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Abstract: Requirements benefit from integrating several viewpoints, and from an object-oriented style. 
 

Lack of structure, abstraction and hiding frequently make requirements hard to 
comprehend. We could get rid of these problems by treating requirements as objects. OO 
requirements would bring the benefit of OO principles, allow seamless application of OO 
methods through the development cycle, ensure a smooth transition from requirements to 
architecture and design, and support round-trip engineering. 

Martin Glinz, from [1] (abridged) 
 

1. The basic idea (self-referentially) 
1.1 Requirement, requirements, project 
1.1.1 A software project /PROJECT/ exists to address some needs and must satisfy some 
constraints. The term “requirements” denotes the description of these needs and constraints. Any 
project, even one that most enthusiastically follows an agile, specify-as-you-go process, has 
requirements /REQUIREMENTS/; and conversely any “requirements” is relative to a project: 

class PROJECT feature                 -- E1.1.1 
 requirements: REQUIREMENTS 
invariant 
 requirements.project = Current 
end 
 
class REQUIREMENTS feature 
 project: PROJECT 
invariant 
 projects.requirements = Current 
end 
 

I1.1.1 (Informative text) It is convenient, the first time the requirements text introduces a 
term such as “project” describing an important abstraction that will be described by a 
class, to mention the class name in slashes, as in /PROJECT/. A tool should be available 
to collect all such occurrences automatically into an index. 

1.1.2 We can enter the above information directly into our tools:  
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1.1.3 The term “requirements” is used as a collective (as in “the requirements document”), 
commanding a verb in the singular, but also as the plural of “requirement”. Indeed “a 
requirement” /REQUIREMENT/ is a specification of a particular system property; so “the 
requirements” as a whole contains a list of individual “requirements” (called that way, 
“individual requirements”, whenever confusion could arise):   

class+  REQUIREMENTS feature+                -- E1.1.3 
 items: LIST [REQUIREMENT] 
end 
 

 

 
 

I1.1.3 (Informative text) As a general convention, we add a “+” to the keyword of a 
clause of a class, as here “feature+”, to indicate that the contents must be added to 
preceding ones for that class, here REQUIREMENTS. (For clarity, a class extract 
describing such an incremental extension starts with class+ rather than just class.) The 
full corresponding clause for the class, for example here the full feature clause, is the 
concatenation of all such contents; supporting tools should reconstruct it on request. This 
convention is essential to support an incremental, iterative approach to constructing 
requirements specifications. 

1.1.4 Similarly, a project produces a number of “artifacts” /ARTIFACT/. They can be of many 
different kinds, such as programs /PROGRAM/: 

class ARTIFACT feature                 -- E1.1.4 
 project: PROJECT 
end 
 
class PROGRAM inherit ARTIFACT end 
 
class+ REQUIREMENTS feature+ 
 artifacts: SET [ARTIFACTS] 
end 
 

 
1.1.5 The order of individual requirements in a “requirements” may be relevant, for example to 
produce a sequential compendium in the form of a requirements document; hence the use of a 
LIST (E1.1.3). For artifacts in a project, the order is irrelevant; hence the use of a SET (E1.1.4). 



1.1.5 Artifacts can be composite: for example a program contains modules, which may 
themselves contain further components. In other words, an artifact can be part of another artifact. 
This aspect is fairly easy to describe using standard techniques, but for brevity the present 
discussion shall not detail it.  

1.2 Traceability 
1.2.1 Good requirements should satisfy a number of properties (see e.g. section 19.6 of [8]). We 
can model them through features and invariants of the classes REQUIREMENTS and 
ARTIFACT. One of the most important is traceability, which will serve as an example. 

1.2.2 We may define traceability (although from the literature this does not seem to be the usual 
approach) as the combination of two properties: up-traceability /up_traceable/ and down-
traceability /down_traceable/.   

I1.2.2.2 (Informative text) The /…/ convention for relating English terms to elements of 
the model is applicable to any construct, not just classes. Here up_traceable and 
down_traceable will be class features.  

1.2.3 Traceability in either direction denotes a correspondence between artifacts and 
requirements. The correspondence is in the form of dependencies from individual artifacts to 
individual requirements (note the direction). The exact form of the dependency shall not be 
specified here; it suffices to characterize it abstractly through the notion that an artifact “follows 
from” /follows/ a requirement. The artifact and the requirement from which it follows shall 
belong to the same project /same_project/.  

class+ ARTIFACT feature+                 -- E1.2.3 
 follows: detachable REQUIREMENT 
invariant+ 
 same_project: follows /= Void implies follows.project = project 
end 
 

I1.2.3-A (Example) Assume a requirement states that “an alarm shall be produced 
whenever the temperature rises to the specified threshold”. If the implementation uses 
event-driven techniques, it may contain an instruction that subscribes an alarm routine to 
a temperature change event type. That instruction “follows from” the requirement.  

I1.2.3-B (Informative text) The “detachable” mention signals a property that may not 
always exist. If it does not, the value is Void. In the absence of a detachable 
qualification, the property is always defined. 

1.2.4 Up-traceability is the property that every element of every artifact of a project follows from 
some element of the requirements: 

class+ ARTIFACT feature+                 -- E1.2.4 
 up_traceable: BOOLEAN 
invariant+ 
 up_traceability: up_traceable implies follows /= Void 
end 
 



I1.2.4 (Informative text) In requirements elements such as the present one describing a 
desired property P of certain artifacts, here down-traceability, it is possible to specify P 
directly as an invariant property; here the invariant would have stated follows /= Void. 
Then only systems that satisfy P are expressible. This specification style is often too 
restrictive, since one may need to deal with systems that may or may not satisfy P, and 
then ensure that they do. A more flexible strategy, illustrated here, is to use a boolean 
query has_p (here up_traceable) representing whether the system satisfies P, and use, as 
invariant clause , has_p implies P. This specification style is widely applicable.  

 

1.2.5 Up-traceability can be defined not just for a single artifact but for an entire project:  
 

class+ PROJECT feature+                            -- E1.2.5 
 up_traceable: BOOLEAN 
invariant+                  
 up_traceability: up_traceable = (across artifacts as art all art.item.up_traceable end) 
end 

 

I1.2.5 (Informative text) The across syntax provides a notation for predicate expressions:   
∃ x: E | p (x) can be expressed as across E as x some p (x.item) end, and a universal 
quantification (∀) is similarly expressed through all.  

 

1.2.6 Down-traceability is the property that for every requirement at least one artifact follows 
from it. It can be defined for an individual requirement (relative to a project), but here we define 
it only for a project as a whole: 
 

class+ PROJECT feature+                -- E1.2.6 
 down_traceable: BOOLEAN 
invariant+                  
 down_traceability: down_traceable = 

  (across requirements.items as req all 
  across artifacts as art some art.item.follows (req.item) end 

end) 
end 
 

1.2.7 Both up- and down-traceability are fundamental properties for a system of any kind. It is 
equally hard to justify: 

(1.2.7.A)  Either the presence of an artifact that does not follow, however remotely, from a 
business need as expressed by some element of the requirements. 

(1.2.7.B)  Or a requirement element that does not, somehow, somewhere, have a consequence in 
some artifact of the project. 



 

 

2. Perspective 
2.1 The particularly perceptive reader may by now have realized that something a little strange is 
going on. Not so strange perhaps once you accept that the purpose of this article is to present a 
new method for requirements specification, “multirequirements”, and that the previous section 
(section 1) is simply a self-referential example of applying the method, along with introducing a 
number of observations about requirements in general. The present section (the rest of section 2) 
explains the context and summarizes the method. 

2.2 The choice of example in section 1 results from the combination of three observations: 

(2.2.1)  The purpose of requirements specification is to describe systems. 
(2.2.2)  It is often useful start the presentation of a new idea by example. 
(2.2.3)  A method is a system, even if a purely conceptual one, and hence provides an example. 

2.3 Of course instead of choosing “requirements” as the example domain of discourse the 
discussion could have avoided the circularity — avoided going to a “meta” level — by choosing 
some application area; it could in particular have used a standard example from the specification 
literature such as boilers or libraries. It was felt preferable, however, to use the very domain of 
requirements, enabling us to talk about requirements right from the beginning. Boilers and 
libraries are interesting to factory and library people, but requirements people presumably prefer 
to think about requirements.  

2.4 Although I have thought about the multirequirements method for a long time, practiced it at 
least in part, and even presented it in a couple of talks, it is neither completely documented nor 
even completely defined. The present article should therefore be considered as a draft of work in 
progress; in particular, some details of the method’s requirements specification style, illustrated 
in section 1, may still change. 

2.5 The present discussion, and the method so far, focus on functional requirements. Non-
functional requirements may be a target too, but I have not examined this question. 

2.6 More generally, the multirequirements method is at the present stage a proposal and has not 
undergone large-scale use, even less any form of empirical evaluation. 

2.7 The multirequirements method relies on four theses: 

(1.2.7.C)  The requirements process should use interwoven layers of discourse (hence the name  
of the method). 

(1.2.7.D)  The requirements process should rely on object technology. 
(1.2.7.E)  The requirements process should enforce traceability as a key objective. 
(1.2.7.F)  The requirements process demands adequate tool support. 

2.8 Section 3 presents a summary of the multirequirements method. Sections 4 to 7 present the 
four theses. Section 8 concludes. 

 



 

3. A summary of the multirequirements method 
Here is an overview of the multirequirements method. The method is defined by the following 
principles for developing requirements: 

(3.1)  Develop individual requirements incrementally on several layers, including the 
following three:  formal, graphical, natural-language. 

(3.2)  Use these layers both in a complementary way (when one of them is more appropriate 
to the description of a system property) and redundantly (for example to combine the 
precision of formal descriptions with the convincing power of graphical descriptions). 

(3.3)  Model systems through object-oriented techniques: classes as the basic unit of 
decomposition, inheritance to capture abstraction variants, contracts to capture semantics. 

(3.4)  Use an object-oriented language (in the present discussion, Eiffel) to write the formal 
layer according to the principles of 3.3. 

(3.5)  Use the contract sublanguage of the programming language as the notation for the 
formal layer. 

(3.6)  As the goal is to describe models, not implementations, ignore the imperative parts of 
the programming language (such as assignment). 

(3.7)  Use an appropriate graphical notation (in the present discussion, BON [16]) for the 
graphical layer. 

(3.8)  Weave the layers to produce requirements descriptions, including a comprehensive 
requirements document if requested, but also any other appropriate views. 

(3.9)  Enforce and assess traceability between the layers and all products of the requirements 
process, and between requirements and other product artifacts, both down and up. 

(3.10)  Rely on appropriate tools to support the process, including incremental development. 

4. Thesis A: multi-layer, interwoven requirements 
4.1 Requirements techniques are of three main kinds distinguished by their mode of expression 
(reflecting fundamental conceptual choices): natural-language, such as English; graphical, such 
as UML or BON; formal (mathematics-based) such as Z.  

4.2 These approaches are usually presented as alternatives, and much fighting continues 
between their proponents.  

4.3 The fighting makes no sense.  The approaches are complementary, because each has its 
unique strength: one cannot compete with mathematics for precision; with natural language for 
combining abstraction and detail; and with graphics for ability to convey a general structural 
idea quickly and convincingly. In each case, the other two approaches do not measure up. 

4.4 The condition for using multiple descriptions is to guarantee that they remain compatible. 
This idea has been applied extensively, under the name of “Single-Product Principle” [7] (or 
“Single-Model” [13]), in the Eiffel context (and in the Java world to JavaDoc), leading to the 
rule that documentation should not be a separate product but a certain view of the software. 
More precisely, many views are possible — contract view, ancestor view, interface view... — 
describing different levels of abstraction. They can be extracted from the software by tools. This 
approach guarantees compatibility since everything is derived from a single base, the contract-



equipped program text, serving as the authoritative reference. For requirements the promise of 
compatibility is more difficult to enforce, but we can rely on a similar idea. 

4.5 In the multirequirements approach, the requirements consist of items of three kinds: formal 
elements (see section 5); graphical diagrams, using BON; and natural-language paragraphs, 
numbered and structured. The example of section 1 has illustrated all three kinds. 

4.6 The elements of these three kinds, or “layers”, are closely connected. This property was also 
illustrated in section 1: the natural-language description refers to formal elements, such as class 
names, with conventions such as the /.../ notation (for example, /PROJECT/) to mark the first 
occurrence of an abstraction that has a formal description. Similarly, the diagrams illustrate 
relations, client and inheritance, which usually have more precise specifications in the formal 
text and explanations in the natural-language text. 

4.7 As these observations indicate, redundancies between the three layers are possible and in 
general beneficial, since expressing the same properties in different ways, each more directly 
evocative to different classes of project stakeholders — formal descriptions for advanced 
programmers and for the quality-assurance team, natural-language ones for non-software-
technical customer representatives, diagrams for managers — increases the likelihood that 
misunderstandings and other potentially damaging requirements mistakes will be caught early 
on, one of the principal goals of a requirements process. 

4.8 Redundancies are only acceptable if the descriptions are compatible. One way to ensure 
compatibility is to perform round trips between the three views. In particular, I described in an 
early article [6] how a detour through formal specification can yield a better natural-language 
specification, translated back from the formal description into English, but not necessarily the 
kind of English one would write without that detour: a more formal, more precise form of 
English. Michael Jackson cites newer examples (from Heimdahl et al.) in an article of the 
present volume [3]. As to the graphical representations, tools such as those of EiffelStudio can 
both produce them from the formal text, and, the other way around, allow users to enter them 
directly in graphical form and generate the formal text from them. For consistency, such tools 
should support full round-tripping. 

4.9 There is no universally prescribed writing order between requirements elements or between 
the three layers (formal, graphical, natural-language). Each project may use its own guidelines. 
It is the task of supporting tools (section 7) to produce various compendiums, similar to the 
“views” of a program mentioned in section 4.4. 

4.10 In particular, most projects need a “requirements document” that collects all the 
requirements in some defined order, for example the order dictated by the IEEE-830 
requirements standard. Section 1 showed what such a document — rather, a typical extract — 
can look like, with the three layers interwoven. The order of such a document, however, is only 
one possible order. 

4.11 The concept of weaving suggests an analogy between multirequirements and Knuth’s 
Literate Programming [5]. The basic idea is indeed the same. When I first read about literate 
programming I was seduced by the elegance of the approach, but found it inapplicable to 
modern, object-oriented programming which (as discussed in several publications including [7]) 
is fundamentally bottom-up as implied by the focus on reuse; literate programming seemed 



inextricably tied to the top-down, function-driven programming style of the nineteen-seventies. 
In that traditional view, a program implements a single “main” function; as a consequence the 
“literate” text is the sequential telling, cradle to grave, of a single story. What remains as 
compelling as at the time of Knuth’s original presentation, however, is the idea of weaving 
several layers of discourse, in his case just two, the program and the documentation. Eiffel 
achieves this goal through different means, using the single-product principle discussed in 
section 4.4. With multirequirements we retain the weaving idea of literate programming, applied 
to three or more layers, and without the constraint of a single order or of a single story thread. 

4.12 The three basic layers of description selected for multirequirements are the most 
immediately applicable, but more layers, such as Parnas’s table-based requirements techniques 
[14] or Harel’s statecharts [2], are natural candidates for addition. 

5. Thesis B: object-oriented requirements 
5.1 Object technology is essentially an architectural method [7], building the architecture of a 
system on the basis of a system’s object types, described through the techniques of abstract data 
types, as opposed to modularization based on the system’s functions. The goals are, among 
others, extendibility, reusability and reliability. These goals are important for requirements as 
well as for programs, and one may surmise that the same object-oriented solutions will be 
effective there too. 

5.2 “Object-oriented” means based on a division into classes, connected through client links 
(which rely on interfaces only, applying information hiding) and inheritance links (which 
support classification of abstractions), and described through contract elements, in particular 
preconditions, postconditions and class invariants. 

5.3 Object-oriented requirements are requirements built along the same architectural principles. 
The system is modeled as a set of objects defined by the corresponding classes, with client and 
inheritance links (no others) to specify the structure and contracts to specify the semantics. 

5.4 One of the arguments for adopting an object-oriented policy from requirements on is to 
support the seamlessness of the object-oriented approach [7], eloquently described by Martin 
Glinz in the citation that opens the present article. 

I5.4 (Informative text) “Described”, not advocated, as the paper from which the citation 
was taken also presents for fairness the opposite thesis — requirements are not objects. 
That counter-argument, however, is not pushed forcefully, so we may take a reasonable 
guess as to where the author’s sympathies lie.   

5.5 Seamless development is, in my experience, among the principal benefits of object 
technology. It should be noted, however, that not everyone shares this view; Michael Jackson, 
for example, concludes his contribution to the present volume [3] with the comment that “in 
general, any aspiration to seamless development of a realistic cyber-physical system, in which 
the same structure is carried through all development phases from requirements to software 
architecture and design, must be regarded with deep suspicion”. More generally, his paper 
highlights the risks of using piecemeal specifications, and this criticism would presumably apply 
to the interwoven requirements of the multirequirements method, although I believe that proper 
tools would address the criticism. These issues are clearly fodder for future discussions.  



5.6 Part of thesis B is that the contract sublanguage of a notation such as Eiffel covers the needs 
of the “formal” layer of requirements description (section 4), obviating the need for a special 
mathematical notation such as Z. If this sub-thesis is correct, the strategy provides considerable 
benefits: we avoid the need for mixing different mechanical notations, a programming language 
and a formal specification language.  The example of section 1 provides, I hope, some 
arguments in support; note in particular the contribution of high-level constructs such as across 
expressions to provide first-order predicate calculus expressions at reasonable notational cost. 
Some sophisticated mathematical properties remain, however, heavy to express; we hope that 
new (and not yet implemented) mechanisms of Eiffel [11], providing notations equivalent to 
those of modern functional languages, plus type inference, will remove that issue. The full 
attainment of this goal remains, however, in the future. 

5.7 The peculiarity of object-oriented requirements is that many teams, perhaps a majority, 
claim to be practicing it, but in my observations very few actually do at least in the sense 
described here. In particular, use cases [4], whatever their benefits, are not a form of object-
oriented requirements: a use case is specific, whereas a class is general; it is concrete, where a 
class is abstract; and it is function-oriented, the reverse of object-oriented (section 4.11). The 
task of the requirements engineer is to go beyond the specific, the concrete and the functions to 
elicit the general, the abstract and the classes. Use cases can be useful [7, 10] for requirements 
elicitation (as a step in this abstraction process) and particularly as tests, but they do not 
constitute object-oriented requirements in the sense of the present discussion. 

I5.7 (Informative text) As the reader will have noted, the point of section 5.6 is not to 
offer a discussion of use cases, even less a criticism, neither of which is not in the scope 
of the present article, but to remove any ambiguity as to what “object-oriented 
requirements analysis” means in the context of the multirequirements method. 

6. Thesis C: traceability 
6.1 Requirements are only a tool towards building the program; they are not themselves the 
program. That is the reason why some agile and particularly “lean” approaches view them with 
suspicion, treating anything that is not deliverable as “waste”. Such a reaction is exaggerated, 
but it is true that requirements not closely connected to the actual deliverables are worth little 
more than the keystrokes through which they were entered. Hence the central role, among 
quality criteria for requirements, of traceability as defined in section 1.2, including both up-
traceability and down-traceability. 

6.2 Traceability means in particular that tools should be able to establish and monitor 
dependencies between the requirements and other project artifacts such as the code. 

6.3 A step (still tentative) in this direction is the EIS tool [9] of EiffelStudio, through which 
users can graphically record links between elements of the software text, typically classes or 
routines, and elements of the requirements, typically a paragraph in a Microsoft Word or PDF 
file. As a consequence, it is possible to trace the effect of a change on either side, to find out 
what elements on the other side may need updating. 

6.4 Traceability is one of the reasons for which every element of the requirements (as well as 
every other artifact of a project) should be clearly and uniquely identified. The style illustrated 
in the present paper and particularly in section 1 relies on systematic conventions supporting this 
goal: every paragraph numbered; clear distinction between elements of the specification,  



informational comments and examples (standards documents systematically apply this 
convention, and requirements documents should follow it too);  identification of formal 
elements through codes, such as E1.1.1, to associate each of them, in the EIS spirit, with the 
relevant natural-language paragraph; similar rule for graphical elements, with codes such as 
G1.1.1; frequent cross-references, supporting traceability analysis; for these cross references, 
use of precise values, such as “section 1.1”, rather than contextual or order-dependent references 
such as “as we have seen” or “in the previous section” (that section might no longer be 
“previous” in the ordering produced by a different tool!). 

6.5 These conventions are partial and subject to refinement, but highlight the special characteristics 
that must govern natural language when used for requirements, especially multirequirements.  

7. Thesis D: tools 
7.1 EIS is but one example of a tool supporting a multifaceted requirements method. The 
multirequirements method can only scale up if aided by a variety of tools for: 

(7.1.1)   Writing requirements in all layers (formal, natural-language, graphical). 
(7.1.2)   Recording dependencies, intra- and inter-layers. 
(7.1.3)   Interweaving the layers to produce a “requirements document” and other composites. 

7.2 Rather than devising new stand-alone tools, it is preferable to integrate new functionalities in 
a comprehensive IDE, not only to leverage on existing mechanisms but more importantly to 
enforce traceability, beyond just requirements, through all kinds of software artifacts including 
requirements, designs and code, and all phases of the software lifecycle. 

8. Conclusion 
The multirequirements method recognizes the complexity of the requirements process and the 
need to rely on a compendium of complementary techniques. It renounces the traditional linear 
view of a single requirements document and the restriction to a single requirements notation 
(natural-language, graphical or formal). It takes advantage of object technology and particularly 
of Design by Contract techniques to express formal descriptions, using the notation of a modern 
programming language rather than a specialized mathematical language. It weaves together a 
variety of viewpoints and formalisms, textual and graphical, formal and informal, to produce 
requirements that can help projects and their diverse stakeholders. It relies on tools, integrated 
into an IDE, to support the requirements process. While no large-scale evidence of its benefits 
exists, I hope that the present discussion will have convinced the reader to try it out. 
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