978-1-4799-1934-5/15 $31.00 © 2015 IEEE
DOI 10.1109/ICSE.2015.222

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

Automated Program Repair in an
Integrated Development Environment

Yu Pei, Carlo A. Furia, Martin Nordio, Bertrand Meyer*
Chair of Software Engineering, Department of Computer Science, ETH Zurich, Switzerland
Email: firstname.lastname @inf.ethz.ch

*Also Politecnico di Milano, Italy, and Innopolis University, Kazan, Russia

Abstract—We present the integration of the AutoFix automated
program repair technique into the EiffelStudio Development
Environment. AutoFix presents itself like a recommendation
system capable of automatically finding bugs and suggesting fixes
in the form of source-code patches. Its performance suggests
usage scenarios where it runs in the background or during
work interruptions, displaying fix suggestions as they become
available. This is a contribution towards the vision of semantic
Integrated Development Environments, which offer powerful
automated functionality within interfaces familiar to developers.
A screencast highlighting the main features of AutoFix can be
found at: http://youtu.be/Ff2ULiyL-80.

I. INTRODUCTION

That programs have bugs' may well be a platitude, but it’s
one whose consequences cost billions every year in manual
repairs and maintenance. Any tool that can support even partial
automation has the potential to significantly help reduce the
surging costs of repairing defective software.

Tools based on syntactic techniques—mainly type check-
ing—which can suggest simple corrections to straightforward
compile-time errors have become standard components of
modern Integrated Development Environments (IDEs) in the
form of widely used functionalities such as Eclipse’s Quick
Fix. Only in the last few years, however, have the first fully
automatic semantic techniques become available [1]-[3] that
can fix bugs occurring at runtime such as overflows, null
pointer dereference, and even functional errors—providing
genuine automatic program repair. The bulk of research in
automated program repair (IV) has focused on demonstrating
feasibility of the proposed techniques on realistic programs
and on evaluating performance and limitations. Prototype
tools implementing these techniques largely remain stand-
alone applications usable only by expert researchers. However,
if automated program repair has to make a wider impact,
it should become well integrated as an unobtrusive IDE
component that programmers can routinely use without in-
depth knowledge of the techniques behind it.

This paper describes the results of integrating our automated
repair technique, called AutoFix and introduced in previous
work [4], [5], into the EiffelStudio development environment.
The resulting integrated tool, which we also call AutoFix, is
available within the IDE in very much the same way as any
other functionality such as compilation or refactoring.

Work partially supported by ERC grant CME/291389; by SNF grants
200020-134974 and 200021-134976; and by Hasler-Stiftung grant #2327.
n the paper, we use the terms “error”, “fault”, and “bug” as synonyms.

681

To maximize the degree of automation and simplify user
interaction, AutoFix leverages the simple contracts (pre- and
postconditions and class invariants) that Eiffel programmers
normally provide in addition to imperative code. While writing
contracts is a well-established practice among Eiffel program-
mers [6], AutoFix users can still supply manually written tests
to complement those generated automatically. This gives more
flexibility to experts without making the learning curve steep
for users new to AutoFix, who in fact can benefit from it
without any knowledge of its techniques.

Like most techniques for automated program repair, Au-
toFix mainly uses dynamic analysis (i.e., running tests) to
collect information about program behavior and to validate
repairs. Dynamic analysis tends to be significantly slower than
purely static analysis, and hence AutoFix cannot produce fix
suggestions in real time as the user types. However, AutoFix’s
performance is still compatible with usage scenarios where
automated repair runs in the background on the classes of a
project that are not currently being edited, or on the whole
project while the developer is on a break or off for the day.
As they come back, the IDE will show a selection of fix
suggestions heuristically ranked by relevance and simplicity.

Previous evaluations of AutoFix (III-C), whose results are
now reproducible within EiffelStudio, indicate that program-
mers can use a serviceable program repair technique as part of
their normal development process without disruptive changes
or specific training. This is a step towards achieving the vision
of semantic IDEs [3], which empower programmers with a
variety of powerful tools under a unified interface.

AutoFix’s project page http://se.inf.ethz.ch/research/autofix/
includes an overview of the technique, a user manual/tutorial,
source and pre-compiled binaries, a virtual machine image,
and a demo screencast.

The bulk of the paper focuses on describing AutoFix in
EiffelStudio from a user’s perspective (II). III provides a brief
summary of AutoFix’s fixing techniques and of extensive
experimental evaluations in previous work.

II. USING AUTOFIX
A. A Usage Scenario

We give a succinct overview of AutoFix in EiffelStudio from
the perspective of a nondescript user named Max.

As Max checks in for work today, she finds out that the
latest version of EiffelStudio—the IDE she normally uses for
development—includes a new pane with a tool called AutoFix.

ICSE 2015, Florence, Italy
Demonstrations

AutoFix’s interface (1a) looks familiarly similar to other tools
already available in EiffelStudio that Max routinely used. In
fact, the only required input to the AutoFix pane is simply the
name of one class to be analyzed.

Later during the day, Max decides to give AutoFix a try.
Class MY_LIST she’s been working on during the morning
now includes implementations of the main public features; this
seems a good time to start testing. Since it’s almost noon, Max
launches AutoFix on MY_LIST with default settings and leaves
for lunch.

When she’s back after one hour, Max sees that automatic
testing (ran by AutoFix using contracts as oracles) has found a
bug in MY_LIST’s copy method duplicate (1b). In a different
tab (1c), AutoFix lists four different fix suggestions: two of
them change the code, whereas the other two change the
available contracts.

Using AutoFix’s diff view, Max quickly inspects the bug
and the suggested fixes; she immediately finds out that the
bug is triggered when duplicate is called on an empty list.?
All the four fixes have been validated against the available
tests, but Max singles out two of them as fully satisfactory:
one creates and returns an empty list as a special case; another
one relaxes the precondition of a constructor that turned out to
work correctly even in the case of empty lists. Since relaxing
the precondition would change the API contracts, which were
previously agreed to by all members of the development team,
Max opts for deploying the implementation fix that handles the
empty list case separately. This requires one click.

AutoFix has helped Max find and correct an error in the
codebase in a matter of minutes. Now, she can continue ex-
tending the implementation of MY_LIST with more confidence
in the correctness of existing code. Max plans to start another,
longer AutoFix session when she’ll leave in the evening.

B. AutoFix in Practice: Features and Usage

classes run bugs
+ : s
contracts AutoFix fixes
program
with patch -
apply inspect

Fig. 2: Usage workflow of AutoFix in EiffelStudio.

AutoFix finds bugs and suggests corrections in the form of
source code patches that, if applied, permanently remove in-
correct behavior. AutoFix works on Eiffel programs annotated
with simple contracts such as pre- and postconditions.

Running AutoFix. In the typical usage workflow, users can
launch AutoFix at any time on one or more classes of the
current project (top left box in 2). To this end, the settings tab
(1a) inputs the name of one or more classes to be analyzed—
the only required input to AutoFix. Optionally, users can
change the default values of a few other settings such as for

2The bug in this example reproduces a real fault found in the Base data-
structure library distributed with EiffelStudio.

682

how long testing and fixing should proceed, how many valid
fixes should be displayed, and whether AutoFix should try to
fix implementation (i.e., imperative code), specification (i.e.,
contracts), or both.

Bugs. AutoFix takes advantage of the contracts that Eif-
fel programmers normally write as part of the project they
develop. The first usage of contracts is as automated festing
oracles. AutoFix calls AutoTest, another component of Eiffel-
Studio, in the background to generate unit tests for the classes
under analysis. AutoTest executes methods on random class
instances and classifies each execution as passing or failing:
since contracts are Boolean expressions that can be evaluated
at runtime, a test such that all assertions on its execution
path evaluate to true is passing; otherwise (some assertion
evaluates to false) the test is failing. For example, a routine
terminating in a state where the postcondition evaluates to false
exposes a bug—an inconsistency between specification and
implementation. As AutoTest discovers new faults, AutoFix
displays them in real time in the faults tab (1b).

Fixes. As soon as the time allotted to testing expires (10
minutes by default), AutoFix starts analyzing the generated
tests. A collection of passing and failing tests for the same
method such that all failing tests violate the same contract
characterizes incorrect (failing tests) as well as correct (passing
tests) behavior for the same program element. Using dynamic
analysis, AutoFix gathers information about which locations
are more likely to be responsible for the bug, and explores
modifications to the program that would turn all failing tests
into passing ones, while still passing all previously passing
tests. Two fixing algorithms are at work in AutoFix. One
algorithm [4] suggests changes to the implementation with-
out changing the available contracts; another algorithm [5]
suggests changes to the specification without changing the
implementation (see III). The fix suggestions generated by
the two algorithms are validated against all available tests
for the bug being analyzed. Only those that pass all of them
(including, crucially, those that previously failed) are ranked
and reported to users in the fixes tab (1c; and top right box in
2).

Ranking in AutoFix uses heuristics that estimate the useful-
ness and impact of a fix (see III). All else being equal, fixes
that are closer to the locations suspected of originating a fault
and that are more general are ranked higher. For example, a fix
that adds an instruction just before the location of a fault tends
to be preferred over another fix for the same fault that adds
an instruction at the entry point of a method; and a fix that
relaxes a precondition tends to be preferred over another fix
that strengthens it (thus possibly breaking unforeseen clients).>

Inspecting and applying fixes. Ultimately, users are re-
sponsible for choosing and deploying fix suggestions. To this
end, AutoFix offers a diff view in its fixes tab (1c). Users select
a fix from the list, and its effect is displayed (bottom box in 2)
by showing the relevant portions of the codebase before and

3We plan to extend the current UI to include information used in the ranking
to help users select among multiple fixes.

ICSE 2015, Florence, Italy
Demonstrations

Groups of dasses to AutoFix General
add | Working directory
— Di\demohAutoFix_deme\EIFGENS\project\DatatAutoFix m
Testing
Maximum session length for testing (in minutes) 10
(a) Settings view
Class and feature under test Fault Passing tests Failing tests ~ Status Info
E-MY_LIST.duplicate 1 35 1
MY_LIST.duplicate.3.1.MY_LIST.duplicate 11 Candidate fix available Class under test: MY_LIST: Feature under test: .
(b) Faults view
Fix
Fault Type Nature of cha
E- MY _LIST.du.. Before fix After fix
Auto-1 Fix to imple... Conditional ex ~ duplicate {n: INTEGER): M¥_LIST [€] » duplicate (n: INTEGER): MY LIST (€] n

Auto-18 Fix to imple... Conditional re
Auto-3318 Fix to contr... Weaken and s
Auto-3319 Fix to contr... Strengthen

-- Copy of sub-list beginning at current posit|
—- and having min ('n',
require
not_off unless after: off implies after
valid_count: n >= 0
local
idx: INTEGER
to_be_copied, counter: INTEGER 32

count - index + 1) ite

m

ub-1ist peginning at current posit
wving min ("n',

— count - index + 1) ite
Tequire
not_off unless after: off implies after
valid_count: n >= 0
local
idx: INTEGER
to_be copied, counter: INTEGER 32

[

do
frox]

create Result.make (storage

idx := index
“ n

.count)

do
from
if (storage.count) <= (0) then
create Result.make ((storage.count + 1))
else
create Result.make (storage.count)
end
idx := index
3 < - [»

(c) Fixes view

Fig. 1: From top to bottom: AutoFix’s settings, faults, and fixes views in EiffelStudio.

after applying the fix. If a fix is found satisfactory, users can
apply it to the actual codebase, which changes implementation
or specification as suggested.*

III. How AUTOFIX WORKS

We described the details of how AutoFix works in previous
work [2], [4], [5]. Here, we briefly summarize its algorithms,
architecture, and experimental evaluation.

A. Fixing Algorithms

3 gives an idea of the two main fixing algorithms integrated
in AutoFix. One algorithm (top row) suggests fixes to imple-
mentations. It uses dynamic analysis to identify “snapshots”
(abstract program states) that are likely to be responsible
for a fault; it synthesizes some fixing snippets that change
the suspicious snapshots’ state; and it builds fix suggestions
(candidate fixes) by injecting the snippets into the program at
failing locations. Validation uses all available tests, and ranks
fixes that pass validation according to their suspiciousness
score determined by dynamic analysis. Another algorithm
(bottom row) suggests fixes to specifications. It infers dynamic
invariants in passing runs to summarize abstract program
behavior; and it synthesizes weakening and strengthening
changes to the contracts that do not violate the invariants.
Validation uses all available tests, and ranks fixes that pass
validation by preferring weaker (less restrictive) to stronger
ones.

4Applying specification fixes requires choosing where in the inheritance
hierarchy they should be applied—a choice currently left to users.

683

B. Architecture and Implementation

AutoFix integrates into EiffelStudio using the model-view-
controller pattern. The model consists of classes TEST, FAULT,
and FIX: each fault is associated with a list of passing and
failing tests; each fixing session targets a particular fault and
proposes a collection of candidate fixes as outcome. Output
features in two views: the faults view (1b) and the fixes
view (1c). AutoFix’s controller is responsible for coordinating
testing and fixing engines, and for collecting results and
updating model and views.

FIX

TEST

FAULT

+ signature: STRING
+location: PATH
+is_passing: BOOLEAN
+.

+type: ENUM

+ signature: STRING

0.* | + status: ENUM
L

+nature_of_change: ENUM
* | + code_before: STRING
+code_after: STRING

+...

AutoFix is integrated in the research branch of the EiffelStu-
dio IDE and works on programs written in Eiffel. Its concepts
and techniques are applicable to any IDE for programming
languages supporting annotations (e.g., Java’s JML or .NET’s
CodeContracts).

C. Experimental Evaluation

The following table summarizes the experimental evaluation
we conducted in previous work, which applied AutoFix to a
significant number of bugs from various Eiffel codebases.

fix LOC faults valid proper testing fixing
implem. 72,920 204 42% 25% 17min 3 min
spec. 24,608 44 95% 25% 31min 3 min

AutoFix processed over 200 unique faults discovered by
automatic random testing. It suggested fixes to the imple-
mentation [4] for 42% of these faults (top data row); 25% of
the fix suggestions are proper, that is completely satisfactory

ICSE 2015, Florence, Italy
Demonstrations

suspicious

candidate fixes
by fix actions 1. line 42:
P »| 1. forth >if before then forth
1. line 42: before 2. ddx = 1 2. line 41:
2. line 41: idx > index >if idx >index then idx := 1

tests

dynamic
invariants

1. line 12:m > 0

2. line 18: count > 0

weakening fixes
line 12: >requirem > 0

valid fixes

strengthening fixes
line 18: >require count > 0

Fig. 3: An overview of the AutoFix algorithms that generate implementation fixes (top row) and contract fixes (bottom row).

according to manual inspection; on average, AutoFix takes
just 3 minutes per valid fix (after an average automatic testing
session of 17 minutes). A smaller evaluation of AutoFix’s
specification fixes [5] targeted 44 unique faults (bottom data
row); it suggested fixes to the contracts for 95% of them; while
the majority of them are too restrictive to be deployed as is,
25% of the fix suggestions are proper, and often preferable to
implementation fixes of the same faults; on average, AutoFix
takes just 3 minutes per valid fix (after an average automatic
testing session of 31 minutes).

IV. RELATED WORK & LIMITATIONS OF AUTOFIX

While syntactic error correction techniques have long been
widely available, only in the last few years have the first
effective program repair techniques been developed. Following
GenProg’s pioneering results [1], automated program repair
has quickly become a burgeoning area of research, producing
a variety of approaches and tools, e.g., [3], [7]-[10].

With the exception of SIDE [3], no other automated pro-
gram repair techniques are integrated in an IDE. Part of the
reason may be performance: state-of-the-art repair techniques
are based on computationally expensive heuristic runtime
search (e.g., genetic algorithm), which leads to running times
incompatible with interactive usage. AutoFix’s performance
is lagging compared to SIDE’s purely static analysis, but
it’s such that it is feasible to let it run in the background
or during breaks: as mentioned in III-C, generating fixes
often requires only few minutes. On the other hand, using
dynamic techniques such as AutoFix’s has advantages over
static analysis in terms of no false positives, no loss of
precision, and great flexibility in the kinds of programs that
can be analyzed—anything that can be executed.

Using contracts helps abstract program executions, and
hence ultimately helps AutoFix’s performance; but also limits
the applicability of AutoFix’s techniques. In the context of
integration into an IDE for Eiffel, however, requiring contracts
is not a real limitation, as writing them is an accepted practice
among Eiffel developers [6] and AutoFix works with the
simple, incomplete contracts that are normally available.

Fix quality is an aspect largely neglected [11] in the research
on program repair. AutoFix’s work is an exception, as we
introduced the notion of proper fix [12] to characterize those
that can be deployed fully satisfactorily. AutoFix’s ranking
heuristics help programmers winnow out improper fixes, but
they are not infallible. Better heuristics would be particularly

684

useful for specification fixes, which tend to include more val-
idated but improper fixes (III-C). Developing better classifiers
of high-quality fixes belongs to future work, where we plan
to abstract from human assessment criteria [8].

Other limitations of AutoFix, following from limitations of
components in its toolchain and from the supported fixing
actions, are discussed in [4], [5].

V. CONCLUSIONS

We described the results of integrating the AutoFix au-
tomated repair technique into the EiffelStudio development
environment—a contribution to the vision of semantic IDE [3].
Future work will improve the user experience by providing
better classification of high-quality fixes; by integrating dif-
ferent automatic testing techniques with better performance;
and by combining fixing with static checking.

REFERENCES

[1] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in /CSE. IEEE, 2009, pp.
364-374.

[2] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller, “Automated fixing of programs with contracts,” in ISSTA.
ACM, 2010, pp. 61-72.

[3] F. Logozzo and T. Ball, “Modular and verified automatic program
repair,” in OOPSLA. ACM, 2012, pp. 133-146.

[4] Y. Pei, C. A. Furia, M. Nordio, Y. Wei, B. Meyer, and A. Zeller,
“Automated fixing of programs with contracts,” IEEE TSE, vol. 40, no. 5,
pp. 427-449, 2014.

[5] Y. Pei, C. A. Furia, M. Nordio, and B. Meyer, “Automatic program
repair by fixing contracts,” in FASE, ser. LNCS, vol. 8411. Springer,
2014, pp. 246-260.

[6] H.-C. Estler, C. A. Furia, M. Nordio, M. Piccioni, and B. Meyer,
“Contracts in practice,” in FM, ser. LNCS, vol. 8442. Springer, 2014,
pp. 230-246.

[7] C.Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in ICSE. IEEE, 2012, pp. 3-13.

[8] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in /CSE. IEEE, 2013, pp. 802-
811.

[9] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “SemFix:
program repair via semantic analysis,” in /ICSE. IEEE Press, 2013, pp.
772-781.

[10] A. Arcuri, “Evolutionary repair of faulty software,” Applied Soft Com-
puting, vol. 11, no. 4, pp. 3494-3514, 2011.

[11] M. Monperrus, “A critical review of "automatic patch generation learned
from human-written patches": essay on the problem statement and the
evaluation of automatic software repair,” in /ICSE. ACM, 2014, pp.
234-242.

[12] Y. Pei, Y. Wei, C. A. Furia, M. Nordio, and B. Meyer, “Code-based
automated program fixing,” in ASE. ACM, 2011, pp. 392-395.

ICSE 2015, Florence, Italy
Demonstrations

