
Alias-based Reasoning for Object-Oriented
Programs

Bernd Schoeller
bernd.schoeller@inf.ethz.ch

Chair of Software Engineering
Eidgenössische Technische Hochschule, Zürich, Switzerland

November 18, 2005

Abstract

Aliasing is the key problem that makes reasoning about reference structures hard.
Large predicates have to be constructed that capture all aliasing properties of a given
state. Instead of deducing the aliasing properties from a state that uses heaps and
objects, we declare the alias-relation to be the state itself. We explore if such a state
model provides a new and beneficial approach to the verification of object-oriented
programs. As a demonstration, we introduce a small reference language SOL and
describe an axiomatic semantics for it. Then we prove a non-trivial program using this
semantics.

1 Introduction
Software verification promises to overcome the current software crisis of bug-ridden soft-
ware. Object-orientation is the most widely used paradigm for software development. One
major hurdle [10] on the way towards the verification of object-oriented software is alias-
ing [8]. Aliasing is created by the use of references (also known as pointers) and dynamic
memory management — two concepts that are mandatory for object-oriented development.

Formal reasoning (on software) is a process that develops theories about a (most of the
time) textual representation of a program to predict the effect that this program produces
when run on a physical machine. Software verification uses formal reasoning to relate the
program to a formal specification by telling if the program will satisfy the specification
during execution.

To achieve this goal, formal reasoning requires a theory describing the semantics of the
programming language. This theory should describe effects based on the constructs of the
language. To simplify proving, it is necessary to minimize the size of the theory. This is
specially true for concepts that are not part of the syntax.

Many semantic descriptions of object-oriented programming languages introduce con-
cepts such as heaps, arrays, stacks, objects that are not part of the syntax ([13], [7], [1]).
These concepts are introduced to evaluate the main problem of references: aliasing. Alias-
ing is the phenomenon that two different names (textual artefacts) refer to the same storage
location during execution. By changing the value associated with one name, the value of
the other name changes as well. As a consequence, aliasing complicates reasoning about
the program.

The purpose of the theory presented in this paper is to explore the possibility to directly
talk about the aliasing properties of a given state without using stacks, heaps or objects. We
introduce the state as an equivalence relation on names and chains of names (called paths)
and present axioms that work on this state model. The idea of using such a structure for

1



prog , skip
| prog ; prog
| path := path
| create path
| if pred then prog else prog end
| until pred loop prog end

Figure 1: Syntax of SOL

pointer analysis was pioneered by Jonkers [9]. The we show how to verify programs with
references using the axioms.

2 SOL: a simple object-oriented language
In the following section, we will introduce SOL, a “simple object-oriented language”.
It concentrates on the main problems of pointer computation: pointer swing and object
creation. Though it lacks common constructs (arithmetic, subroutines), it is sufficiently
complex to describe many standard algorithms that work on pointer structures and expose
aliasing.

2.1 Syntax
The syntax of SOL is based on IMP [18], a minimal imperative language used in different
tutorials and libraries. IMP offers loops, conditionals and assignments. As we are dealing
only with objects, the assignment operator has been redefined to handle arbitrary pointer
swings. A new construct for object creation is added to the language.

The language syntax has been changed slightly to resemble a syntax closer to Eiffel
[11], the main object of our research (SOL is not a subset of Eiffel as we allow foreign
assignments like a.x := y). The loop has been changed from a while-do-end-loop
into a until-loop-end-loop. Object creation uses the syntax “create path” (“path :=
new” would be the Java-like equivalent).

The syntax of SOL is described in figure 1. The construct path is defined in section
2.2. The construct pred is a shallow embedding of arbitrary predicates of our logic into the
language.

2.2 Roots, Attributes and Paths
We introduce now the concept of roots, attributes and paths. We motivate paths by ref-
erencing to more “classical” structures like objects and storage locations. This makes it
easier to understand the semantics of the new concepts. The theory itself does neither have
the concept of storage location nor of object.

The idea is to describe objects based on how they can be accessed. Every object that
is accessible in an object structure can be accessed by starting from some root and then
following a number of attributes. The root and the sequence of attributes to access an
object is called a path.

A path is a sequence of identifiers, thus a sequence of words. The identifiers are sepa-
rated by dots. Each identifier describes a storage location holding the reference to an object.
The first identifier in a path describes a global storage location. Such an identifier is called
a root. Each additional identifier describes a relative storage location; a storage location
that is relative to an object. Such an identifier is called an attribute.

An example for a path might be:

2



self.first.right.next

Assuming that we have two disjoint sets of identifiers root and attribute. All paths
start with a root, followed by a finite set of attributes. A path is defined by the following
recursive data-structure:

path , root | path.attribute

Path are not defined in terms of some state model. Paths are purely syntactical con-
structs. The state will later be described in terms of paths.

In the following we will use p, q, p1, p
′, . . . for logical variables of paths. a, b, a′, . . .

will be used for attributes. r, r1, r
′ will be used for roots. Concrete elements of root and

attribute are written in type-font e.g. first or self.

2.3 State model
The state during the execution of an object-oriented program can be described as an equiv-
alence relation on paths:

≡s: path× path → bool

This equivalence relation describes which paths lead to the same object and which lead
to different objects. From the perspective of storage locations, a ≡s b means that both
storage locations referenced by a and b contain the same value.

The state model is based on two observations: The main property of an object is its iden-
tity and only reachable objects matter (non-reachable objects are normally called garbage
and automatically freed by a garbage collector).

The first observation makes it possible to capture the state as an equivalence relation.
The second observation ensures that the full state can be captured by the equivalence rela-
tion: for every reachable object there has to be a path that leads to this object.

In addition to the rules for equivalence relations (transitivity, symmetry, reflexivity), the
state has to fulfill the rule of “path extension” (as described by Morris [12]):

p1 ≡s p2 ⇒ p1.a ≡s p2.a

This axiom ensures that a single attribute describes a well-defined function from one
equivalence class (meaning object) to another.

There are two derived, state-dependant relations between paths: attribute equivalence
and path influence.

2.4 Attribute Equivalence
Conceptually paths lead to objects. But they also describe attributes: the last attribute
of the path. It is the attribute changed by the assignment to the path. For example,
first.right.item leads to the second item stored in a linked list. But it also de-
scribes the attribute item of the cell first.right and an assignment to this attribute
first.right.item := x will change exactly this attribute.

Attribute equivalence is very similar to path equivalence, except that it describes if two
paths denote the same attribute/root and not the same object. It is defined as follows:

r1 �s r2 , r1 = r2

p1.a �s p2.b , (a = b) ∧ (p1 ≡s p2)
r1 �s p1.a , false

3



As seen by this definition, only the attribute equivalence of two non-roots is state de-
pendent, which will be very helpful during proving. Attribute equivalence is also an equiv-
alence relation and also allows path extension (p1 �s p2 ⇒ p1.a �s p2.a).

2.5 Path Influence and Independence
Path influence is a state-dependent relation between two paths. It describes whether an
assignment to path q may change the target of the path p. This is true if any attribute used
in p is final attribute of q. Writing p � q reads as: after an assignment to p, the object that q
is referencing may not be the same.

The relation can be described by the following primitive recursive definition:

p �s r , p �s r

p �s q.a , (p �s q.a) ∨ (p �s q)

Path influence and specially its negation called path independence (p 6 �sq) is an impor-
tant property to describe aliasing conditions.

3 Axiomatic Semantics
The axiomatic semantics for the language is based on the classical description by Hoare
[6]. We only highlight the differences.

3.1 Assignment Axioms
The effect of the assignment is that certain paths lead to new objects. This effect can be
described as a computation of a new state from a given state. Such a description may lead
to the introduction of very complex and impractical formulas (see [7]).

Fortunately in the context of an axiomatic semantics, there is no need to fully describe
the effect of a swing on the state. Instead, the effect can be described on the basis of the
given predicates.

Having an equivalence relation as a state, there are two possible basic predicates: equiv-
alence (p1 ≡s p2) and its negation (p1 6≡s p2). If we want to prove the Hoare-Triplet
{P} p := q {Q}, then the Q |= p1 ≡s p2 can either hold

1. as it held before the assignment (P |= p1 ≡s p2) and was not affected by the assign-
ment or

2. as it was created by the assignment.

Using a pessimistic approach, we know that the equivalence is not destroyed if both
paths (p1 and p2) were not affected by the assignment. For the two primitive predicates, we
get the following axioms:

{q 6 �p1 ∧ q 6 �p2 ∧ p1 ≡ p2} q := x {p1 ≡ p2}

{q 6 �p1 ∧ q 6 �p2 ∧ p1 6≡ p2} q := x {p1 6≡ p2}

Also, the assignment creates an equivalence. We give two axioms for this case: one for
the assignment to a root and the other for the assignment to foreign attribute:

{p ≡ p ∧ r 6 �p} r := p {p ≡ r}

{q.a 6 �q1 ∧ q.a 6 �p1 ∧ q ≡ q1 ∧ p ≡ p1} q.a := p {q1.a ≡ p1}

4



3.2 Object Creation
Again we have two axioms for equivalences that are not affected by the creation:

{q 6 �p1 ∧ q 6 �p2 ∧ p1 ≡ p2} create q {p1 ≡ p2}

{q 6 �p1 ∧ q 6 �p2 ∧ p1 6≡ p2} create q {p1 6≡ p2}

Reasoning on the basis of paths makes it easy to describe the effect of object creation:
the creation of an object makes a path different from all paths that do not lead over the
attribute that the created object was attached to.

{true} create q {p � q ⇔ p ≡ q}

3.3 Soundness
The soundness of the approach has been proven manually against a classical operational se-
mantics for SOL using stacks and heaps. Manual proves have been done for the soundness
of the assignment and the object creation axiom. As a next step, we will implement both
semantics in the formal prove environment Isabelle [15] and create an automated proof.

3.4 Method Invocation
In the context of aliasing, a modification clause [14] is needed. We assume that we already
have this modification clause, although we have not described how to derive the modifi-
cation clause from the implementation. The modification clause is a set of paths MODf .
This set describes the paths that may have changed by the method.

We are also talking about two equivalence relations. The equivalence relation of the
called method is ≡f , the equivalence relation of the calling method is ≡c.

The deduction rule is:

∀x′′, a′′ : {P [Current B x′′, arg B a′′]}x′′.f(a′′){Q[Current B x′′, arg B a′′]} `
{P}Bodyf{Q} ∧ x ≡ x′ ∧ a ≡ a′ ∧ ∀p ∈ MODf : p 6 �x′ ∧ p 6 �a′

{P [Current B x′, arg B a′]}x.f(a){Q[Current B x′, arg B a′]}

The substitution rule P [x B y] is a path prefix substitution. Every path starting with x
is replaced by a path starting with y in the predicate P .

By showing that the references used in the pre- and postcondition of the method invo-
cation are not influenced by the method call, we are preventing aliasing problems.

4 Proving List-Reversal
After defining an axiomatic semantics for SOL based on path properties, we explore how
this semantics behaves when proving code. In-place list reversal is an algorithm that works
on a pointer structure to create a reversed version of a linked list by reusing the cells of the
linked list.

In-place list reversal is a simple, but non-trivial algorithm. It works by traversing
through a linked list using three cursors (called first, next and previous, see figure 3). The
implementation in SOL is captured in figure 2. The listing assumes a normal linked list
with first pointing to the first cell. The cells themselves are connected with an attribute
right. Cells lead to values using the item attribute (omitted in figure 3).

Beyond first, there are three other roots necessary for the algorithm. next and
previous are temporary variables needed for the traversal. Void (null in Java) is a

5



next := first
first := Void
until next = Void loop

previous := first
first := next
next := next.right
first.right := previous

end

Figure 2: Implementation of list re-
versal

right attribute

roots

previous
Void

first next

Figure 3: State during the execution

special root pointing to a distinguished object that is different from the cells stored in the
list.

The boolean expression next = Void should actually be written as λS.next ≡S

Void, following the rules of the shallow embedding. We use the more programming-
language like construct to improve readability.

4.1 Abbreviations and Definitions
To keep the proof brief, we will introduce a number of abbreviations and definitions. First,
we use an exponent to describe a repeated attribute (first.right3 instead of first.right.right.right).
Formally, this notation is defined by the following primitive recursive definition:

p.a0 , p

p.an+1 , p.a.an

We want to verify the property that the list pointed to by first will be reversed after
the execution of the above algorithm. This is a relation between a pre- and a post-state. The
values of the pre-state will be access by add an index 0 (like in first0).

Let count be the length of the list. We assume that we have a cycle-free, Void-terminated
linked list. We define a class-invariant INV .

INV , ∀n, m ∈ 0 . . . count : n 6= m ⇒ first.rightn 6≡ first.rightm ∧
first.rightcount ≡ Void

The list will be split into two lists, one still in the right order and one in the reverse
order. Both lists are Void-terminated and do not share cells. Given two lists starting with
p1 and p2 and the lengths c1 and c2, we get the following property:

NC(p1, c1, p2, c2) , ∀n, m ∈ 0 . . . c1 : n 6= m ⇒ p1.right
n 6≡ p1.right

m ∧
p1.right

c1 ≡ Void ∧
∀n, m ∈ 0 . . . c2 : n 6= m ⇒ p2.right

n 6≡ p2.right
m ∧

p2.right
c2 ≡ Void ∧

∀n ∈ 0 . . . c1 − 1,m ∈ 0 . . . c2 − 1 : p1.right
n 6≡ p2.right

m

4.2 Specifications on Paths
We have to specify that the list-reversal algorithm as presented here does indeed produce
a reversed version of the list as it was before. We limit ourselves to sketch this proof in

6



the paper. Other properties to prove are that the class-invariant is reestablished and that the
algorithm has no Void calls.

We access the elements by a function seq:

seq(n) = first.rightn.item

Equally, we define a function seq0 for the pre-state:

seq0(n) = first0.right
n
0 .item0

With these abbreviations, specifying list reversal is straight forward. Before the execu-
tion, both functions lead to the same object:

PRE , ∀i ∈ 0 . . . count− 1 : seq(i) ≡ seq0(i)

After the execution, the list is reversed:

POST , ∀i ∈ 0 . . . count− 1 : seq(i) ≡ seq0(count− i− 1)

4.3 Loop Invariant
As a loop invariant, we first make sure that the list is split up into two sublists, the part of
the list starting with next that is still in the old order and the part of the list starting with
first, that is in the new order.

LI1(i) , NC(next, count− i, first, i)

The two different parts of the list contain different subparts of the original linked list:

LI2(i) , ∀j ∈ 0..count− i− 1 : next.rightj .item ≡ seq0(i + j)

LI3(i) , ∀j ∈ 0..i− 1 : first.rightj .item ≡ seq0(i− j − 1)

The full loop-invariant is

LI , ∃i.LI1(i) ∧ LI2(i) ∧ LI3(i)

4.4 Proof Outline
From the class-invariant and the precondition, we have to establish the loop-invariant.

{INV ∧ PRE}
next := first

{INV ∧ PRE ∧ next ≡ first}
{∀n, m ∈ 0 . . . count− 1 : n 6= m ⇒ next.rightn 6≡ next.rightm∧

next.rightcount ≡ Void∧
∀i ∈ 0..count− 1 : next.righti.item ≡ seq0(i)}

first := Void
{∀n, m ∈ 0 . . . count : n 6= m ⇒ next.rightn 6≡ next.rightm∧

next.rightcount ≡ Void∧
∀i ∈ 0..count− 1 : next.righti.item ≡ seq0(i) ∧ first ≡ V oid}

{NC(next, count, first, 0)∧
∀i ∈ 0 . . . count : next.righti.item ≡ seq0(i)}

{LI1(0) ∧ LI2(0) ∧ LI3(0)}
{LI}

7



Next we have to prove that the loop invariant is retained by the body of the algorithm:

{LI}
previous := first

{LI ∧ previous ≡ first}
{NC(next, count− i, previous, i)∧

∀j ∈ 0..count− i− 1 : next.rightj .item ≡ seq0(i + j)∧
∀j ∈ 0..i− 1 : previous.rightj .item ≡ seq0(i− j − 1)}

first := next
{NC(next, count− i, previous, i)∧

∀j ∈ 0..count− i− 1 : next.rightj .item ≡ seq0(i + j)∧
∀j ∈ 0..i− 1 : previous.rightj .item ≡ seq0(i− j − 1)∧
first ≡ next}

{NC(first, count− i, previous, i)∧
∀j ∈ 0..count− i− 1 : first.rightj .item ≡ seq0(i + j)∧
∀j ∈ 0..i− 1 : previous.rightj .item ≡ seq0(i− j − 1)∧
first.right ≡ next.right}

next := next.right
{NC(first, count− i, previous, i)∧

∀j ∈ 0..count− i− 1 : first.rightj .item ≡ seq0(i + j)∧
∀j ∈ 0..i− 1 : previous.rightj .item ≡ seq0(i− j − 1)}∧
first.right ≡ next}

{NC(next, count− i− 1, previous, i)∧
∀j ∈ 0..count − i − 2 : (next.rightj .item ≡ seq0(i + j + 1) ∧ first 6≡

next.rightj)∧
∀j ∈ 0..i − 1 : (previous.rightj .item ≡ seq0(i − j − 1) ∧ first 6≡

previous.rightj)∧
first.item ≡ seq0(i) ∧ first.right ≡ next}

first.right := previous
{NC(next, count− i− 1, previous, i)∧

∀j ∈ 0..count − i − 2 : (next.rightj .item ≡ seq0(i + j + 1) ∧ first 6≡
next.rightj)∧

∀j ∈ 0..i − 1 : (previous.rightj .item ≡ seq0(i − j − 1) ∧ first 6≡
previous.rightj)

∧first.item ≡ seq0(i) ∧ first.right ≡ next ∧ first.right ≡ previous}
{NC(next, count− i− 1, first, i + 1)∧

∀j ∈ 0..count− i− 2 : next.rightj .item ≡ seq0(i + j + 1)∧
∀j ∈ 0..i : first.rightj .item ≡ seq0(i− j)}

{LI1(i + 1) ∧ LI2(i + 1) ∧ LI3(i + 1)}
{LI}

After the termination of the loop, we know that LI ∧ next = Void holds. According
to LI1, this can only hold if i = count. So we can derive:

LI ∧ i = count ⇒

LI1(count) ∧ LI2(count) ∧ LI3(count) ⇒

∀j ∈ 0..count− 1 : first.rightj .item ≡ seq0(count− j − 1)

This is the required postcondition.

8



4.5 Remarks
The property of paths influence and independence has to be deduced from the formulas.
Though this is not hard, it still requires many small proofs and is skipped for brevity. These
proofs would be intermediate steps and lemmas in an interactive proving environment.

All proofs for assignments to local variables were trivial and followed the same strat-
egy: first the predicate P was changed to a predicate P ′ that did not include the a, the
target of the assignment. After the assignment a := b the predicate was P ′ ∧ a ≡ b.
The only assignment that really required complex reasoning on path independence was
first.right := previous.

The specification of the proof goal was straight forward. Talking about the effect of a
list reversal did not require higher level specifications like models or closures. The ability
to refer to a sequence of n attributes in the form of ∀i ∈ 0 . . . n − 1 : first.righti has
been very helpful.

5 Related Work
The concept of using paths to reason over pointer structures is not new. The terminology
might be different though. In one of the very first papers on proving data-structures [3],
Burstall talks about unit strings.

The basis to the approach of using equivalence relations for modelling pointers was
developed by Jonkers [9]. It had been further studied by Deutsch [5]. Recent publications
include the work by Schieder [17], Bozga, Iosif, and Laknech [2] and Hoare and Jifeng [7].
Schieder and Bozga et. al. both develop a weakest precondition calculus for Jonker’s store
model.

We can see four contributions of this paper in relation to the previous work. First, we are
integrating a storeless semantic description into an object-oriented language by the implicit
use of Current as a root for attributes. Second, we develop a semantic description for
object creation that is significantly simpler than [17], [2] and [7]. Third, we introduce
path independence and path influence, which we think are important concepts for storeless
models. Finally, we approach the problem of feature invocation by giving a precise rule
that uses prefix substitutions.

The term trace has been used in recent publications (see [7], [17]). As the term trace
has a strong association with a dynamic behavior of a program (“a trace of states”), we
have decided to choose the term path (as used by Cartwright et al. [4] and Morris [12]).

A very different approach to the aliasing problem is separation logic [16]. Instead
of capturing aliasing conditions, separation logic tries to partition the heap. It is a very
powerful description technique to rule out aliasing between storage locations. As a draw-
back, separation logic introduces a mathematical notation that is quite far away from the
notations used to describe the program.

6 Future Work
Key to the successful application of a theory for practical purposes is the implementation
of the theory in a theory proving environment. This is the long-term goal of the research
efforts.

We are planing to implement the theory in the Isabelle/HOL[15] prover. Isabelle/HOL
allows the implementation of complex rules and offers a rich set of specification techniques
like data-structures, primitive recursion and inductive reasoning.

On top of Isabelle, we are planning to develop an interactive proving environment that
creates and organizes the proof obligations based on a given application or software com-
ponent written in Eiffel.

9



One of the problematic points seems to be that the theory relies on equivalence relations.
These relations are normally hard problems for automated verification algorithms, as they
tend to create infinite reductions and resist greedy simplification strategies.

7 Conclusion
Path properties remove heaps, objects and pointers from proving object-oriented programs.
Instead we have focused on paths: lists of identifiers that are part of the textual representa-
tion of the program.

We have developed a small theory of paths and described the state as an equivalence
relation on paths. We have captured important properties of this state description like at-
tribute equivalence and path influence and independence. We have shown how these prop-
erties can be used to describe the axioms in an axiomatic semantics for pointer swing and
object creation.

The proof of the list reversal algorithms has given insights on how reasoning on such
a state description takes place. The ability to remove the target of the assignment from the
predicate in the pre-state and thus making the non-interference proof trivial seems to be a
good strategy for practical proofs. In general, path properties allow reasoning on pointer
structures without an explicit model building process.

In the future, we are hoping to extend the approach to a full subset of an object-oriented
language and cover aspects like inheritance or modularity within the theory.

8 Acknowledgements
I would like to thank my supervisor, Prof. Bertrand Meyer, for his guidance, insight and
motivations for this work. I would also like to thank Prof. Peter Müller for being available
for detailed discussions and questions on programming language semantics and aliasing.
Finally I would like to thank Joseph Ruskiewicz, Vijay d’Silva, Susanne Cech and Ronny
Zakhejm for listening to my explanations and giving me valuable feedback.

References
[1] Richard Bornat, Cristiano Calcagno, and Peter O’Hearn. Local reasoning, separation

and aliasing. In SPACE 2004, 2004.

[2] Marius Bozga, Radu Iosif, and Yassine Laknech. Storeless semantics and alias
logic. In Proceedings Of The 2003 Acm Sigplan Workshop On Partial Evaluation
And Semantics-Based Program Manipulation, pages 55–65. ACM Press, 2003.

[3] R. M. Burstall. Some techniques for provng correctness of programs which alter data
structures. Machine Intelligence, 7:23–50, 1972.

[4] Robert Cartwright, Robert Hood, and Philip Matthews. Paths: an abstract alternative
to pointers. Proceedings of the 8th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 14–27, 1981.

[5] Alain Deutsch. A storeless model of aliasing and its abstractions using finite repre-
sentations of right-regular equivalence relations. In Proceedings of the IEEE 1992
Conference on Computer Languages, pages 2–13, April 1992.

[6] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, pages 576–583, October 1969.

10



[7] C.A.R. Hoare and He Jifeng. A trace model for pointers and objects. In Programming
Methodology, Monographs in Computer Science, pages 223–245. Springer-Verlag
New York, Inc., 2003.

[8] J. Hogg, D. Lea, A. Wills, and D. de Champeaux. Report on ECOOP’91 workshop
W3: The Geneva convention on the treatment of object aliasing. In OOPS Messenger,
volume 3 of 2, pages 11–16, 1992.

[9] H.B.M. Jonkers. Abstract storage structures. In de Bakker / van Vliet, editor, Algo-
rithmic Languages, pages 321–343. IFIP, North-Holland Publishing Company, 1981.

[10] Joseph Kiniry and Erik Poll. Opportunities and challenges for formal specification
of java programs. http://www.cs.ru.nl/∼erikpoll/publications/
prato.html, January 2003. Position paper for trusted components workshop,
Parto, 2003.

[11] Bertrand Meyer. Eiffel: the language. Prentice Hall, New York, NY, 1992.

[12] Joseph M. Morris. A general axiom of assignment. In M. Broy and G. Schmidt, edi-
tors, Theoretical Foundations of Programming Methodology, (Lecture Notes Interna-
tional Summer School, Markoberdorf), pages 25–34. Reidel, Dordrecht, Netherlands,
1982.

[13] P. Müller. Modular Specification and Verification of Object-Oriented Programs, vol-
ume 2262 of LNCS. Springer-Verlag, 2002.

[14] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular specification of
frame properties in JML. Concurrency and Computation: Practice and Experi-
ence, 15:117–154, 2003. Available fromftp://ftp.cs.iastate.edu/pub/
techreports/TR01-03/TR.pdf.

[15] Tobias Nipkow, Laurence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Springer, 2004.

[16] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, July
2002.

[17] Birgit Schieder. Pointer theory and weakest precondition without addresses and heap.
In MPC2004, LNCS 3125, pages 357–380. Springer-Verlag Berlin, 2004.

[18] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

11


