
1Il!11: m:mm:lli 11I,111 Illili:llili!!ill,1ll ill ill!!ii 111,111,111 mm; 206..

THE HUMAN FACTOR HAS KNOCKED THREE TIMES
Three books on the ergonomics of computing systems

B. Meyer

SOFTWARE PSYCHOLOGY: HUMAN FACTORS
IN COMPUTER AND INFORMATION SYSTEMS, by
B. Shneiderman. Winthrop, Cambridge (Mass.), U.S.A.,
1980, ISBN 0-87626-816-5.

DIRECTIONS IN HUMAN FACTORS FOR INTER-
ACTIVE SYSTEMS, by H. Ledgard, A. Singer and
J. Whiteside. Springer-Verlag, Berlin, Heidelberg and
New York, 1981, ISBN 3-540-10574-3 and 0-387-10574-3.

THE PSYCHOLOGY OF HUMAN-COMPUTER
INTERACTION, by S.P. Card, T.P. Moran and
A. Newell. Lawrence Erlbaum Associates, Hillsdale (NJ),
U.S.A., 1983, ISBN 0-89859-243-7.

What is the best way of building user-friendly computing
systems? This is undoubtedly a naive question but its
importance will be recognized by any user of ~resent~day
systems. Specialists in this field of research give vanous
names to it: the ergonomics of computing systems, the
study of human factors, software psy~hology, hu:r:an
engineering, user psychology, user SCience, cognItive
engineering, etc.

The lack of a single agreed term is a clear sign of how
young the discipline is, and of the lack of concrete results
produced in it to date. But, unquestionably, its current
development meets a need which is increasingly widely
felt.

The three books reviewed here approach this subject
from rather different points of view. The earliest (1980) ~s
Shneiderman's, which gives the broadest coverage and IS
concerned with all psychological problems linked with
software, i.e. not merely with the use of programs (which is
what concerns us here) but also with their production.
Ledgard, Singer and Whiteside (1981) deal with the study
of 'human factors'. Like Schneiderman, the authors are
computer scientists concerned with making the systems
they have produced more user-friendly. The most recent
work, by Card, Moran and Newell - which had just ap-
peared as I began this review - has a different slant: it is a
very concise examination of the 'cognitive' aspects of the
use of interactive systems, based on the results of current
research in cognitive psychology. The approach is mu!t!-
disciplinary: although at least one of the au~ors (~ewell) 1S
well known in the computer science field (10 partIcular that
of artificial intelligence), most of the references in their bib-
liography are extracts from reviews such as Cognitive
Psychology, Journal of Experimental Psychology, etc.

1. Shneiderman
As I have already suggested, Shneiderman's. wo.rk is

broader in aim than the other two. The general subject IS the
'psychological approach' to programming problems, and
this covers topics as diverse as how to motivate a team of
programmers, programming style, evaluation of software
quality, data base management systems, use o.f natural
language and design of interactive interfaces. It IS no bad
thing to find considerations of such very different fields

brought together in a single book in this way; on the major-
ity of questions covered, Shneiderman is more precise than
lWeinberg 71], the first work on the psychology of prog-
ramming, which today seems somewhat simplistic. How-
ever, a survey as broad as Shneiderman's can hardly avoid
casting the net a little too wide.

In my view, the topic of the work should have been dealt
with in two books. The book does, in any case, divide
natural! y into two parts (chapters 1-6 and 7-11, respec-
tively). The first considers the psychological aspects of
software production, and the second the psychological
study of the use of computing systems, and the conclusions
to be drawn by designers.

The first section is, in a sense, a summary of some cur-
rent ideas on software engineering, and it covers control
structures as well as 'the science of software' and reliability
models. These are all subjects on which much has already
been written; Shneidennan's original contribution is that he
applies the psychological point of view to these subjects
and makes systematic use of quantitative results, usually
from statistical tests. I am not a great supporter of quantita-
tive methods in this field; it appears to me that the most
significant progress as regards programming methods and
languages has been obtained by a deductive rather than an
inductive approach (though against this view, one might
quote Dijkstra's famous article on the dangers of branch-
ing, which began with the no less famous remark that the
author had noticed for some time that the quality of prog-
rammers varies inversely with the number of GOTOs in
their programs, which is certainly an inductive, th~ugh not
really quantitative, argument). It can however be mterest-
ing, even if one is completely convinced, for example, of
the guarantee of security provided by strongly typed lan-
guages, to read or re-read the results of the Gannon study
[Gannon 77], reproduced by Shneidennan, which support
this point of view and are based on srstematic experi~ents.

The second section, whose subject falls more dIrectly
within the framework of this comparative review, is also
rather too broad. There are two chapters dealing with data
bases, a subject on which Shneidennan has alre~dy pub-
lished several studies. Was it really necessary to mclude a
whole discussion on the various data models? I don't think
so; Shneiderman's view of these questions is valuable but it
belongs in another book. Finally, of the fifty pages devoted
to data bases, only a few are really relevant; these are the
ones which discuss the form which a good query language
should take.

One chapter is devoted to the use of natural language for
communication with computers. Shneiderman has consid-
erable reservations (and rightly so, I feel), and shows that
there is no reason to assume a priori that the same type of
formalism is suitable for communication with machines as
for communication with human beings.

The two chapters devoted to the design of interactive sys-
tems and their external interfaces are, in my view, the most
interesting in the book. Chapter I in particular (Design.ing
Interactive Systems) gives the results of many studies,
some of which are difficult to find otherwise. It is useful to

206 liiilil iil:!i!iii:mIii'!!! lWili!!ii!iiill,llilli!liililliUli,I~lm[[: '"j.

examine and compare the methods proposed by the various
authors for designing good quality, interactive systems; one
is less struck by the disagreements which arise (although
some are considerable), than by the still very empirical
nature of much of the work in this field, and by the lack of
general criteria for problems such as error processing and
ease of learning.

In fact, some of the advice given appears questionable.
Many authors, including Shneidem1an himself, state, like
Hansen [Hansen 71], that the first principle is to have a
good knowledge of the prospective user (know the user).
This precept seems dangerous to me, if followed to the
letter. Many systems - in fact, all successful systems-
end up being used by a far larger group than that for which
they were initially designed; they therefore decrease in
value if they are tailored too specifically to the needs of
their first intended users. Two examples, from two very
different fields, are Fortran and Unix: in each case, dis-
tribution has exceeded the initial target in an unexpected
way. In such situations, the systems impose restrictions of
use which make sense for the first generation of users but
have no meaning forlater ones. One could, of course, reply
that if systems of this kind have 'succeeded' it is precisely
because they suited their initial users perfectly. But it seems
more useful to me to study the common characteristic of all
users of computing systems, rather than to concentrate
exclusively on the specific needs of a particular group,
especially as that group will soon only represent a minority
of all users, if the system is a success.

One part of chapter 10, on points such as the respective
merits of selection by menu or by command, will, in my
view, soon seem as outdated as the section which seriously
ponders which of batch or interactive operation is to be pre-
ferred. Progress in hardware will soon settle this kind of
question. In addition, users themselves will no longer
accept just anything: the children of the video game era wiII
celtainly be less indulgent towards text editors with tortur-
ous syntax than their parents, brought up the hard way with
batch processing and punched cards. Shneiderman's book
gives a fairly good summary of the new perspectives pro-
vided by current methods of man-machine communication;
it deserves to be read in conjunction with a more recent
article by the same author [Shneiderman 83], devoted to
what he calls direct manipulation handling. In this article,
Shneiderman examines a number of interactive systems
with satisfied, or even downright enthusiastic, users. The
purpose of these systems are varied: computer assisted in-
struction, CAD, 'full page' text editing, video games. The
common characteristic which the author has discovered in
these different implementations is that they operate by
direct manipulation: the user is always provided with an
explicit (and often graphic) representation of the current
state of the system; each of his actions leads to immediate
modification of this representation. The user can see what
he has, and what he is doing. It is the feeling of security and
power provided by this operating mode which explains its
success; one may assume that the interactive systems of the
future will increasingly follow this pattern.

In the same way that underground trains always have a
last carriage (which one comedian suggested removing
since it is always the most crowded), books always have a
last chapter. In the case of Shneidennan's book, its last
chapter is a chapter too many: in fact, I cannot feel that his
final comments on 'Computer power by and for the people'

have much of a contribution to make. Virtuous sentiments
abound, but rather too much in the 'mother's apple pie'
tradition. The final straw for me was the appearance of a
series of quotations from R. Pirsig's Zen and the art of
motorcycle maintenance, which was very fashionable for a
time with a fringe group of young American intellectuals,
but is very difficult for a European reader to take seriously.
I must confess that I read no further, but then there were
only a few pages left.

As we have seen, the book has some irritating features.
But, as the very length of this review may suggest, for all
my reservations, I consider it to be significant and useful.
Let us hope that the author will some day provide us with a
more succinct and penetrating work on a better defined sub-
ject.

2. Ledgard, Singer and Whiteside
'Directions in Human Factors for Interactive Systems' is

an attractive title, but unfortunately the book is riddled with
faults. In the first place, it is made up of a series of articles
which leaves it short on structure. Above all, however, it is
often superficial and technically outdated.

Its superficial character is particularly apparent in the
chapter on 'Formal specification and design'. This chapter
begins with a plea for the use of formal methods, which is
all to the good, but that's as far as it goes: The chapter
comes to an end two pages later. What splendid formal
methods are we talking about, how are they applied and
who is already using them? Not a word. There isn't even an
adequate bibliography; only two references (one to VDL
and the other to CAM) are really relevant and there is no-
thing on VDM, for example, or HDM-Special, FDM, etc.

A large part of the book (almost a third) is devoted to
designing and analysing the qualities of an 'annotated Pas-
cal assistant' , a kind of specialized text editor. This is a tool
of the 'line by line' type, which hardly seems a field of en-
quiry appropriate to advanced research on 'human factors'.
The authors' main contention is that interaction with com-
puting systems must use natural language as far as possible.
Shneiderman, as we have seen, was more reserved on this
point. In the case of the 'Pascal assistant' , the result of the
design proposed is a system which appears cumbersome
and verbose. No-one, in my view, would prefer a tool of
this kind to a good 'full page' text editor or to the word
processing systems available today on microcomputers,
such as Microsoft WordS tar (this column makes no plugs).
Nor is the' Assistant' particularly suitable for Pascal; it is
not a 'structures editor' like Mentor, Gandalf or CPS, tools
which the authors fail to mention.

In order to back up their theory, the authors give the
results of tests during which different subjects used either a
conventional text editor with unusual conventions for its
command syntax, or another editor providing the same
functions but with a syntax more like English (e.g.
CHANGE ALL 'BOY' TO 'GARCON', etc.). The tests
show that the latter scores better from every point of view,
but I cannot help feeling that these results are of only
limited value: the subjects started with no familiarity with
either editor, and it is obv ious that novices wiII find a syntax
similar to natural language easier to master. The compari-
son would not necessarily give (he same results after six
months' experience. But, above all, I do not think that the
difference between:

Ill!lll m:l!i !!!:W 111;I!lll!;ll: III!i!! !IIJli III Ill!!!! IIIJI!;1Ii ;!!111:
.. 207

DELETE 8 (formulation required by the 'conventional'
editor)
and

DELETE 8 lines (formulation required by the 'English'
editor)
is earth shattering. It would have been more interesting to
compare a line based editor with a full page editor, to find
out whether selection from a menu is better than the use of
explicit commands, to study the various pointing methods
(cursor, mouse, etc.) and to measure the impact of an envi-
ronment with several windows in overlay (an idea defended
with enthusiasm by many present-day designers of prog-
ramming environments, but whose real merits have not, as
far as I know, been systematically evaluated; perhaps a
reader will correct me).

The last two chapters cover, respectively, 'ten sugges-
tions' for experiments relating to human factors, and advice
on setting up experiments of this type.

Ledgard et al. give this book as a monograph in a series
devoted, in principle, to the rapid publication of results in
non-definitive form. Even presented in this way, however,
I do not feel that it has much to contribute.

3. Card, Moran and Newell
'The Psychology of Human-Computer Interaction' is

very different from the other two books. Card, Moran and
Newell put forward a sort of treatise on the application of
psychological research to man-machine interaction. The
work (466 pages) is peppered with figures, graphs and
references but is still a pleasure to read. I must admit that I
found this book fascinating, overwhelming even, although
I am not yet sure what to do with the wealth of material it
contains.

Card et al. are, it could be said, 'modellers of cognitive
activity'. Their aim is to construct adequate descriptions of
what is going on in the human brain when it is engaging in
certain activities, particularly, of course, man-machine
communication. Models constructed in this way, and duly
validated by experiments should, in turn, guide the desig-
ners of new systems.

The basic model is reproduced here (it is in figure 2. 1 of
the work). Tremble humanists! Come back, Descartes!
Those of us who have always been bothered by the C in the
acronym of the Association which publishes the French
version of this journal (Afcet) can draw comfort here: for it
is indeed cybernetics, dear to our grandparents, that we are
talking about, even though the term never appears in the
book. So, when facing a computer, each of us has a 'per-
ception processor' with its aural and visual memories; a
'movement processor'; and a 'knowledge processor' which
shares a primary ('short term') memory and a secondary
('long term') memory with the movement processor. The
three can of course function in pipeline; their physical
characteristics, given in the figure, show that we come
nowhere near the standard of a Vax or an Apple (T is the
cycle time of a processor, 8 the access time to an element in
the memory, f..l. the capacity and K the coding type).

Simple as it is, this model provides the answers to a
number of problems which we shall ask the reader to solve
(answers are given after the references). In a video game, a
ball collides with another ball; how much time is available
after the collision for calculating the initial displacement of
the second ball if it is regarded as being caused by the

Atf.·s.,
JlL'. ~ .• ,

-Lr.-S"UI'l!lC

I'WM· J 12~-UI'hunkl
I'w.··1!S-tIUlIIII\1
/\wlIl iI 7 !5 .••2261 IU

An 11 c~~I1111• 13 In-us luc
.••••.13 chunl:'l '" Jj5-34jUt

.w" ~ Acollsllc ~, VII\I,l

impact? At what speed must one read? How much time will"
be gained per operation by making the numeric keys more
similar to the 'change function' keys of a calculator? And
other questions besides.

Armed with this model, which is of course discussed and
justified in detail, the authors study what happens during a
session with an interactive system. Their analysis is pitched
at four different levels of detail (task to be accomplished,
basic function, command argument, keystroke); this divi-
sion into several levels enables a more refined study to be
camed out than in the article published by the same authors
a few years ago [Card 80] . One of the important contribu-
tions of the work is a formalism of the algorithmic type
(which, unfortunately, does not conform syntactically to
the conventions of the most common programming lan-
guages), to describe the strategies applied consciously or
unconsciously by the users of an interactive program, such
as a text editor, for example. This description itself has sev-
erallevels: Goals, Operators, Methods and Selection Rules
(GOMS): If we take a low level example (selection rules),
the following rule describes the strategy observed in the
case of a number of users of a fulI page text editor using a
mouse to designate an object to which a certain operation is
to be applied (elimination, modification, etc.):

Selection rules for GOAL; POINT-TO-TARGET
CHAR-POINT-RULE =

ifVisualSearchTarget isa # CHARACTER
then CHOOSE (CHAR-POINT-METHOD)

WORD-POINT-RULE =
if VisualSearchTarget isa # WORD
then CHOOSE (WORD-POINT-METHOD)

208 .. _ _ 1.l1,!I):.!~I:JI!~lt:IJ!.l~I:JIJ . !1[:!,Il,!!I!,!!,! ~!!.:I.lIJ!.1!1!lllI. !!I:!!!:)!) ;!I,lIJ: _.

editors, operating systems, software engineering tools,
CAD or CAM programs, etc.

TEXT -SEG-RULE ::::
if VisualSearchTarget isa # TEXT-SEG
then CHOOSE (TEXT-SEG-POINT-METHOD)

The very detailed studies contained in this work refer to
subjects as diverse as the compariso~ of.different t~pes ?f
text editor, the design of integrated CircuIts, the des~gnof a
phototypesetting system, the analysis of various devices for
on-screen selection, etc.

All this is remarkably well documented. A whole area of
research in 'cognitive psychology' is summarized here for
the benefit of computer scientists, who generally know
nothing at all about this field (with the exception of so~e
specialists in artificial intelligence who are co~cemed With
knowledge models on which they can base thelrprograms).
In the view of the authors,this book will therefore be most
useful to computer scientists, although it is also in~en~ed
for psychologists. The authors maintain that the appl1catlOn
of psychological principles is a~ issue !o~the former, ra~h~r
than the latter. Their argument ISthat It 1S scarcely real1stlc
to imagine a situation where psychologi.sts an.dergonom~sts
could exercise real power over the way In which computmg
systems are designed and. im~le~e~ted:. in practi~e,
psychological and ergonomIc cntena lI~evltably conflict
with the other criteria governing the design of a software
product (cost, efficiency, security, etc.) and it is the
computer science engineer who must ~ake the necessary
compromises and who therefore requires access to the
necessary information. Card, Moran and Newell therefore
argue for the inclusion of ergonomics courses in softw~re
engineering teaching programmes, rather than for the tram-
ing of psychologists and ergonomists as computer
specialists.

Although I was very impressed by all this, I have two
serious reservations. First of all, I did not like the way the
emphasis was placed almost exclusively on two factors,
time and quantity of information. The authors sometimes
sound like time and motion engineers, or like a foreman
standing over a worker with a stopwatch in his hand.
Undoubtedly, a good system must be able to do simple
things quickly; but what about the other qualities of interac-
tive software, such as ease of use and learning, user friend-
liness, etc.? Can they all be reduced to measurements of
time and volume? Can we not find some more subtle
criteria? As I write this, I know that I am partly contradict-
ing myself, because previously I criticized Shneiderman
and the research he quotes for its lack of rigour and preci-
sion. But is it not possible to find measurements which,
without lapsing into vagueness and sUbjectivity, describe
something other than the time required for each operation
and the number of elements handled?

My other reservation is associated with the form of the
book, which is a research work. It appears to me that a
designer of interactive systems cannot fail to be interested
in this book and to feel that he still has much to learn; but
much still remains to be done to put all this material into
practice and to ensure that it really influences everyday
design and implementation work. Alongside this book by
Card, Moran and Newell, which I think will become a basic
reference work, we need a more applied manual containing
useful advice for the practitioner.

Nevertheless, I cannot recommend this work too highly
to all those who are involved with interactive systems and
have to construct them, whether the systems are text

References
[Gannon 77] J.D. GANNON:An experimental evaluation of

data type conventions; Communications of the ACM, 20
(8), 584-595, Aug. 1977.

[Hansen 71] W.J. HANSEN:User engineering principlesjor
interactive systems; Proceedings of the Fall Joint Com-
puter Conference, 39, 423-532, 1971.

[Shneidermann 83] B. SHNEIDERMANN:Direct manipula-
tion: a step beyond programming languages; Computer
(IEEE), 16 (8),57-69, Aug. 1983.

[Weinberg 71] G.M. WEINBERG:The Psychology of Com-
puter Programming; 1971, Van Nostrand-Reinhold,
New York.

Answers to questions in section 3
100 milliseconds
652 words/minute
90 milliseconds

LE MICROPROCESSEUR 16 BITS 8086 (The 8086
l6-bit microprocessor), by A.B. Fontaine. Masson, Paris,
France, 1983,200 pp., ISBN 2-225-79-960-1.

Don't attach too much importance to the title of this
book: after reading it you will not have specialist (hardw~re
or software) knowledge of the 8086. As A.B. Fontame
states in his introduction, the book makes reference to the
characteristics of 16-bit microprocessors, and particularly
to those of the Intel 8086, to introduce specialists in
microcomputing to new computing concepts (all of which
16- and 32-bit microcomputers have made easier to imple-
ment).

The first two lessons (the book is organized in six rela-
tively independent lessons) are concerned with the special
characteristics of the 8086:

(a) separation, at hardware level, between logical and
physical addresses;

(b) high-performance indexed addressing;
(c) the possibility of bus blocking during the execution of

an instruction in multiprocessor systems;
(d) a very powerful instruction set which, however, is in-

sufficiently standardized at register level.
These then link up with the new concepts introduced in

the following lessons:
(a) multiprogramming and virtual memory (relocatable

programs);
(b) data structures of high level languages like Pascal

(easier implementation);
(c) multi-task operating systems (flag management);
(d) use of algorithmic languages (easier translation).

