, is best understood by contrasting the mode of development 
implied by object-oriented techniques with the most common culture of software engi­
neering. 

Outcome 
Unit 
Economics 
Time 
Goal 
Bricks 
Strategy 
Method 
language 

Results 
Department 
Profit 
Short-term 
Program 
Program elements 
Top-down 
Functional 
C, Pascal, ... 

Figure 2.1 The project culture. 

The traditional culture - implicit in most of the software engineering 
literature, and in the usual software lifecycle models - is project-based. In other 
words, the subject of discourse is the project, which starts with a certain 
specification and ends with the delivery of a program with the supporting 
documents. 

Some of the implications of this view, taken to the extreme, are summarized 
in Figure 2.1 above. 

The outcome is results, produced by a program in response to user's requirements. 
The organizational unit impacted is usually the department directly affected by the project. 
The economics is one of profit, with a time frame as short as it will take to obtain this profit. 
The goal is a program, or a few programs. The bricks of which this program is made are 
program elements: modules built for the occasion. 

The strategy, as recommended in most textbooks and procurement policies, 
is top - down: start from the specific problem requirements and decompose. The 
method which follows naturally is based on analysis of the functions and data 
flow. The language used is one of the classical languages. 

The culture implicit in object-oriented design is quite different. It may be 
called the component culture: the subject of discourse is reusable components 
rather than individual projects. Some of the implications of this view, taken to the 
extreme, are summarized on Figure 2.2 below. 



Outcome 
Unit 
Economics 
Time 
Goal 
Bricks 
Strategy 
Method 
language 

Tools, libraries ... 
Organization 
Investment 
Long-term 
System 
Software components 
Bottom-up 
Object-Oriented 
Object-Oriented. 

Figure 2.2 The component culture. 

Cohabitation 53 

The outcome is reusable software elements, meant to be useful in a large number of 
applications. 

The unit is, beyond an individual project, an organization: a department, an entire 
company, sometimes an entire industry. The economics is one of investment- which of 
course is intended as deferred profit As a consequence, the time frame is more long-term. 
More than a program, the goal is to build systems - assemblies of modules which can be 
adapted to suit various specific needs. The bricks are software components, which dis­
tinguish themselves from mere program elements by having a value of their own, 
independently of the context for which they were initially designed. More will be said 
below about the transition from program elements to software components. 

The strategy for obtaining quality reusable components embodies a considerable 
bottom - up aspect: working by extension, improvement, specialization and combination 
of previously obtained components. This is exactly what the object-oriented method 
supports thanks to multiple inheritance, genericity and encapsulation. The language used 
at the specification, design and implementation stages should reflect this method. 

2.3 COHABITATION 

The above characterizations are exaggerated. No industrial software development envi­
ronment totally neglects tools; few can afford to neglect results. But the contrast between 
project and component cultures shows some of the problems associated with promoting 
object-oriented techniques on a broad scale. 

Without question, the dominant culture is project-based and will remain so for a long 
time. Customers, users, management, shareholders all want results, and preferably fast. 
Posterity will come later. The immediate issue, then, is not so much how to rep/ace the 
project culture by a component culture, an impossible goal, at least initially, but how to 
instill significant doses of component-oriented concerns into a context which is largely 
driven by project preoccupations. 

One of the favorite strategies of all-time subversives - penetrating institutions to 



54 The new culture of software development: Reflections on the practice of object-oriented design 

transform them from the inside, rather than toppling them outright - indeed 
seems to work here. 

Assume that, being an advance soldier of the object-oriented army, you are 
assigned the job of MIS director in some large, traditional computing organiza­
tion. You can hardly decide, on your first day on the job, that all requests for 
specific developments will be turned down for two years, time for your department 
to build the right base of reusable components. You have users and customers, 
and must be ready to respond to their specific requests. 

Catering to the short term does not mean, however, that you give up on tools 
and reusability. You will fulfil your customers' specific requests, but you will do 
more than these requests, seeing the eventual software components beyond the 
immediate pro gram elements. 

The effort involved in transforming program elements into software com­
ponents may be called generalization and will be studied in more detail below. 
Its goal is to give the elements a value of their own, independently of the original 
developments for which they may initially have been conceived. In this process, 
the elements become more general, more robust, better documented. 

In the pure project culture, there is no room for generalization: if a program 
element satisfies the requirements thrust on it by the program to which it belongs, 
there is no economic justification for an activity that will not have any immediate 
effect on the quality of this program, being aimed solely at improving the 
element's usefulness for future developments. But in the component culture 
generalization becomes a key element of the software development process. 

By starting from specific requests but going further, you can quietly start 
accumulating a repertoire of ready-made components which, little by little, will 
play an increasing role in your subsequent developments. With such a strategy 
you can, after a while, start having a different attitude towards your users - more 
active and less reactive. You can respond to a new request, with its specific and 
perhaps baroque set of technical requirements, with a counter-proposal, offering 
to do a somewhat different or perhaps simplified job much faster thanks to the use 
of pre-existing components. Then you can give your customers a choice: either 
tailor-made development, using traditional techniques, in n person-months, or 
"mix-and-match" development using object-oriented techniques in, say, 0.3 n. 
Some offers are hard to refuse. 

i 

2.4 GENERALIZATION 

What does it take to transform a program element into a software component? 
Some aspects of this generalization process are obvious, and are not specific to the 

object-oriented approach: 

• Writing more complete documentation - perhaps not necessary for an element 
which is only used as part of a given program, but, rather, is required for its 
independent use as a component. 



Generalization 55 

• Removing functional limitations - which may be tolerable when you have full 
control over a component's use, but not in a more general context. 

Some less obvious aspects, such as assertions, abstraction and the factoring out of 
commonalities, deserve a specific discussion 

2.4.1 Assertions 

One of the important tasks of the generalization process is to add the proper 
assertions to the components. An assertion is an element of formal specification 
which characterizes the implementation-independent properties of a software 
unit - routine or class in object-oriented programming. Assertions include in 
particular preconditions, postconditions and invariants. 

A routine precondition expresses under what condition the routine may 
correctly be called. For example, an insertion routine for a table of bounded 
capacity might have the precondition 

require 
count < capacity 

A routine postcondition expresses the abstract properties of the state 
resulting from a correct call to the routine. The postcondition for a routine 
inserting x with key k might be written as 

ensure 
count = old count + /; 
item (k) = x 

where old serves to refer to a "snapshot" of a value (here count, the number of 
elements inserted) taken before the call, and a function item is assumed on tables, 
yielding the value associated with a certain key. 

A class invariant expresses global consistency properties associated with a, 
I instances of a certain class, for example 

count <= 0; 
count <= capacity 

For a mere program element, programmers are sometimes lazy about 
including the proper assertions. For a software component, this would be 
unacceptable: without assertions, it is not possible to produce truly industrial 
software components. They would be like electronic components without a 
precise specification of their accepted inputs, guaranteed outputs, and general 
conditions of use - the hardware equivalents of preconditions, postconditions 
and invariants. 



56 The new culture of software development: Reflections on the practice of object-oriented design 

Adding assertions is thus an important part of the generalization process. Invariants, 
in particular, are not always understood right away; it takes some research into a class and 
often some practical use to obtain all the right invariant clauses. The result is always worth 
the effort, as the process of deriving the invariant yields considerable insights into the 
deeper semantics of the class. 

Although assertions can in principle be added as comments in any language, their 
inclusion as integral parts of the language permits applications such as automatic 
documentation (producing class interfaces from the class text, as with the short tool of the 
Eiffel environment) and debugging (as with the Eiffel compilation options which turn 
assertion monitoring on). 

2.4.2 Class abstraction 

Another important aspect of generalization is class abstraction. The need for this activity 
is a consequence of a universal characteristic of programmers, which they share with their 
fellow human beings: the yearning for the concrete. 

Object-oriented design is a quest for abstraction. Using inheritance means 
that you write classes that are more general than what is immediately needed for 
the problem at hand. Deferred classes, which describe general mechanisms 
(scenarios, scripts, iterators ... ) without committing the details of each step, are 
particularly useful here: once you have captured a general pattern through a 
deferred class, you or others may implement specific variants by writing effec­
tive (non-deferred) classes which implement the parts of the pattern that had been 
left open in the deferred class. Object-oriented techniques ideally support this 
remarkably elegant process of working from the abstract to the concrete, from the 
general to the specific!. 

In practice, however, the scheme is not always as smooth and intellectually 
satisfying as the theory of object-oriented development would have it. Even if 
they are convinced of the benefits of generality, developers will tend to produce 
classes which initially are often too specific: particular implementations of a 
certain abstraction, rather than the abstraction itself. It is hard to blame them: 
programmers are problem solvers. Nobody will complain if they get the job done 
first. 

If reusable components are part of the goal, however, the process cannot 
stop there. When you realize that a certain class is less general than it could have 
been, you should use this discovery as an opportunity to reorganize the inherit­
ance hierarchy. As a simple example, this is what happened in the design of the 
Eiffel Data Structure Library when we realized that our initial TREE class was 
too specific, describing just one implementation of trees rather than the general 
concept. A deferred class was then written, of which the original became an heir. 

1 Because of the common graphical representation for inheritance diagrams, this process is sometimes 
mistakenly viewed as "top-down". It is in fact a typically bottom-up process of particularizing general­
purpose tools. 



Generalization 57 

Figure 2.3 Partial inheritance structure for trees. 

The resulting inheritance structure, shown below, could of course have been obtained 
right from the beginning; but it is better to produce it late than never. 

Such an a posteriori change is typical of work that only makes sense in the 
component culture. From the project viewpoint, the original program element 
was satisfactory and there would have been no economic incentive to improve the 
enclosing inheritance hierarchy. 

The process of class abstraction is aided in the Biffel environment by a 
variant of the short class abstracter. The command 

short -e class name 

will produce a deferred version of the requested class, with all implementation 
details removed. This is usually a good basis for obtaining a more abstract class 
while keeping the interface. 

2.4.3 Extraction of commonalities 

A related activity arises from the a posteriori realization that duplication of 
efforts has led to similar classes being written by different people, or even by the 
same person at different times. Inheritance is the ideal mechanism for capturing 
commonalities between similar components. If the developers initially missed 
the commonalities, then it is always possible to reconstruct the inheritance 
structure a posteriori. 

The need for "extraction of commonalities" arises when two developers, 
say John and Jill, produce classes Band C, not realizing early enough that they 
were in reality working on variants of the same concept. Had they recognized this 
from the start, they would have been working on the hierarchy shown below, but 
instead they wrote Band C as independent classes. Here again, it is better to 
reinstate the hierarchy ex post facto than not at all. 



58 The new culture of software development: Reflections on the practice of object-oriented design 

Figure 2.4 Inheritance structure for variants of a common concept. 

As with the previous case, the result is to produce more abstract classes, often 
deferred, of which the original classes become descendants. 

As an example, also from our own development, we initially developed the Winpack 
Library (covering non-graphical windowing) and the Eiffel Graphical Library as inde­
pendent products. Only later did we realize that the notion of window, and many other 
central concepts, should be common to both libraries, with specialization for graphical or 
non-graphical platforms intervening quite low in the inheritance graph. 

2.4.4 Switching to reverse 

What is common to the previous two activities - abstraction, extraction of commonalities 
- is that they depart from the view of inheritance which is usually suggested in the object­
oriented literature: the idea that the bright designer will somehow obtain the proper 
inheritance structure the first time around. It is always preferable, of course, to get the 
inheritance right initially. But it serves no useful purpose to pretend that this will always 
be the case. Better recognize that the process may involve trial and error, as a result of our 
yearning for the concrete, and of our frequent failure to detect commonalities early enough. 
Better be prepared for the inevitable changes of direction - switching to reverse, as it were 
- in building the inheritance structure. What counts is that in the end we should get the 
useful and elegant inheritance hierarchies that condition good object-oriented reuse of 
components. 

An important aspect of both abstraction and extraction is that they normally do not 
affect the clients of the classes being restructured, since one does not change the interface 
of a class by rewriting it with a different ancestry. In Eiffel, clients will not even be 
recompiled, since the automatic (makefile-free) recompilation mechanism will recognize 
that an interface has remained untouched and that the clients are hence still valid as 
compiled before. 



Some organizational aspects 59 

This observation highlights a fundamental, although often misunderstood, aspect of 
inheritance: inheritance is an implementation mechanism, not an interface mechanism. 
For the clients of a class, what the class inherits from is irrelevant. Such tools as the Eiffel 
flattener (command flat of the Eiffel environment) support this view by providing 
inheritance-free versions of a class when needed for the benefit of clients. 

As a result of the abstraction and extraction activities, a general phenomenon may 
be observed in organizations that have consistently and seriously promoted reusability 
through object-oriented techniques. This phenomenon - apparent in our own develop­
ments, and reported by users ofEiffel- is a progressive elevation of the level of abstraction 
of the classes produced by a group or organization committed to object-oriented program­
ming. As you start reusing your previous classes, cataloging them, archiving them into 
libraries, you realize the need for more general versions. It does not make sense to lament 
that these versions were not produced right from the start; what counts is the constant 
improvement in quality and generality that the process yields if properly implemented. 

2.5 SOME ORGANIZATIONAL ASPECTS 

Object-oriented development, the emphasis on reuse and, more generally, an overall trend 
towards the component culture, inevitably have consequences on the organizational and 
managerial aspects of software development. Only a few aspects will be considered here. 

The newest aspect, as discussed above, is the generalization step. This will cost 
money; not necessarily fortunes, but hardly invisible. 

This means, among other consequences, that serious object-oriented development 
cannot be done "on the side". Without management support, you can perform a few 
harmless experiments, but you cannot implement true object-oriented design and pro­
gramming with their immediate consequence: the development of investment-oriented 
tools and components. 

The funding problem should not be overlooked. In most corporate environments, 
budgets reflect the surrounding project culture and are allocated on a project basis; 
"general" funds, not eannarked for a particular project, are usually much more limited. Yet 
the generalization activity does not profit the current project so much as the next few 
projects (which, adding insult to injury, may well be under the responsibility of the project 
leader's peers and rivals in the race for corporate leadership!). Mechanisms must be found 
to obtain funding for such undertakings - project-foolish, component-wise. 

Another practical caveat concerns productivity. Standard productivity measure­
ments, based on lines per person-months, may be deceptive. Assume a project that 
enthusiastically adopts object-oriented techniques. At the end of an initial development, 
a fIrst measurement is made: 

prod 1 = linesj / eff1 

where prodl is the productivity, measured as the ratio of the number of produced lines, 
linesl , to the effort in person-months, effr 



60 The new culture of software development: Reflections on the practice of object--oriented design 

No doubt, if object-oriented techniques have been applied well and with good tools, 
prod, will be a pleasant surprise to management as compared to the usual results. Assume 
now, however, that the project leader decides to go on and apply the generalization step. 
After a while, a new measurement is made: 

Obviously, there is a relation of the form 

But it may also very well be the case that 

since, after all, much of the generalization work consists of removing duplicate elements, 
in particular as a result of "extraction of commonalities" as studied above, and other dead 
wood. Unless properly briefed, management (and software engineers) will not like the 
resulting productivity figures. 

If anything, this hypothetical story highlights the danger of simplistic approaches to 
assessing productivity improvements (see also [3]). It also serves to remind us of the need 
to involve and educate management, and to emphasize that, real as the short-term 
productivity gains are with a good object-oriented environment, the really big prize is to 
be won over the long term, thanks to reuse. 

2.6 LIFECYCLE: THE CLUSTER MODEL 

We will conclude with a brief discussion of the lifecycle model that seems most 
appropriate for the object-oriented product culture. (This section draws on a 
previous article [5] and on a very interesting report by Eiffel users from Thomson 
[6]. See also [2] for further developments.) 

The well-known waterfall model, of which a form appears in Figure 2.5, has 
been repeatedly criticized. Yet no satisfactory replacement has gained widespread 
acceptance. It is fair to ask what kind of lifecycle is appropriate to object­
oriented design. 

Here are some of the main ingredients of a possible answer: 

• The merging of the design and implementation activities, traditionally 
considered to be different phases of the lifecycle. 

2 Such simple productivity measures are of course subject to criticism; concepts such as "person-month" and 
"line" need to be defined precisely. 



Lifecycle: the cluster model 61 

• The general bottom - up approach, which de-emphasizes the immediate require­
ments of the current project in favor of along -tenn view of software production, and 
suggests that general-purpose utility modules should be builtfrrst, specific ones last. 

• The new lifecycle phase described above: generalization, which seems to be 
profitably merged with the more usual phase of component validation. 

Figure 2.5 The waterfall model. 

One more concept is needed to complete the picture: the cluster concept. A cluster 
is a group of classes which relate to a common aim; for example a system could contain 
a basic cluster (the Basic Eiffel Library), a graphics cluster (such as the Eiffel Graphics 
Library), a simulation cluster, a synchronization cluster etc. 

In Eiffel there is no need to define "cluster" as a language construct because the 
notion of directory, available on all modern operating systems, provides an appropriate 
basis. Eiffel classes are stored in files; the files containing a set of 10 gically related classes 
will naturally be kept in the same directory. 

With this notion in mind we can take a fresh look at the waterfall model. The 
continued success of this model in the software engineering literature, in spite of its known 
deficiencies, should perhaps be credited to two of its properties, already noted by Boehm 
[1]: 

• The lifecycle steps (requirements, specification, design, implementation, valida­
tion) reflect meaningful and necessary activities of software construction, 

- although we have seen that it may be appropriate to merge some adjacent activities, 



62 The new culture of software development: Reflections on the practice of object-oriented design 

'll1d encountered the need for a new activity, generalization, conspicuously absent 
from the traditional model. 

• It is hard to imagine a theoretically more satisfying order than the one given: who 
would seriously advocate distributing before specifying? 

If the activities are essentially right and the orderis right, whatthen can be improved? 
An important observation is that nothing really forces us to apply the above sequence of 
steps to the system as a whole. This would be keeping the negative legacy of top - down 
design: the all-or-nothing approach which considers a system as a monolithic entity 
fulfilling a frozen specification. The notion of cluster provides the appropriate unit to 
which each sub-lifecycle should be applied. As shown on Figure 2.6, these sub-life cycles 
may overlap in time, and they probably should. 

time 
Cluster n 

Cluster 2 

Cluster 1 

time 

Figure 2.6 The cluster model of the software lifecycle. 

The other concepts introduced so far help further define this new lifecycle model­
the cluster model of software development. It is based on the following principles. 

The best order for starting cluster development is bottom - up: from the most general 
clusters, providing utility functions, to the most application-specific ones. Of course, 



Lifecycle: the cluster model 63 

some of the lower-level clusters will be available from the start as part of the 
standard delivery (in Eiffel, the Data Structure and Graphical Libraries): and as 
the method is applied to repeated projects within an organization, other reusable 
clusters will become readily available. 

As opposed to the all too frequent advice of getting the interface right first 
(what may be called the "Potemkin approach", where the facade must be right at 
all costs,even if there is nothing behind), this strategy suggests that the key 
functions should be designed and implemented first, and one or (usually) more 
interfaces should then be built to satisfy needs. These may be program interfaces, 
command-line-oriented interfaces, full-screen interfaces, graphical ones and so 
on. 

A possible sequence to apply to each sub-lifecycle includes the following 
four steps: 

• Specification of individual clusters and classes. 

• Design and implementation. 

• Validation. 

• Generalization. 

Each cluster may be a client of lower-level ones. The client relation enables 
the design-implementation step of the classes in a cluster to rely on the specifi­
cation of classes in another. In contrast with hierarchical abstract machine 
methods, we should not require that each cluster only be a client of the immedi­
ately lower one; we may restrict, however, cycles of the client relation to occur 
within clusters only. 

This approach appears to yield a software development process which is 
smoother and more effective than traditional approaches because it integrates at 
its very basis the concern for change and the concern for reuse; in other words, 
because it helps in the key transition that is required for the turning of software 
development into a real industry - the transition from a project culture to a 
component culture. 

REFERENCES 

[1] Barry W. Boehm, Software Engineering Economics, Prentice Hall, 1981. 

[2] Brian Henderson-Sellers and Julian M. Edwards, "The Object-Oriented 
Systems Life Cycle", in Communications of the ACM, vo1.33, 9, pp.142-

159, September 1990. 



64 The new culture of software development: Reflections on the practice of object-oriented design 

[3] T. Capers Jones, Programmer Productivity, McGraw-Hill, 1986. 

[4] Bertrand Meyer, Object-Oriented Software Construction, Prentice Hall, 
1988. 

[5] Bertrand Meyer, "From Structured Programming to Object-Oriented De 
sign: The Road to Eiffel", in Structured Programming, vol.10, 1,pp.19-39, 
January 1989. 

[6] Cyrille Gindre and Frederique Sada, "A Development in Eiffel: Design and 
Implementation of a Network Simulator"; in Advances in Object-Oriented 
Software Engineering, eds. Dino Mandrioli and Bertrand Meyer (this volume). 


