
What Do Beginning CS Majors Know?

Michela Pedroni
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

michela.pedroni@inf.ethz.ch

Bertrand Meyer
Chair of Software Engineering

ETH Zurich
8092 Zurich, Switzerland

bertrand.meyer@inf.ethz.ch

Manuel Oriol
Department of Computer Science

University of York
YO10 5DD, York, U.K.

manuel@cs.york.ac.uk

ABSTRACT

The standard “Introduction to Programming” or “CS1” course
traditionally assumes that it will be, for most students, the first
serious exposure to programming. For the past six years, we have

queried our students, in the first weeks of class, about what they
know. Results are compelling: virtually all beginning CS students
have used computers for over two years, and many for ten years
or more; on average, they know at least one programming
language in depth; many have written significant systems. These
and other measures of prior knowledge have been stable over the
query period. This article analyzes both the results obtained and
their pedagogical implications for courses and textbooks.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education.

General Terms

Human Factors.

Keywords

programming experience, student diversity.

1. INTRODUCTION
To “know your audience” is one of the fundamental rules of mass
communication [13]. This particularly applies to an educational
setting: understanding the backgrounds of students is essential for
providing quality educational programs tailored to their interests

and needs. Instructors of advanced courses for computer science
majors are generally able to take a certain basic knowledge of
computing and programming as granted. This is rarely the case for
introductory programming courses where students start with a
variety of backgrounds; “students are diverse in terms of their
prior experiences, their pre-existing skills, their expectations and
their motivations” [6]. While confirming this diversity, however,
the present study suggests that teachers can actually rely on
certain assumptions regarding computer literacy and programming

experience.

For the past six years, we have carefully tracked to what extent
our first-year undergraduate CS students are familiar with
computers and how proficient they are at programming and
programming languages. The questionnaire changed only slightly
over time to include items that better capture students’ answers.
The study reports on 753 questionnaires filled in by students in
the first weeks of the course. As expected, most students used

computers for more than two years when they enter the course. A
remarkable result is the average proficiency that students show at
programming; what we think of as being an introductory
programming course has actually fewer than 20% programming
novices; and over half of the students know at least one
programming language well before starting their studies. Tracking
the evolution of answers shows an increase in popularity for web-
related languages (Java, JavaScript and PHP) at the expense of

more traditional languages such as Pascal and Basic.

Section 2 details the setup of the questionnaire and discusses
specific aspects that may affect generalization of the results.
Sections 3, 4, and 5 analyze these results, respectively on
computer experience, programming experience, and programming
languages; each such section first presents the raw results, then
proposes some interpretations for the more surprising aspects, and
immediate implications for teachers. Section 6 draws up some

lessons from these results for the teaching of introductory
programming. Section 7 shows related work. Section 8 presents
conclusions and future work.

2. QUESTIONNAIRE SETUP
Since fall 2003, the first semester Computer Science majors at
ETH attending the Introduction to Programming course fill in a
questionnaire in the first weeks of the semester. Partial results of
this questionnaire were already presented in [8].

“Introduction to Programming” is offered in the very first
semester as the only computer science course and a required step
for future computer science graduates on their way to a bachelor’s

and possibly a master’s degree.

Most of the students that start a CS program at ETH come from
one of the Swiss high schools where they graduated with the so-
called “Maturity” degree. The Swiss high school system is
decentralized: while a federal regulatory instrument sets general
standards for the Maturity, each of the 26 cantons implements it
with its own school laws. In the computing area, most high
schools offer introductory courses on computer applications (text

processing, table calculations, web surfing), but very few teach
computer science, or programming using a higher-level language.
Until 2007, computer science was not mentioned in the Swiss
high school regulations; it recently became an optional

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’09, Month 1–2, 2004, City, State, Country.

Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

supplementary subject, with implementation starting fall 2008. It
will be interesting to see how this affects the backgrounds of CS
students.

The number of students that participated in the courses is
approximately 1130 (250 in 2003, 180 in 2004, 170 in 2005, 160
in 2006, 170 in 2007, and 200 in 2008). In the first iteration, the
questionnaire was handed out on paper in class; in the following

years it was available online. The results, tracked over these six
years, form the basis for the rest of the present discussion.

Threats to validity and limitations. While we believe that many
of the conclusions apply to the teaching of computer science
anywhere, a number of specifics may limit generalization.

The Swiss practice of selective high schools, which in effect
screen our incoming students for us, may bias the sample of
surveyed students towards higher competence.

The absence of computer science in Swiss high schools (as

opposed to many other countries) may bias the results in the
reverse direction.

Another threat to validity of the survey is that it does not measure
students’ prior experience objectively, but through their own self-
appraisal. It is unclear if this introduces a bias in any direction.

Finally, the switch from a paper questionnaire filled out in class to
a voluntary online form caused a decrease in participation and
introduces the risk of self-selection, another possible limitation.

To minimize the risk of having an unrepresentative sample of
students as participants to the questionnaire, we ask students to
rate their prior programming expertise again in the official end-of-
semester course evaluation questionnaire required and
administered by the university and handed out on paper during
class. The results of that second test essentially coincide with the
initial results, with the exception of a punctual discrepancy (23%
of novices from the university questionnaire vs. 13%) for one

single year, 2007.

An obvious potential limitation of this work is that it is mainly
based on results from one institution. Although we cannot
authoritatively claim generalization to other universities and
countries, we did perform a similar test in a second institution in a
different country. The results from the student group at University
of York are very similar to the results at ETH; in particular, they
exhibit no significant differences concerning the computer literacy

outcomes, prior programming knowledge, and the number of
languages that an average student knows a little, well and very
well. A comparison is available in a separate report [9].

3. COMPUTER LITERACY
Without knowing how to use a computer it is extremely difficult

even to consider learning how to program. This is usually the first
concern of a CS1 educator. In our setup, Figure 1 shows that this
concern is no longer justified.

The class of 2003 seems to have been less exposed to computing
than later ones. For 2006-2008, more than half of the students had
used a computer for over ten years; with a median age of around
20, the computer has been part of their life for at least half of it.

In line with these findings, the percentage of students that have a
desktop computer at home has risen from 87% in 2003 to

percentages between 95% and 98% in the following years.

Similarly, the percentages of students who own a laptop increased
from 56% in 2003 to 75%-93% in the next years.

Figure 1: Time during which students have used computers

Interpretation. These findings come as no surprise, as today
younger people typically use computers daily to read e-mails, surf

the web and build up communities. Moreover, people attracted to
computer science programs usually exhibit a strong interest in
new media and technology.

Teaching implications. The survey does not indicate how deeply
students understand the concepts behind computers and computer
architecture. But the immediate lesson for CS1 instructors is that
they do not need to fret about “computer literacy”. Students are
familiar with computers, and instructors can go straight into

programming if this is the goal of the course.

4. PROGRAMMING EXPERIENCE
Table 1 shows the programming experience of students, broken
down into the categories “no programming” (never programmed
before), “no O-O” (programmed, but never with an object-

oriented language), “small project” (worked on object-oriented
projects consisting of less than a hundred classes) and “large
project” (worked on O-O projects with hundreds of classes — a

sizable experience for supposed novices).

Table 1: Programming experience

some experience

some O-O year gender
number of

students

no pro-

gram-
ming

no O-O
small

project
large pr. (>
100 classes)

2003
total
male

female

222
203 (91%)

19 (9%)

22%
19%
53%

39%
39%
42%

34%
37%
5%

5%
5%
0%

2004
total
male

female

127
117 (92%)

10 (8%)

14%
11%
50%

33%
34%
20%

43%
44%
30%

10%
11%
0%

2005
total
male

female

95
81 (85%)
14 (15%)

18%
12%
50%

25%
26%
22%

42%
46%
21%

15%
16%
7%

2006
total
male

female

97
84 (87%)
13 (13%)

19%
18%
23%

27%
25%
39%

43%
44%
38%

11%
13%
0%

2007
total
male

female

88
84 (95%)

4 (5%)

13%
13%
0%

20%
19%
50%

59%
60%
50%

8%
8%
0%

2008
total
male

female

124
113 (91%)

11 (9%)

18%
16%
46%

22%
22%
18%

43%
45%
18%

17%
17%
18%

The number of female students participating in the questionnaire
varied between 5% and 15%, reflecting the actual ratio of female
first semester CS students in our university. The table indicates

that the figures do not differ markedly between the genders,
except for the higher number of total beginners among females;
this measure may not, however, have any profound significance
given the small size of the sample.

Figure 2 visualizes the results of Table 1 for students of both
genders. It indicates that an increasing subset of the students start
with experience in O-O programming, while the percentage of
those with non-OO language experience has dropped.

Figure 2: Programming experience

There is no immediately identifiable change trend over the years
in the number of novices, which hovers around one-sixth to one-
fifth of each class.

Another item on the questionnaires asked students where they
have learnt to program. On average over the six years, 55% of all

students stated that they learnt programming by themselves; 18%
are novices; only 17% took a programming course at high school
and the remaining 10% learnt it at university, at work or on
another occasion (such as courses at an evening school).

Interpretation. A possible reason for the lower exposure to
computing of the class surveyed in 2003, could be that this was
still just “after the Internet bubble burst”, after which more
students have been attracted to computer science by genuine
interest. Observations that would seem to support such a
hypothesis include: the highest percentage of novice programmers
(22% including both genders) for the year of 2003; the above-

average numbers of CS enrollments in that year (although an
alternative explanation for that particular phenomenon could be a
change that occurred in the Swiss high school system); and our
own informal observation that students in subsequent years
seemed more genuinely interested in CS.

The increase in object-oriented language experience is probably
due to the increasing spread of O-O languages such as Java (see
also Section 5).

Teaching implications. The evidence on prior O-O language use
has a consequence for teachers: while those of professor age may
have first encountered object technology as a leading-edge
development, possibly even still with a slightly sulfurous flavor,
such qualms are irrelevant today. For students who have already
programmed, O-O is given and needs no particular apology or
justification.

Tempering this lesson coming from the questionnaire data is a
more subjective observation from our informal interactions with

students: many do not fully grasp the more sophisticated
properties of object technology, such as polymorphism, dynamic
binding and other architectural techniques. They realize this lack
of solid theoretical understanding and are eager to correct it by
attending the course. It seems more useful to explain these
concepts in depth than to take pains to justify the use of objects.

Another important conclusion arises from studying the other end
of the data: the persistence of the “no prior programming” 15%-

20% minority. It raises significant challenges for teachers,
especially when assessed against the only slightly lower
percentage of those who have programmed fairly large object-
oriented systems. It is hard to think of another academic field,
which, at the start of studies, faces such heterogeneity. The variety

of prior programming expertise is, in our experience, one of the
largest obstacles facing introductory programming teaching today.

5. PROGRAMMING LANGUAGES
As part of the questionnaire, students were asked to rate 15
programming languages (ranging from Java, PHP and C++ to
Fortran, Eiffel and Python; for a full list see Figure 4) whether
they know it not at all, a little, well or very well. The answers to
these questions (Table 2) reveal that an average student knows —

in his or her self-evaluation — two to three of the languages a

little and at least one of the languages well.

Table 2: Average (and median) number of languages known

 2003 2004 2005 2006 2007 2008

a little 1.8 (2) 3.2 (2) 3.2 (3) 2.8 (3) 2.6 (2) 2.4 (2)

well 1.0 (0) 1.1 (0) 1.4 (1) 1.2 (1) 1.3 (1) 1.2 (1)

very well 0.2 (0) 0.6 (0) 0.6 (0) 0.7 (0) 0.6 (0) 0.5 (0)

Considering the number of programming languages students
know well or very well, Figure 3 confirms that almost half of the
current students have sound proficiency in two or more languages
and that at least one third of all students have not really mastered

any of the languages (these numbers include the students that
stated being novice programmers).

Figure 3: Number of languages known well or very well

Questionnaire items on the level of familiarity of the 15

programming languages help answer additional questions: (1)
What are the most known languages among them? (2) Are there
languages with growing or dropping popularity with this
particular population?

Figure 4 shows the 15 programming languages and the
percentages of students with the four levels of familiarity
(knowing the language in question not at all, a little, well and very

well). Some of the languages, marked *, were only included in the
survey after the first iterations. The analysis takes into
consideration the answers from all students (including
programming novices) and does not distinguish between years.

The web scripting language PHP is the most popular, having both
the highest number of students who state they know it very well
and the fewest students who don't know it at all. Other popular

languages are C/C++, Java/JavaScript, and Basic/VisualBasic.
The top three languages (i.e. the languages where the least
students state that they don't know it at all), discriminated by year,
include most of the languages rated as most known totaled over
the years (see Table 3). C++ is an evergreen - it appears almost
every year in the list of the three top languages. Since 2005, Java,

JavaScript and PHP also strengthened their position and for the
last two years around 50% of all students have worked with PHP,
JavaScript and/or Java before starting to study CS.

Table 3: Programming languages rankings (JS: JavaScript)

ranking 2003 2004 2005 2006 2007 2008

1st Basic Eiffel C++ PHP PHP PHP

2nd Pascal C++ Java JS Java C++

3rd C++ JS PHP Java JS/C++ C

These languages also belong to the list of programming languages
with increasing popularity amongst the students. Figure 5 shows
the most popular programming languages that have a rising
tendency in the percentage of students that state to know it a little,
well, or very well, i.e. the percentage of students that do not know
the programming language at all has decreased since 2003. The
programming languages Basic, Pascal and VisualBasic exhibit a
decreasing trend in students' level of familiarity.

Figure 5: Evolution of popularity of programming languages

Interpretation. The popularity of languages such as JavaScript
and PHP most likely reflects that many students’ prior experience
has been with web applications.

Note that our results are limited to the 15 languages itemized in
the questionnaire: a student may know additional languages.

Teaching implications. These results show that when teaching

introductory programming we need to take into account that the
number of students who need to learn programming almost from
scratch is higher than the 10% to 20% who are total beginners.

In particular it may well be that students whose programming has
mostly been with Web applications in PHP or JavaScript are adept
at writing user interface operations but only have superficial
experience with loops, recursion, data structures and other
standard computer science techniques. While our questionnaire

does not test this conjecture, it is definitely supported by informal
observations. If correct, we should not consider that proficiency at
GUI and Web programming implies proficiency at concepts and

skills of professional software development, meaning that we
need to take extra care with the teaching of fundamental topics.

6. SUMMARY AND EFFECT ON

TEACHING
The most prominent outcome of the questionnaire is a
confirmation that the introductory programming course at our
institution has been and - given the mostly stable situation – will
be faced with a very diverse student body.

At one end, a considerable fraction of students have no prior
programming experience at all (between 13% and 22%) or only
moderate knowledge of some of the cited languages (around
30%). At the present stage the evidence does not suggest a
decrease in either of these phenomena.

At the other end, the course faces a large portion of students with
expertise in multiple programming languages (around 30% know

more than three languages in depth). In fact, many have worked in
a job where programming was a substantial part (24% in 2003,
30% in 2004, 26% in 2005, 35% in 2006, 31% in 2007 and 2008).

An increasing percentage of students who have programming
experience used an object-oriented language; correspondingly,
fewer students take the course without prior O-O exposure.

If we try to picture the “average” student taking Introduction to
Programming at ETH, he knows one programming language in
depth and another two to three languages slightly. His favorite
programming languages are Java, JavaScript, PHP, and C++. He
has learnt his first programming language in self-study.

The rest of this section presents measures proposed to adapt to
such students.

Adapting the course material. As a first and simple option, if we
want students with prior knowledge to understand courses better,
we must connect to that knowledge. This can help adapt the
course to students’ needs; when introducing a concept, for
example, instructors can provide references to its counterpart in
the most known programming languages. They may consider

going further and organizing special exercise groups for students
with in-depth experience with a specific programming language.

Adapting the teaching methodology. Because the majority of

CS1 students already know a programming language, it seems
more natural to offer access to the whole libraries and to a
complex development environment, thus letting the more curious
students explore a richer environment. This is the technique used
in the Inverted Curriculum approach [8]. While more novice
students content themselves with the library’s APIs, their
advanced colleagues may explore the library’s internals, discover

Figure 4: Overall popularity of programming languages

the more advanced aspects, and enhance their competence through
imitation and inspiration.

Making student groups. Students who had learned a
programming language prior to the CS1 course are, overall, more
successful than novices [4, 11]. It is likely that the extra
experience with other programming languages provides
intellectual preparation for mastering the intricacies of software

development, for which novices enjoy no counterpart. To redress
this imbalance, it may be interesting to allow novice students to
take extra lessons on programming either before the semester
starts (such as in a CS0 course [1]) or during the semester.

Emphasizing concepts. One of the most important lessons is an
answer (or at least elements of an answer) to perennial questions
of introductory CS education: concepts vs. skills. On whether to
teach concepts or skills, the easy answer — teach both — does not

suffice, since the question is really about emphasis. Our view is

that we should teach selected skills illustrating important

concepts. The study results support the view that we can indeed be
selective: it is pointless to teach PHP or JavaScript as many
students know these technologies already, and the others will pick
them up when they need them. We should teach skills (otherwise
we train pure theoreticians), but the ones we select should
illustrate important computer science concepts that will continue
to help students when the technology has changed and they need
to learn the new buzz du jour.

7. RELATED WORK
A number of studies have provided information on students’ prior
computing and programming knowledge. They yield some
important insights for the present work, but in most cases the issue
of prior experience is subsidiary to the authors’ main interest
rather than focus of attention as in the present work. Sometimes
the main issue is gender differences, as in [2, 7, 12] for CS majors

and [5] for general students. In other cases the focus is on
prediction of success in introductory programming courses as
in [3, 4, 10, 11, 14]. None of these studies provide data to
investigate the stability of the situation concerning prior
computing and programming knowledge of CS majors.

8. FUTURE WORK AND CONCLUSIONS
We will continue to track students’ prior experience, which we
view as an indispensable tool for tuning courses to the real

students of the 21st century. The questionnaires have proved
extremely useful in this endeavor, but we clearly need to continue
refining them, if only to get some objective data on the
conjectures raised in this article. In particular, we plan to address
the issue of generalization by collecting data at other technical
universities (as already done for the University of York). Also we
would like to extend the questionnaire to query students about
standard computer science knowledge, such as data structures,
algorithms, and design patterns.

That one can be even thinking of asking such questions of 19- or
20-year-olds (and, based on informal probes so far, expecting to

be positively surprised) shows how broadly some part of CS
concepts have reached some of the world at large, including the
younger segments of the population.

As this article has shown, none of this makes CS1 any easier to
teach. Traditionally, the difficulty had been that students do not
have any prior knowledge of the material. In the case of the
introductory programming course for CS majors at our institution,

this assumption does not hold anymore for the average student of
the course. The “average student” already knows one
programming language well and two or three programming
languages a little. He most probably has learnt these languages on
his own and thus might not have good design principles or a clear

idea of how things should be coded. But he knows more than what
we think, and we need to adapt to this new generation of students.
The challenge, for those who teach introductory programming, is
that we can neither ignore this background, as we would
disconnect from a majority of the students; nor rely on it, as we
would disconnect from a significant minority who still does not
possess it. We have to build on it where present, make up for it
where absent, and tackle it throughout our teaching as one of the
many challenges defining this exciting pedagogical endeavor.

9. REFERENCES
[1] C. Dierbach, B. Taylor, H. Zhou and I. Zimand. Experiences

with a CS0 course targeted for CS1 success. SIGCSE Bull.
37(1):317-320, 2005.

[2] A. Fisher, J. Margolis and F. Miller. Undergraduate women
in computer science: experience, motivation and culture.
SIGCSE Bull. 29(1):106-110, 1997.

[3] A. Gomes and A. Mendes. A study on student’s characteris-
tics and programming learning. In Proceedings of World

Conference on Educational Multimedia, Hypermedia and
Telecommunications 2008, 2895–2904, Vienna, AT, 2008.

[4] D. Hagan and S. Markham. Does it help to have some
programming experience before beginning a computing
degree program? SIGCSE Bull. 32(1):25–28, 2000.

[5] M. E. Hoffman and D. R. Vance. Computer literacy: what
students know and from whom they learned it. SIGCSE Bull.
37(1):356-360, 2005.

[6] T. Jenkins and J. Davy. Diversity and motivation in
introductory programming. Innovation in Teaching and
Learning in Information and Computer Sciences, 1(1), 2002.

[7] E. M. Madigan, M. Goodfellow and J. A. Stone. Gender,
perceptions, and reality: technological literacy among first-
year students. SIGCSE Bull. 39(1):410-414, 2007.

[8] M. Pedroni and B. Meyer. The inverted curriculum in
practice. SIGCSE Bull. 38(1):481–485, 2006.

[9] M. Pedroni and Manuel Oriol. A comparison of CS student
backgrounds at two technical universities. Technical Report
613, ETH Zurich, Chair of Software Engineering, 2009.

[10] P. Ventura and B. Ramamurthy. Wanted: CS1 students. No
experience required. SIGCSE Bull. 36(1):240-244, 2004.

[11] J. S. Rosenschein, T. Vilner, and E. Zur. Work in progress:
Programming knowledge - does it affect success in the
course “Introduction to Computer Science Using Java”. In
FIE’04: 34

th
 Frontiers in Education, pp.T2H/3-T2H/4, 2004.

[12] M. G. Sackrowitz and A. P. Parelius. An unlevel playing
field: women in the introductory computer science courses
SIGCSE Bull. 28(1):37—41, 1996.

[13] W. Schramm, How communication works, Mass Media &
Society, Ablex Pub. Corp., 1997.

[14] B. Wilson. A Study of Factors Promoting Success in
Computer Science Including Gender Differences. Computer
Science Education, 12, 141-164, 2002.

