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ABSTRACT

Software correctness is a relation between code and a specification of the
expected behavior of the software component. Without proper specifica-
tions, correct software cannot be defined.

The Design by Contract methodology is a way to tightly integrate spec-
ifications into software development. It has proved to be a light-weight
and at the same time powerful description technique that is accepted by
software developers. In its more than 20 years of existence, it has demon-
strated many uses: documentation, understanding object-oriented inheri-
tance, runtime assertion checking, or fully automated testing.

This thesis approaches the formal verification of contracted code. It
conducts an analysis of Eiffel and how contracts are expressed in the lan-
guage as it is now. It formalizes the programming language providing an
operational semantics and a formal list of correctness conditions in terms
of this operational semantics.

It introduces the concept of axiomatic classes and provides a full library
of axiomatic classes, called the mathematical model library to overcome prob-
lems of contracts on unbounded data structures.

This thesis argues that modular verification is essential for the reuse
of trusted object-oriented code. Modular verification introduces problems
with hidden interference of components, known as the frame problem. This
thesis introduces the concept of dynamic frame contracts and shows how
such contracts can overcome the frame problem, at the same time retaining
full information hiding and being faithful to the inheritance relation.

The thesis includes an experimental implementation of a fully auto-
mated verifier called Ballet. This verifier transforms Eiffel into proof obli-
gations that are handed over to a fully automated theorem prover.
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ZUSAMMENFASSUNG

Korrekte Software beschreibt eine Relation zwischen Programmtext und ein-
er Spezifikation des zu erwartenden Verhaltens einer Software-Kompo-
nente. Ohne eine geeignete Spezifikation ist der Begriff korrekter Software
bedeutungslos.

Design by Contract ist eine Methode die Spezifikationen in den Softwa-
reentwicklungsprozess einbindet. Sie hat sich bewährt als eine einfache
und gleichermaßen mächtige Technologie und wird von Entwicklern an-
genommen. In den 20 Jahren seit ihrer Entstehung haben sich viele An-
wendungsfelder für Design by Contract ergeben: Dokumentation, Ver-
ständnis der objektorientierten Vererbung, Überprüfung zur Laufzeit, oder
vollautomatisches Testen.

Diese Dissertation beschäftigt sich mit der formalen Verifikation von
contracted Code. Sie analysiert die Programmiersprache Eiffel und wie in
dieser Programmiersprache Verträge (Contracts) benutzt werden können.
Eine operationelle Semantik formalisiert die Programmiersprache. Die Be-
weisverpflichtungen zur Überprüfung der Korrektheit werde definiert.

Sie entwickelt den Begriff der axiomatischen Klasse und entwickelt eine
Bibliothek solcher Klassen, die Mathematical Model Library, um Probleme
mit Verträgen über unbeschränkten Datenstrukturen zu beheben.

Diese Dissertation argumentiert, dass modulares Beweisen essentiell
für die Wiederverwendungen von vertrauenswürdigen, objektorientierten
Komponenten ist. Eine modulare Beweisführung scheitert an versteckten
Interferenzen verschiedener Komponenten. Dieses Problem ist unter dem
Namen Frame Problem bekannt. Diese Dissertation erweitert Design by
Contracts um Dynamic Frame Contracts, um diese Probleme zu beheben.
Dynamic Frame Contracts bewahren die Kapselung von Komponenten
und sind verträglich mit der Vererbungsbeziehung der objektorientierten
Entwicklung.
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Die Dissertation enthält die experimentelle Implementierung eines voll-
automatischen Beweiswerkzeugs mit dem Namen Ballet. Dieses Werkzeug
wandelt Eiffel Programmtext in Beweisverpflichtungen für einen automa-
tischen Beweiser um.
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CHAPTER 1

INTRODUCTION

Current software development is characterized by a high increase in com-
plexity. Each generation of products and systems exceeds the previous
one by an order of magnitude in terms of line of code or number of people
involved. To keep up with this development, programmers are forced to
a high level of reuse and adaptation of existing systems. Software is con-
stantly modified, few systems are written from scratch. Legacy software
is ubiquitous.

At the same time, the demands for quality software are rising: The inte-
gration of more and more systems into the Internet increases the need for
security against malicious attackers. Transportation systems with lives at
stake have a high demand for software reliability and robustness. Finan-
cial systems demand correctness. Constant changes require good main-
tainability.

1.1 Towards trusted components

Software reuse and software quality complement each other. Without a
high level of reuse, the extra effort that needs to be invested into software
quality does not pay off. Without a high level of software quality, reuse is
difficult; the more a piece of software is reused, the more its deficiencies
come to the fore.

This relation builds a vicious circle: many reusable components are
of bad quality, and developers suffer from these deficiencies. They do
not trust software quality and prefer to re-implement instead of reusing
(even high quality) components. This has the consequence that the level
of reuse remains low and an investment into the quality of the software
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components does not pay off.
To break this circle, two problems must be solved: First, software qual-

ity must be improved by investing into reusable software. Software engi-
neering can help in this progress by developing new methods and tools for
software development that detect quality flaws and enforce quality stan-
dards.

Second, we have to find better ways to build trust into software. We
have to provide developers with evidence that the software is of a certain
level of quality. This evidence can be: access to the source, clear specifica-
tions and documentations, certification by independent organizations or
reproducible test. Also, an already high-level of reuse creates trust, result-
ing in a self-accelerating process.

Software quality has many dimensions. The focus of this work is func-
tional correctness. Intuitively, we call software correct, if it does what we
expect it to do. Formally, a software is correct if and only if, when exe-
cuted on a well-defined machine, will transform the state of the machine
in way that is defined by its functional specification.

Proving that a software component is correct with respect to a given func-
tional specification means to establish a relation between specification and
implementation. It does not show that the software is indeed valid for
the given problem, but it allows a critical reduction of complexity, as the
specification is normally much simpler and more revisable than the imple-
mentation. This creates trust into the implementation.

1.2 The grand challenge of the verifying compiler

In 2005, Hoare and Misra proposed a vision of a grand challenge:

The ideal of correct software has long been the goal of research in Com-
puter Science. We now have a good theoretical understanding of how
to describe what programs do, how they do it, and why they work.
This understanding has already been applied to the design, develop-
ment and manual verification of simple programs of moderate size
that are used in critical applications. Automatic verification could
greatly extend the benefits of this technology.

[. . . ] the time is ripe to embark on an international Grand Challenge
project to construct a program verifier that would use logical proof to
give an automatic check of the correctness of programs submitted to
it. (Hoare and Misra, [35])
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The grand challenge of developing a verifying compiler contains many
small steps that have to be taken one at a time. Programming languages
have to be developed on the basis of formal theory, with a sound under-
standing of what the expected outcome of an execution is. Provers have to
become powerful enough to take off the burden from the developer to do
the proof himself. Functional specifications have to be written, they are an
inherent requirement to formal verification. Developers have to be taught
how to use the new programming and specification languages, and the
supporting tools for verification.

1.3 Summary and outlook

This thesis contributes to the “Grand Challenge” project as proposed by
Hoare and Misra. It presents a full approach to the verification of object-
oriented programs, written in a real-world programming language.

Starting with the analysis of the language and its properties, it devel-
ops an full operational semantics covering nearly all features of the lan-
guage. A framework of model classes is developed to make it possible
for the specification language to talk about complex data structures. The
programming language is extended by frame specifications, required for
modular software verification and bottom-up development. Finally, all
theories are integrated into a tool, “Ballet”, which illustrates the automatic
verification of code and integration of formal methods into software de-
velopment.
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CHAPTER 2

ESSENTIAL RESULTS

This chapter guides the reader through the problem domain and essential
results of the presented thesis. The short description illustrates problems
and corresponding solutions with examples. Later chapters contain the
formalization and implementation of the solution strategies.

2.1 Overview

The overall goal of this thesis is to advance theories and technologies for
integrating formal methods and verification for the Eiffel programming
language, the Design by Contract methodology and the object-oriented
paradigm as a whole.

The work addresses four issues: a formal semantics for Eiffel, models,
the frame problem and the implementation of an automatic verifier.

Formal semantics for Eiffel: With ISO/ECMA Eiffel [56], the Eiffel
programming language has received an extensive description of its syntax
and semantics. It uses free-form text and informal diagrams. This thesis
contains an operational semantics for the Eiffel programming language.
Such a formal, rigorous semantics is a prerequisite for any application of
formal methods to Eiffel. It is defined in chapter 5.

The definition of the programming language semantics uses a three-
step approach to define code, state and execution. It does not operate on
the language directly, but instead uses a intermediate form as program-
ming model which can also be used as target for other object-oriented
programming languages. The operational semantics creates insights not
only into Eiffel, but into universal mechanisms of object-oriented software
execution like subtyping, genericity or dynamic binding.
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Models: Contracts for dynamic and unbounded classes: When com-
pared to runtime checking or testing, formal verification requires a higher
level of consistency and completeness of contracts. This thesis identifies a
concept of abstract object state, captured by state models as a adequate ap-
proach to the creation of complete and consistent contracts. It develops a
methodology of creating contracts based on models. It describes a light-
weight integration of models in form of a model library. The model li-
brary is implemented and its interaction with specification, verification,
and runtime assertion checking is explored. The concept of models, to-
gether with the design and implementation of the model library appears
in chapter 6.

Modularity, composability and the frame problem: Bottom-up devel-
opment requires the composability of software components. But software
components cannot be composed to solve new, more complex problem if
they interfere with each other. This is known as the frame problem [46, 62].
Specifying and proving non-interference of software components is criti-
cal for modular proofs of reusable components.

Specification of non-interference poses new challenges that cannot be
solved with existing mechanisms available in Design by Contract. Mecha-
nisms in other specification languages [41, 4] have always sacrificed flexi-
bility or information hiding to make assumptions of non-interference pos-
sible.

This thesis introduces the concept of Dynamic Frame Contracts. With
dynamic frame contracts, it is possible to solve the full frame specification
problem without cutting back on flexibility or information hiding. Dy-
namic frame contracts are described and formalized in chapter 7.

Fully automated tools for formal verification: Formal verification needs
tools, because human reasoning is too costly and error prone. The Ballet
verifier is a tool for the functional verification of object-oriented programs
that was developed as part of this thesis. It is tightly integrated into the Eif-
felStudio IDE and implements the weakest-precondition verification. It is
based on Boogie, a weakest-precondition proof obligation generator for an
intermediate language BoogiePL [19], and Simplify [20], a fully automatic
prover for first-order predicate logic. The design and implementation of
the tool are described in chapter 8.
As a preparation to these four basic contributions, the thesis conducts an
analyzes of current language constructs for Design by Contract in Eiffel
and their possibilities and limitations with regards to formal reasoning
and specification (chapter 3).

All together, this thesis gives a complete guide to techniques, method-
ologies and technical tools for the modular verification of functional cor-
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rectness for object-oriented code.
The following sections describe the issues and the results of each of

the four main contributions by giving illustrations and intuitive examples,
highlighting some of the achievements.

2.2 Language semantics

A programming language semantics describes the execution of a program
on an idealized computer-like machine. The machine has a state, the ex-
ecution of the program changes the state into new states, thus defines a
sequence of states (also called a trace).

There are three well-established approaches to describe the semantics
of a programming language: operational, denotational and axiomatic [63].

We choose to use a structural operational model [73] describing the
programming language and its execution. This contrasts the existing spec-
ification mechanisms of Design by Contract. Design by Contract uses pre-,
postconditions and invariants, concepts related to Hoare-style reasoning,
which would imply the use of an axiomatic semantics.

There are two advantages of defining the semantics of an object-oriented
language supporting Design by Contract using an operational description.

First, using a different approach has proved to give good insights into
“dark corners” of the language.

Second, an operational semantics is normally more precise than an ax-
iomatic semantics. The axiomatic semantics only defines how properties
of the state are maintained or transformed during execution.

An operational semantics has to define the resulting state of a program
execution precisely, starting from an arbitrary (within the constraints of a
state invariant) given state. It is of course possible to define a complete
description of a programming language with an axiomatic semantics, but
we claim that it is easier to forget important details when compared to an
operational semantics.

The operational semantics defined in this thesis is made out of three
distinct parts: the static model, the state model and the execution model.

The static model defines code as a mathematical object, formulating data
types for classes, features, instructions, expressions and contracts. The
static model is not a direct mapping of the language into mathematics. In-
stead, it describes the static part of a program on a high level of abstraction,
removing concepts like identifiers, generic derivations, signature redefini-
tions or code inheritance (but not subtyping).
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An important achievement of the static model is the separation of es-
sential object-oriented constructs from “syntactic sugar”: language con-
structs that are normally analyzed by a compiler and could be removed
from the code by unfolding or other semantically neutral refactoring steps.

The state model defines the state of the execution of an Eiffel program.
We use abstract data types to define this state. We have identified three
major components of the state of an Eiffel program: heap, environment
and global state.

The heap is the part of the memory where objects are created. We re-
gard the heap as unbounded, ignoring the need for a garbage collector.
This is an adequate abstraction as the garbage collector must not interfere
with the correct behavior of the program and we ignore possible “out of
memory” environment errors when verifying Eiffel programs.

The environment is an abstraction of the stack. Because of the way that
we formulate the call rules in the operational semantics, there is no need
for an explicit stack-like data structure. Instead, the environment captures
all the properties that are local to a routine, like arguments, local variables,
Current or Result.

The global state is needed only to capture the evaluations of once rou-
tines that are global for the whole application.

Once we have a precise definitions for static Eiffel code as well as the
dynamic state of the machine, the executional model defines the effect of
Eiffel code execution on the state. This is the core of the operational se-
mantics.

We do not only consider the execution of instructions and the evalu-
ation of expressions, but also the execution of expressions with their po-
tential side-effects. We define precisely what we mean by side-effect free
(pure) expressions and we show why we still need to consider changes to
the state of these side-effect free expressions.

Taking all the three models together, we are able to prove properties
of the Eiffel language, as well as properties of code written in Eiffel. This
gives us the foundations for proving properties of Eiffel.

The definition of the operational semantics yields insights the domain
of object-oriented programming. We consider the definition of semantics
for Eiffel as a universal contribution to the domains of object-oriented pro-
gramming.



2.3. MODELS AND MODEL CONTRACTS 9

LINKED LIST

LINKABLE LINKABLE LINKABLE

PERSON PERSON PERSON

first

item item item

right right
right

Figure 2.1: Object structure of a linked list.

2.3 Models and model contracts

To model the semantics of object-oriented program execution requires a
precise notion of state of an object. Specifications express how commands
change queries with respect to the object’s state: preconditions describe re-
quirements on the object’s state for commands or queries, postconditions
relate pre- and poststates for commands and describe abstraction func-
tions for queries. Class invariants constrain the object’s state.

Surprisingly, there are very few precise definitions of what the object
state actually is. As a result of this thesis, we have developed a clear,
precise definition of object state.

Looking at the fields of an object to define its state is not sufficient: the
state of a linked list, as shown in figure 2.1, is not only defined by the first
pointer, but also by the fields of the cells (of type LINKABLE) that it uses.
Other fields of the object might not contribute to the state. For example
fields that are used for caching or internal book-keeping do not contribute
to the state of an object.

An alternative to define the object’s state would be by defining the state
of an object using all fields of all objects that are reachable by the object
through the heap reference structure. But, while the cells of the linked list
contribute to the state of the list, the fields of the persons contained in the
list should not be part of the state.

Furthermore, using fields to define object state is difficult when com-
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bined with inheritance and subtyping. For example, it should be possible
to talk about the state of a deferred class to understand the semantics of its
contracts.

There are cases where subtypes add extensions to the state. These ex-
tensions are not visible to parent classes. For example the state of a PERSON
object might be defined by the name of the person, while the state of a
STUDENT object extends this state by a student identification number. With
the goal of modular reasoning and incremental verification in mind, it is
necessary to reason about feature invocations on the basis of the static type
of the target defined in the code and not on the basis of the actual dynamic
type of the object during execution.

The key to address all these issues is the introduction of models into the
Eiffel language and the Design by Contract methodology. The model of an
object is a description of the object’s state in form of a mathematical value.

By mathematical value, we mean a value from some underlying math-
ematical domain. In our case, we use set theory as the mathematical do-
main. The model might be for example a set, a relation, a function or a
sequence.

The model is not part of the system state, defined by the heap, the
stack and global variables. A model is a state abstraction defined through
an abstraction function on the system state. This abstraction function is also
called model query.

Assuming that all values of our typed first-order set theory are ele-
ments of the mathematical domain MD. Then an abstraction function is a
function that takes the full State of the execution and a single Object and
computes the corresponding element of MD.

mq : State×Object→MD

As already mentioned, the abstraction function is also called model query.
This is because of two reasons:

• The abstraction function is always relative to an object. It is thus
equivalent to an object-oriented query.

• To integrate models with the existing Design by Contract mecha-
nisms, the model queries are defined as actual queries in the program-
ming language, thus they are features defined in classes.

A single object can have multiple model queries. There might be differ-
ent queries defined in parent classes that abstract the state in terms of the
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parents abstraction. Also, we might want to split up different parts of the
object state by providing specialized model queries.

A concrete example of this is the type LIST[ANY] in the EiffelBase li-
brary. The type is deferred and defines the concept of linear data structure
with an integrated cursor. The state of a linked list has two dimensions:
the sequence of elements stored in the linked list and a cursor position
(mathematically, a sequence is a function from the a finite prefix of natural
numbers to objects identities). The cursor position is a linear value that
can be easily captured by an integer. The model query for the list class is:

model : (State× List)→ (seq(any)× Integer)

To make access easier, we can give names to the different components. For
example by calling modelseq the sequence part of the model, and modelindex

the cursor position. They will then become the selectors for the compo-
nents of the resulting cross-product.

∀S, l : model(S, l) = (modelseq(S, l), modelindex(S, l))

With models, we can be much more expressive when it come to specify-
ing behavior. For example, without models it is very difficult to describe
the precise effect of an extend operation for a lists. The specification is re-
stricted to a fixed set of object equivalences and to the visible state, some-
thing that is not sufficient for data structures with an unbounded size and
information hiding, like linked lists. This results in heavy underspecifica-
tions.

The goal is to describe that the resulting list is equivalent to the old list,
with a single element appended. With models, the specification can be
done directly on the model abstraction, using operators defined for types
in the model. For example, assuming that ++ defines concatenation of
two sequences, the effect of the concatenation is defined as (using old to
reference the pre-state of the operation):

modelseq(State, Current) =modelseq(oldState, Current) + +

modelseq(oldState, other)

modelindex(State, Current) =modelindex(oldState, Current)

This is a full, precise description of the append operation of lists that does
not give away details of the implementation: we still can implement the
list as a linked list, a doubly linked list or an automatically resizing array.
Also, by going over all components of the model, details that have been
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forgotten are easier to identify: in the case of a linked list, it is easy to
forget to specify what happens to the cursor position for operations that
change the list.

The expressiveness of such an approach depends on the expressiveness
of the mathematical theory that is used to capture the models. The types
and functions have to be expressive enough to model classes implement-
ing a wide range of functionalities.

To prevent reinventing the wheel, the mathematical theory used in the
thesis is derived from a mathematical foundation that was already used
in an other specification language, B [1]. B has been used successfully in
large commercial applications from embedded devices to full security sys-
tems, giving confidence that it is suited to express complex specifications
in many problem domains.

The B language defines a number of operations on sets and relations
that makes it easy to use and very powerful at the same time. Operations
like projection, closure or restrictions on the domain or range of a relation
create small predicates for very complex properties. The B language is
specially good at avoiding quantifiers and set comprehension. For exam-
ple, the set of all persons contained in a linked list l that has the structure
shown in figure 2.1 can be expressed as:

item[right ∗ [{first(l)}]]

(with “first”, “right” and “last” being relations between objects, [] is the
relational image operator in B, ∗ the reflexive transitive closure).

The mathematical notation defined in this thesis restricts the B lan-
guage to typed first-order predicate logic and set theory on finite sets.
There are different reasons for this choice:

• It is important for the overall approach to keep the specifications ex-
ecutable. Proof technology is still developing and it is obvious that
it will not be feasible, or even possible to have every line of code
verified fully automatically by pressing a button. Executable specifi-
cations can be used for testing, system robustness or bi-simulation.

• All data structures in a system will always be finite. There are only
very few cases where it makes sense to give an infinite model to a
finite amount of data.

• The Eiffel language includes a very powerful type system. The type
system can help to prevent numerous mistakes at early stages of the
development. With typed set theory, it is possible create a mapping
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between B and Eiffel types. Compared to the original B language
this is not a major change: all existing B systems implement their
own type checker on top of the B language to support the user, with
a similar effect.

The following section describes the integration of models and model-based
specifications into the programming language.

2.4 A library of models

Extending Eiffel by a modelling language using first-order predicate logic
and typed set theory has to be as non-intrusive as possible. Existing Eiffel
developers should not have to learn a full, new specification language,
mathematical symbols scare non-mathematicians. Mapping mathematical
symbols to the standard ASCII representation of program text can make
the code difficult to read. Also, extensions to the programming language
always require that all tools dealing with the language are updated and
extended to cope with the new syntax. This, again, easily opens a whole
myriad of problems with existing Eiffel code.

To solve these problems, many extensions to the specification language
offered the new syntax as specially marked comments. Examples are JML[10]
or Javadoc[81]. But this produces a gap between the language including
the comments and the language without the comments. Regular tools can-
not check the comments for type consistency, syntax highlighting will not
work on the commented sections. An important decision that was made
early in the development of Eiffel, is to let the developers use the same
language for specification and implementation.

A better way of extending a programming language non-intrusively is
to describe the language extension as a library. Libraries are a natural way
to extend expressiveness, every developer is familiar with using libraries.

The ability to define models and the underlying mathematical notation
in form of a library was made possible by the concept of axiomatic classes
into the programming language. Axiomatic classes map concepts that are
defined outside of the programming language into types and interfaces of
the programming language.

To define the semantics of an axiomatic class we will use neither the
implementation nor even on an abstract interface specification, but simply
rely on some existing mathematical theory, for example set theory. The
axiomatic class simply restates some concept from that theory, such as total
functions, in the syntax of the programming language.
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*
MML_ANY

*
MML_SET

[G]

*
MML_PAIR

[G,H]

*
MML_POWERSET

[G]

*
MML_RELATION

[G,H]

*
MML_GRAPH

[G]

*
MML_SEQUENCE

[G]

*
MML_ENDORELATION

[G]

*
MML_BAG

[G]

Figure 2.2: Class hierarchy of MML

The notion of axiomatic class is not really new. In the core Eiffel library
(ELKS, the Eiffel Library Kernel Standard), the contracts for such classes as
INTEGER and BOOLEAN describe only some partial properties of the cor-
responding abstractions; this implicitly refers the reader to a pre-existing
understanding of the concepts, which must come from mathematics. In
some cases the reference is explicit; for example the ”note” paragraph that
introduces class NUMERIC reads:

Objects to which numerical operations are applicable. Note: The
model is that of a commutative ring.

It is important to stress, because the semantics is defined by the theory,
that contracts of an axiomatic class are irrelevant for the semantic under-
standing of the class, though they still may be helpful for documentation
purposes.

The library of models developed as part of this thesis is called MML,
the mathematical model library. It consists of the interfaces of the nine classes
shown in figure 2.2. The class MML_ANY is equivalent to the mathematical
domain MD, which was suggested in the last section as the range of the
abstraction function.

An achievement of this thesis is that we were able to reuse the type
system available in Eiffel as the type system of the typed set theory. If an
expression given in terms of the MML library type checks, it is also well
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extend (v: G) is
-- Ensure that structure includes ‘v’.

require
extendible: extendible

deferred
ensure
item_inserted: is_inserted (v)

end

Listing 2.1: Original contract of extend from class COLLECTION

typed in the underlying mathematical theory. This is made possible by the
choice of classes and their subtype relationships, many covariant redefini-
tions on the result types, and the extensive use of generic parameters and
feature renaming.

Using MML, it is easy to strengthen the contracts of existing libraries
in Eiffel. For example, listing 2.1 shows the original contract of the extend
feature of the class COLLECTION in EiffelBase. It is easy to see that such a
contract is inadequate as a full specification for extending a collection. The
feature is_inserted is a special helper feature that is always comparing
the argument with the last object inserted into the collection. It is useless
for the interface of a collection, other than to contract extend. Also, this
feature tells which element was added last to a collection, something that
should not matter for the underlying abstract data type.

It is very difficult to add any other contract to the extend feature. The
reason is that it is on a very high level of abstract: more or less all other
data structure classes are subtypes of COLLECTION. It is not possible to say
anything about the number of elements contained in COLLECTION after
extend. The count is increased for bags and lists, but not always for sets
or tables.

Listing 2.2 now shows the contract of the extend feature using mod-
els. The model definition is also included, although the model query is
actually defined in CONTAINER, a parent class of COLLECTION.

The model of a CONTAINER is defined as a mathematical bag. This
means that very early in the definition of the hierarchy a strong statement
about the future behavior of the type and its subtypes was made. An in-
stance of CONTAINER or any of its subtypes should behave like a bag.

When comparing the precondition of the two versions of extend from
listings 2.1 and 2.2, the benefits of this strong semantic commitment is
clear. Without models, the precondition of extend is just extendable,
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model: MML_BAG [G] is
-- Model of a general container

deferred
ensure
result_not_void: Result /= Void

end

extend (v: G) is
-- Ensure that structure includes ‘v’ iff ‘v’ can be

added.
require
can_add_element: can_extend (v)

deferred
ensure
model_updated: model |=| old model.extended (v)

end

can_extend (v: G) : BOOLEAN is
-- Can ‘v’ be added?

deferred
ensure
extendable_relation: Result implies extendable

end

Listing 2.2: Contract of extend from class COLLECTION using models

with is a property talking in general about the possibility of modifying a
collection by extension. But the rigorous use of models have forced us to
add a precondition to extend that needs to consider the argument.

All subtypes of COLLECTION have to conform to this type. This is also
true for the SET type. The model for SET is a mathematical sets. But be-
cause of the subtyping rules and object-oriented polymorphism, it is also
necessary to regard the SET as a CONTAINER. The implementer of the set
needs to make a choice on how to project the set model into the bag model
of the parent class. Projection means defining a total function from the
model of the child to the model of the parent.

As part of the library design, the choice was made to regard the set as a
bag directly, but to constrain the values that can be added to it. To do this,
extend needs a feature that can test, also in the parent class, if the value
can be added to the COLLECTION. The definition of extend has to take this
into account.
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can_extend (v: G) : BOOLEAN is
-- Can ‘an_item’ be added?
-- True only if it is not already in the set.

do
Result := extendible and not has(v)

ensure then
element_not_in_set: Result implies (not has (v))

end

Listing 2.3: can_extend as redefined in SET using models

can_extend (v: G) : BOOLEAN is
-- Can ‘an_item’ be added?
-- Equivalent to ‘extendable’ for bags.

do
Result := extendable

ensure then
always_true: Result = extendable

end

Listing 2.4: can_extend as redefined in BAG using models

Although the model of the collection is a bag, the collection does not
need to behave like a bag by allowing arbitrary addition of elements. This
is expressed by the can_extend precondition. The subclasses SET and BAG

define themselves as sets and bags by adding a constraint to the can_extend
predicate as shown in listings 2.3 and 2.4.

The application of models and model-based contracts to existing Eiffel
code has led to the discovery of many weaknesses and errors in the de-
sign of the corresponding libraries. An extensive study using models was
done on EiffelBase [51], a library used extensively within the Eiffel com-
munity. The analysis has shown weaknesses and errors, specially in the
inheritance hierarchy and the conformance relation, but sometimes even
on the level of a single class. A redesign for EiffelBase was suggested that
cleans up these problems an promises to be more consistent than the cur-
rent implementation.
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WEB BROWSER

HTTP

GUI

Figure 2.3: Composing components in a client/supplier relationship

2.5 Composability and the frame problem

Development in Eiffel is based on bottom-up development: small software
components, completely described by their contracts, can be put together
to solve a more complex problem. The term component is intentionally not
defined here, as we are just trying to motivate an intuitive understanding.
We will later use more precise terminology, like object, module or class. Fig-
ure 2.3 illustrates such a relation: the component WEB_BROWSER combines
the two components GUI and HTTP to solve the problem of a graphical
web-browser.

This relationship is called the client/supplier relation. The component
WEB_BROWSER is a client of the components HTTP and GUI. Note that there
is no direct relationship between the two suppliers.

It should be possible to develop the two components GUI and HTTP in-
dependently from each other, and then later join them to form the larger
application WEB_BROWSER. This is called bottom-up development. When
combining bottom-up development and information hiding, the only in-
formation available to the WEB_BROWSER is the information provided through
the functional specification of the components, their contracts. So, any im-
plementation of GUI and HTTP that fulfills the specification of their inter-
faces can be used, and at any time it is possible to exchange the correct
implementation of GUI or HTTP by another one without breaking the over-
all application.

Can we always compose the GUI and HTTP components to form a big-
ger component? The answer is no, as illustrated by figure 2.4. The prob-
lem is that the implementation of both components make use of a fourth
component NETWORK. It is not unusual for the GUI to use a network com-
ponent. For example in Unix, graphical user interfaces communicate with
the screen using the network stack.
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WEB BROWSER

HTTP

GUI

NETWORK

Figure 2.4: Interference of two components through their implementation.

Now, imagine that network is handled through a device that can only
be opened once. Both components will try to allocated the network re-
source, which breaks the application.

This illustrates the frame problem in software development. Neither
the GUI nor the HTTP component can state that it uses the NETWORK compo-
nent; this would reveal details of their implementation, violating the rules
of information hiding.

Also, it is not possible for one component to declare that it cannot be
used together with the other. There are two reasons: first, each component
should not know about the implementation of the other component, as
already stated above. Second, in an open-world development, the num-
ber of potential components is infinite. It is impossible to enumerate all
components that interfere.

The solution is to devise is a mechanism that allows GUI and HTTP to
describe that they might use some shared resource, but on a level that is
sufficiently abstract to maintain information hiding. WEB_BROWSER then
takes these descriptions to detect possible problems of interference. These
abstract descriptions are called frame specifications.

2.6 The frame problem in Eiffel

In Eiffel, components become objects (instances of classes), specifications
become contracts. In an attempt to verify Eiffel code, the frame problem
arises already in the most primitive examples. In the following, we il-
lustrate the frame problem using only boxed integers and a simple copy
operation between them. Boxed integers are reference objects whose only
purpose it is to store an integer value. This problem is already sufficiently
complex that it is indeed not possible to specify and verify it using existing
mechanisms provided by the Eiffel language.
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class INT_STORE

feature -- Access
item: INTEGER
-- Value stored

feature -- Change
set_item (a_value: INTEGER) is

-- Set ‘item’ to ‘a_value’.
ensure
item_set: item = a_value

end

Listing 2.5: Interface of a boxed integer

copy (source: INT_STORE; target: INT_STORE) is
-- Copy ‘item’ of ‘source’ to ‘target’, making both

values the same.
require
source_not_void: source /= Void
target_not_void: target /= Void

do
target.set_item (source.item)

ensure
value_copied: source.item = target.item

end

Listing 2.6: Copy operation of a boxed integer

The interface of the boxed integer is captured in listing 2.5. We inten-
tionally restrict ourselves to the interface: it is the only information the
client knows and we want to maintain information hiding.

The copy operation is shown in listing 2.6. The goal of the copy oper-
ation is to make sure that both values are equivalent after the copy opera-
tion.

Most of the time, the implementation of copy is correct. But it is not
possible to verify that copy is correct. If it would be possible, then the
underlying theory has to be unsound, as there are ways to correctly (with
respect to its contract) implement INT_STORE that breaks the implementa-
tion of copy.

One possible implementation would be to use a object that does not
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INT STORE

a

INT STORE

b

Figure 2.5: Proxy object structure

store its plain value, but instead as a difference to another object. This
is illustrated in the object structure of figure 2.5. The object b has a ref-
erence to object a. Instead of storing the value directly, it might store its
value as the difference to the value stored in a (see the implemenation of
REL_INT_STORE in listing 2.7).

If we set a to 3 and then b to 5, then the value stored directly in b is just
2, though item would correctly return 5. If we later change a to 7, then the
value of b is changed implicitly to 9. If we now try to copy the value of b to
a, we get a postcondition violation: the value 9 will be stored in a, but at
the same time, the value of b is changed to 11. The two values read from
a.item and b.item are not the same.

2.7 Dynamic frame contracts

There are numerous specification mechanisms for frames. Explicit modify
clauses enumerate all the attributes effected by an operation. This is a vi-
olation of information hiding, as it reveals details of the implementation
[62]. Also, it does not work well together with inheritance, where the de-
cision of the precise implementation of an interface is done in a subclass.

Data groups [44] are an attempt to remedy the problems of information
hiding. They allow the abstract specification of attributes on the level of
the interface. Later, a number of concrete variables are associated with the
data groups in the hidden part of the class or its subclasses. Still, the state
is required to be implemented as attributes of the object. The implementa-
tion of a proxy data structure as shown above remains a problem.

Dynamic frames are a novel and seminal approach developed by Ioan-
nis Kassios [36, 37]. Prior approaches have all tried to make frames static,
the attributes captured in the frames are fixed by the specification. Dy-
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namic frames regards frame specifications as part of the runtime state of
the program. Frames are sets of memory locations, captured themselves
in variables of the program state. Kassios’ work is based on an artificial,
simple language. Inheritance as well as implementation of interfaces was
modeled through the use of abstract refinement.

Dynamic Frame Contracts as introduced and defined in this thesis take
over the essential ideas of Kassios’ dynamic frames, but integrate them
into a real-world programming language and open world reasoning. We
do this by combining dynamic frames with the Design by Contract method-
ology.

The idea behind dynamic frame contracts is as follows: resources of
Eiffel program are captured by an opaque data type called FRAME. Think
of frames as being sets of objects with their corresponding fields.

As an extension to the Design by Contract mechanism, every feature
can have use and modify clauses. The modify clause is an expression of
type FRAME yielding the frame of resources that might be modified by the
execution of the routine. The use frame an expression of type FRAME yield-
ing the set of resources that is read during the execution of the feature, thus
may influence its behavior and its return value. Both clauses are evaluated
in the pre-state of a routine execution.

The idea to regard frame specifications as executable code that needs to
be evaluated at run-time is the fundamentally new idea behind dynamic
frames contracts. They fit amazingly well with the Design by Contract
methodology as prominent in Eiffel, and the use of regular expressions of
the programming language as contractual specifications.

The benefit of frame specifications is gained by the dynamic frame rule
that is defined later. Informally it says that if the frame of a query q and
command c are disjoint, then the result value of q will not change by the
execution of c.

In practice, dynamic frame contracts use opaque queries, called frame
queries, that return specific sets of resources. To show the non-interference
of two software components, it is necessary to maintain the disjointness of
the corresponding frame queries.

To illustrate the benefits of the approach, dynamic frame contracts are
added to the INT_STORE example. An opaque query representation is
introduced into the interface of the integer store that yields the represen-
tation frame of the boxed integer, meaning all resources that are used to
store the integer value. The item and set_item feature are extended by
use and modify frames, as shown in listing 2.8.

The frame rule states that a command does not influence a query if
their frames do not overlap. This requirement is added as a precondition
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of the copy feature, enforcing it to be fulfilled by the client of the copy
operation. The extended contract to copy is shown in listing 2.9. It is now
possible to verify the functional correctness of copy.

To summarize, dynamic frame contracts are an extremely powerful, al-
though sometimes verbose specification mechanism that solves the prob-
lems of framing in object-oriented programs. The underlying proof the-
ory needs to know about sets and very few set operations. In contrast to
existing technology suggested for framing like ownership structures that
impose a tree structure over the heap, dynamic frame contracts seem to be
better suited to specify problem with possible alias situations like proxies,
singletons or publish/subscribe frameworks. Dynamic frame contracts in-
tegrate well with Eiffel, supporting the Design by Contracts mechanisms
and other parts of the methodology like uniform access and command-
query separation.

2.8 Ballet verifier

Ballet is a verification tool for Eiffel implemented as part of this thesis,
based on the results described above. It uses the Boogie tool chain devel-
oped by Microsoft Research for the automatic verification of Eiffel classes[4].

During the VSTTE conference 2005, Rustan Leino gave a demo of the
Boogie verifier for Spec#. In the context of this talk he invited other re-
search groups to consider the intermediate language of the verification
process, called BoogiePL [19], as their target language for verification.

BoogiePL is an abstract language used by Boogie between Spec# and
the proof obligations that are handed off to the theorem prover. It provides
its users with an uniform interface to first-order predicate logic and with
a complete framework for weakest precondition reasoning. At the same
time, it is sufficiently abstract not to impose a specific understanding of
object-orientation, or to even enforce the object-oriented paradigm at all.

The overall structure of the Ballet tool chain is shown in figure 8.2. Bal-
let is integrated into the Eiffel IDE and operates on a specific intermediate
representation of the Eiffel compiler, called the Eiffel Byte Code. The Eiffel
Byte Code is a late intermediate representation that is used directly for all
the other Eiffel IDE code generation facilities like C code generation, .NET
code generation or the melting ice interpreter.

From Eiffel Byte Code, Ballet generates BoogiePL programs. BoogiePL
code encodes feature as procedures assumptions and proof obligations
for the verification by assume and assert instructions in these procedures.
Thus BoogiePL is not meant to be executed as it includes non-constructive
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descriptions and non-determinism.
A background theory in form of function declarations and axioms needs

to be added to BoogiePL. For Ballet, the background theory defines such
concepts as the global memory structure and the basic set theory that is
required for the verification of models and frame.

The Boogie tool will then create proof obligations in first-order predi-
cate logic from these instructions by doing weakest precondition reason-
ing over the procedures. These proof obligations are then handed of to a
fully automatic theorem prover. Currently, two different provers are sup-
ported: Simplify, a classic prover for first-order predicate logic, and Z3,
an in-house development by Microsoft Research to overcome some of the
limitations of Simplify.

Should any of the provers find violation of any of its proof obligations,
an error message is propagated back through the tool chain, pointing the
developer to the possible Eiffel instruction or assertion that causes the vi-
olation.
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class REL_INT_STORE inherit INT_STORE

create
make

feature -- Initialization

make (o: INT_STORE) is
-- Initialize ‘other’

require
not_void: o /= Void

do
other := o

end

feature -- Access

item: INTEGER is
-- Value stored
do
Result := intern + other.item

end

feature -- Change

set_item (a_value: INTEGER) is
-- Set ‘item’ to ‘a_value’.

do
inter := a_value -- other.item

end

feature{NONE} -- Implementation

intern: INTEGER
other: INT_STORE

end

Listing 2.7: Implementation of INT_STORE that stores its value relative of
another INT_STORE



26 CHAPTER 2. ESSENTIAL RESULTS

class INT_STORE

feature -- Access
item: INTEGER

-- Value stored
use
representation

feature -- Change
set_item (a_value: INTEGER) is

-- Set ‘item’ to ‘a_value’.
modify
representation

ensure
item_set: item = a_value

feature -- Frame queries
representation: FRAME
ensure
not_void: Result /= Void

end

Listing 2.8: Interface of a boxed integer with frames

copy (source: INT_STORE; target: INT_STORE) is
- Copy ‘item’ of ‘source’ to ‘target’, making both

values the same.
require
source_not_void: source /= Void
target_not_void: target /= Void
representation_disjoint:

source.representation.is_disjoint(target.representation)
do
target.set_item (source.item)

ensure
value_copied: source.item = target.item

end

Listing 2.9: Copy operation of a boxed integer with frames



CHAPTER 3

SPECIFICATIONS IN EIFFEL

Eiffel is one of the few programming languages that combines specifica-
tion and efficient implementation into a single language. Meyer motivates
the integration of specification constructs into the actual programming
language by emphasizing the importance of seamless development:

The object-oriented approach is ambitious: it encompasses the entire
software life-cycle. When examining object-oriented solutions, you
should check that the method and language, as well as the supporting
tools, apply to analysis and design as well as implementation and
maintenance. The language, in particular, should be a vehicle for
thought which will help you through all stages of your work. (Meyer
[52, p. 22])

Excluding any other alternative approach to specification is further stressed
by the “single model principle”, as described by Paige and Ostroff:

Independently generated multiple models of a system cause more prob-
lems than they solve in developing software. It is claimed that multi-
ple models are useful because they allow developers to work indepen-
dently on different parts of a software system, and thereafter their
individual work can be integrated. We have already remarked on
problems with this approach, particularly with consistency: checking
that one independently created model does not contradict a second
independently created model is a very complicated problem, even for
small systems. The problem is avoided by obeying the single model
principle. (Paige and Ostroff, [69])

The single model principle (sometimes also called the single document princi-
ple or single product principle) is one of the key properties of the Eiffel lan-
guage and methodology. The single model is the Eiffel language source
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text. Different views [69] can be provided, but they do not carry extra in-
formation. The use of a single language enforces the consistency of the
model.

As a consequence, specifications are limited to the expressiveness of
Eiffel. Every property of the specification needs to have a representation
in the programming language.

There are numerous specification problems that are not easy to express
in current Eiffel. For example, Eiffel does not offer specifications for real-
time properties or specifications on information flow, as needed by secu-
rity concerns. Specifications available in Eiffel are functional specifications,
specifying relations between pre- and post-states, and invariants on the
state.

In this chapter, we analyze the existing mechanisms available in Eiffel.
This includes the type system, contracts and assertions. We look at their
expressiveness and their theoretical foundations. The focus of the analysis
is formal reasoning, that is the ability to describe properties of executions
of the code and to prove these properties.

3.1 Type safety

Eiffel is centered around the concept of classes and features. Classes are
abstract data types (ADTs) [45]. The functions of the ADT become features
(methods, attributes) of the class. Furthermore, a class may or may not
provide an implementation for the features to be executed on a machine.
If a full implementation is provided for every feature, a class is called ef-
fective, otherwise it is called deferred.

Based on the idea of classes as types, Eiffel introduces a type system.
All types define a partial ordering v with the type ANY as the top and the
type NONE as bottom element. One type A is said to conform to another
type B if A v B holds.

Every entity (attribute, variable, argument, return value) is declared to
be of a specific type: that is a class with the generic parameters bound to
other types. The type system defines type safety: any value attached to that
entity at run-time is an instance of the corresponding type or any of its
subtypes.

A static type checker is used at compile time to verify that the property
of type safety is maintained for any execution of the program. This is
called static type safety, in contrast to a dynamic type checker, a system for
monitoring type safety at run-time and throwing exceptions should a type
violation occur.
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The checker verifies static type safety modularly, by only considering
the class text of some type T and the class text of classes inherited (directly
or indirectly) by T, to certify that the implementation of T is indeed type
safe.

A modular static type checker for current Eiffel cannot be sound. This
is caused by two language constructs in Eiffel that make it impossible to
certify type safety in a modular way: covariant redefinitions and the use
of generic parameters to type arguments.

Meyer [52, pp. 633] suggests the use of non-modular, global analysis to
ensure static type safety. This endeavor seems to be very difficult: Keller
[38] tries to implement a sound global analysis using several approaches,
even by extending the Eiffel language, but fails to provide a working so-
lution.

The GOBO tool chain for Eiffel [5] offers a tool called gelint imple-
menting a global analysis algorithm. While the tools indeed manages to
identify type violations not found by the modular type checker of the com-
piler, the tool is neither sound nor complete.

There is another problem, demonstrated by gelint: even if a global
analysis is able to detect an error, it rarely gives a meaningful and under-
standable error message. A problem found through global analysis im-
plies that the error is caused by the interaction of different modules in the
system and not by a single module alone. So, both modules can be con-
sidered type safe by themselves, and only joining them to form a system
creates the error.

3.2 Contracts

The Design by Contract [49] methodology of Eiffel allows the developer to
integrate specifications, called contracts, into the code of Eiffel programs.
It also defines requirements (related to these contracts) on executing fea-
tures of the class. If it can be shown that any execution will fulfill these
requirements, the class text is called correct with respect to its contract.
This property is also called class consistency [56, sec. 8.9.16].

• Every class text can be accompanied by a class invariant. The class
invariant is a set of boolean expressions. The evaluation of all these
expressions has to yield true at the beginning and the end of the
execution of any feature of that class.

• Every feature can be accompanied by a set of boolean expressions
called pre- and postconditions. Any execution of the feature started
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in a state where all evaluations of preconditions yield true, will ter-
minate and yield a state where all evaluations of the postconditions
yield true. Postconditions have the ability to evaluate certain subex-
pressions already in the pre-state, using the keyword old. Postcon-
dition form a relation between the pre- and post-state.

• For qualified feature calls of the form t.f(a), the value of t must
not be equivalent to Void and — should f have preconditions —
the evaluation of these preconditions on target t with arguments a
yields true.

• check instructions containing boolean expressions can be added to
the code at the instruction level. The evaluation of these boolean
expressions must yield true whenever the check instruction is en-
countered at runtime.

• For the specification of loops, Eiffel introduces loop invariants and
loop variants. Loop invariants are boolean expressions. Loop in-
variants must evaluate to true at the start of the loop and at the end
of each loop iteration. Loop variants are integer expressions. They
must evaluate to a positive value after each iteration and that this
value is smaller than the value of the previous iteration.

As seen by these definitions, Eiffel uses regular language expressions (with
the exception of the keyword old) to express specifications. This approach
has been adopted by most other languages featuring Design by Contract
([4], [41]). Here are some of its advantages:

• There is no “conceptual break” between the specification and the im-
plementation language. Developers do not have to switch back and
forth between two notations.

• Important properties are often abstracted into boolean queries. These
queries can be used in contracts, removing the need to duplicate the
effort in two language.

• Expressions are executable. This makes it trivial to monitor correct
behavior of the program at run-time.

At the same time, here are also problems introduced by using expressions
for contracts. In the next sections, we give an overview about these prob-
lems and suggested solutions.
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class A feature

x: INTEGER

f1 is
do
x := 1

ensure
post1: f2
post2: x = 2

end

f2: BOOLEAN is
do
x := 2
Result := True

end

end

Listing 3.1: Side-effects in contracts

3.3 Side-effects of contracts

The use of regular programming language expressions for specifications
raises the question of potential side-effects in these queries. If the evalua-
tion of the queries has an effect on the state of the system, then we might be
facing a “Heisenberg”-like problem in which the instrument of our mea-
surement (expressions used in contracts) influences the subject of the mea-
surement (the implementation).

We might get different behavior based on whether we evaluate the con-
tracts or not. Lets consider the Eiffel code of listing 3.1, demonstrating this
effect.

This extract should not be correct: the post-condition post2 of f1 is not
satisfied by the execution of the body of the routine. Run-time monitoring
will not detect this flaw, as the evaluation of post1, which happens before
post2, will make post2 yield true.

Fortunately, we are not in physics. The problem does matter for the
monitoring of contracts at run-time as described in section 3.2. But for for-
mal reasoning, we can exclude the evaluation of the expressions from the
execution of the program. The only point that matters for the evaluation
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f(x,y:INTEGER)
require
pre: x / y >= 1

Listing 3.2: Side-effects in contracts

of the contracts is the return value. Instead of really executing the code, it
is possible to say “what would be the return value of the expression if we
would execute the contract”.

In listing 3.1, we would consider True to be the return value of f2, but
we ignore the update of x := 2 in f2. Instead, the can assume that post2
is evaluated independely of post1. Weakest precondition reasoning re-
veals that the code is indeed incorrect.

3.4 Partial functions in contracts

More delicate than side-effects in contracts is the possibility for the con-
tract to use partial functions. Partial functions are feature invocations that
carry a precondition on the arguments, or the use of an entity as target of
the call that might have the value Void.

Listing 3.2 illustrates this. The value of the precondition pre for the
feature f is not defined if y is equal to 0. There are two ways to interpret
such a contract:

• Every precondition must be total: A division by zero contract violation
is thus the fault of the supplier as the supplier did not provide a total
function as contract.

• A precondition may be partial: It is the obligation of the client to
analyze the contract and detect the implicit precondition y /= 0.

ISO/ECMA [56, sec. 8.26.10] defines the second interpretation to be the
one used in the Eiffel programming language. The caller of a feature does
not only need to satisfy the preconditions, but also has to be sure that all
implicit preconditions of the features used in the contract are satisfied.

3.5 Pure object-orientation

The ISO/ECMA standard defines only few elements that constitute an ex-
pression. This is done to minimize the complexity of the language and
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prominent also in other “pure” object-oriented languages such as Smalltalk
[31] or Ruby [78].

• Feature invocation is used to call queries on the current or other
objects. Feature invocations are not total, as they require the target
object to be different from Void. Any operator others than = and /=
(which is equivalent to not ( E1 = E2 )) requires that the first argu-
ment to the operator is not Void and is mapped to a feature invoca-
tion of the corresponding prefix or infix feature. Also, a feature
invocation has to respect the precondition of the feature called.

• It is possible to create new objects using a creation expression or
agent expressions. Some classes like STRING, TUPLE, INTEGER or
BOOLEAN offer object creation through manifest expressions.

• Object equality of reference types using the = and /= operator. These
are the only operators not defined in the context of a class are thus
not features. The semantics of the = is different for reference and ex-
panded types: for reference types, the reference are compared. On
expanded types, a feature called is equal is called.

• Expressions used in features can reference arguments or declared
local variables.

• Void is a constant reference, referencing the “non-object”.

This enumeration is not complete (see the syntax rules in the ISO/ECMA
standard [56, sec. 8.28.1]), but includes the most important constructs in
Eiffel expressions. The mathematics framework provided by the language
standard only introduces equational reasoning.

The reduction to very few constructs in the assertion language has ad-
vantages and disadvantages for formal verification of software. The main
advantage is that the semantic description of the language remains small.
The disadvantage is the need to define even the most simple language
constructs in terms of features and contracts. We approach this problem
through the use of axiomatic classes as introduced in the next section.

3.6 Axiomatic classes

The ISO/ECMA Eiffel standard defines a set of basic types [56, sec. 8.30].
Basic types are boolean, natural and integer numbers, characters, float
point values, pointers and strings.
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The specification of these classes is regarded as outside of the scope
of the language standard. Instead, these classes are defined in ELKS [65],
the Eiffel Language Kernel Standard. ELKS is an Eiffel interface descrip-
tion making extensive use of free form comments. The contracts provided
are strong under-specifications. The FreeELKS project [6] provides further
refinements of this specification and a partial implementation. The final
implementation is provided using built-in mechanisms in Eiffel compilers
and code generation technology.

For the verification of Eiffel classes, this means that there is no formal
description of the Eiffel basic types. Reasoning about feature invocations
on these classes cannot be done. As most of these basic types (specially
BOOLEAN and INTEGER) are expanded, it is not even possible to bootstrap
their semantics using equational reasoning of ADT specifications.

A solution to this problem is to single out a certain set of classes as
axiomatic classes.

Definition 3.1: Axiomatic class
A class is “axiomatic” if its interface describes a concept defined
by a mathematical theory rather than by its contracts.

Using this approach, we can relate the class BOOLEAN to a boolean al-
gebra. Naturals and integers are introduced, for example, using the Peano
axioms.

Axiomatic classes are not only helpful to introduce basic types into the
language. They also make it possible to declare more complex data types
using standard mathematics. They are an important vehicle for the defini-
tion of model classes in chapter 6.

3.7 Language semantics

In section 3.2 we have defined the correctness of a given class text. We have
related the correctness of a class text to values computed by the evaluation
of expressions at certain points of the execution.

To prove the correctness of an Eiffel class text, we have to understand
what it means to execute Eiffel code on a von-Neumann style machine.
Only then are we able to prove that the evaluation of a expression (given
as a program text) in a certain state will always yield a certain value. We
have to understand the given program text as a mathematical object.

The theory that relates program text and mathematics is called a formal
language semantics. Eiffel does not have a formal language semantic for the
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full language. Some small subsets have been formalized ([70], [64], [54],
[55]). The ISO/ECMA Eiffel standard itself is not a formal language se-
mantic, as it uses free language text which is insufficient for mathematical
reasoning.

Without the availability of a sound formal language semantic for Eiffel,
there cannot be formal verification of Eiffel programs. The definition of a
formal semantic for Eiffel is thus the first step and defined in chapter 5.

3.8 Contract-based reasoning

Eiffel regards classes as software modules (“Classes should be the only mod-
ules.”, [52, p. 24]) and promotes information hiding between them:

The designer of every module must select a subset of the module’s
properties as the official information about the module, to be made
available to authors of client modules. Application of this rule as-
sumes that every module is known to the rest of the world [...] through
some official description, or public properties. [...] The public prop-
erties of a module are also known as the interface of the module.
(Meyer [52, p. 51])

Authors of client modules are restricted in their reasoning to the informa-
tion that is available in the interface specification of the supplier.

This has major impact on reasoning about the correctness of Eiffel code:
until now, we had assumed that we could show correctness by evaluating
the implementation of the expression using some formal language seman-
tic. But the implementation is not part of the interface. We cannot reason
about code that is not available to us.

Instead, we have to rely on the contracts of the features that are used in
the expression. Furthermore, we have to rely on the correctness of the hid-
den implementation of the features with respect to these contracts. Rea-
soning about a given class text by only using the interface specifications of
its suppliers is called modular reasoning.

Definition 3.2: Modular verification
A proof, that a property P of a class C holds, is modular, if it
only relies on the properties of its own source code, its ancestors,
and the interface of its direct and indirect suppliers is taken into
account.
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We cannot restrict ourselves to just the direct suppliers of C: the con-
tracts of the direct suppliers of C are themselves written in terms of feature
calls on other suppliers. We can only stop when we encounter contracts
written entirely using calls on axiomatic classes or reference equality.

Considering listing 3.3 containing the class A and the contracts of classes
B and C. To prove the correctness of prove_me, we have to take the con-
tract of B into account. To reason about the contract of value in B, we have
again to look up the contract of C.

Unfolding can stop there, as the specification of the feature call > is
defined in the class INTEGER. INTEGER is an axiomatic class, modelling
integer values. The specification is given through a mathematical theory
and not though the feature contracts.

Iteratively looking up contracts of used features, replacing the argu-
ments, is called unfolding contracts. The result of unfolding contracts is a
set of boolean expressions.

We unfold the contracts until sufficient knowledge to prove correctness
is accumulated, or until only reference equalities or feature invocations of
axiomatic classes are left. Proving prove_me by unfolding the postcondi-
tition in listing 3.3 looks as follows:

Result := x.value ensure Result > 10

is reduced by weakest-precondition reasoning to

x.value > 10

adding the postcondition of value of class B

(x.value = x.y.value) ⇒ x.value > 10

adding add the postcondition of value of class C

(x.value = x.y.value ∧ x.y.value > 10) ⇒ x.value > 10

which can be simplified to

true

Unfolding illustrates a simple reasoning mechanism for contracts. We can
model unfolding in mathematics through functions, similar to the lambda
calculus.
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class A feature

x: B

prove_me: INTEGER is
do
Result := x.value

ensure
Result > 10

end
end

class B feature

y: C

value: INTEGER
ensure
Result = y.value

end

class C feature

value: INTEGER
ensure
Result > 10

end

Listing 3.3: Contract-based reasoning

3.9 Recursive contracts

The contract of a feature f is called directly non-recursive if f is never en-
countered while unfolding the contract of f. The contract of a feature f

is called non-recursive if all features encountered during unfolding of f are
directly non-recursive. Otherwise, the contract of feature f is recursive.

Assuming that the program text of all features is finite, it is straight
forward to prove that unfolding will always terminate: assuming that the
program text contains n features and the longest contract of a feature con-
tains m feature invocations, then mn is an upper bound the number of
unfolding operations (the unfolding operations form a tree with the max-
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is_equal (other: IMMUTABLE_LIST[G]): BOOLEAN
-- Does ‘Current’ contain the same items as ‘other’,
-- in the same order?

require
other_exists: other /= Void

ensure
same_contents:
Result = (is_empty and other.is_empty) or else

((not is_empty and (not other.is_empty))
and then
(head = other.head and
tail.is_equal (other.tail)))

Listing 3.4: Recursive contract for is equal in IMMUTABLE LIST[G] as
described in [58].

imum depth n and the maximum number of children per node of m).
In regular Eiffel, only the basic types are defined as axiomatic classes.

Most basic types are fixed-sized data structures: integer, boolean, float or
pointer have a predefined memory footprint. The only basic type without
a fixed-size is string.

If we ignore the possibility to encode arbitrary data into strings, contract-
based reasoning about non-recursive contracts can only express properties
on a bounded part of the memory. Non-recursive contracts are thus in-
appropriate for the description of unbounded data structures like lists or
stacks.

To solve this problem, Mitchell and McKim [58] advertise the use of re-
cursive contracts. They contract the is_equal feature of a class IMMUTABLE
_LIST[G] using the contract shown in listing 3.4.

The use of recursive contracts as a specification makes it possible to
contract unbounded data structures using bounded contracts. But there
are a two problems introduced by this technique:

• Reasoning about recursive contracts might require fixpoint reason-
ing, as the number of unfold operations can be defined by values
only known at run-time. The fixpoint computation might require the
specification of an invariant, but Eiffel does not provide a language
construct for this.

• Unfolding the recursive contract might never terminate. If the con-
tract does not terminate, there is no clear understanding of the se-
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mantics with respect to correctness. Proof of termination might re-
quire the specification of a variant.

Because of these reasons, recursive contracts seem to make it more dif-
ficult to reason about Eiffel programs. Recursive contracts are difficult to
read and understand.

To avoid the need for recursive contracts for unbounded data struc-
tures, we suggest the definition of axiomatic classes modelling unbounded
data and to use these classes to contract unbounded data structures. The
definition of such classes is described in chapter 6.

3.10 Agent-based contracts

Another technique to describe properties of unbounded data structures
is the use the agents. Agents are feature invocations encapsulated into
objects, similar to mathematical closures.

With agents, it is possible to express mathematical quantifiers like ∃ or
∀ over finite data structures by the definition of features there_exists

or for_all that take an agent as argument and evaluate the agent on all
elements of the data structure.

This approach creates problems. First, agents cannot be equipped with
contracts. It is thus impossible apply modular reasoning to code using
agents. Instead, we have to track the agent through the code from its cre-
ation up to its call.

Second, there are no features using agents in the basic types of Eiffel.
Thus, the semantics of features using agents are defined again through the
contract of the feature.

3.11 Specification features

The last possibility to specify properties of unbounded data structures
in Eiffel is the use of specification features. Specification features are fea-
tures only defined to test an invariant property of the data structure. They
can be used to simulate a for-all quantification, using the argument as the
quantified variable. Listing 3.5 shows the definition of a feature that certi-
fies that a list of integers is sorted.

A specification feature reasons on the pre-state of the computation, de-
scribing its assertions within an old clause. Thus, it is not possible for the
feature to establish the postcondition by its own implementation. Instead,
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sort_test_feature (index: INTEGER)
-- Test feature that the integer list is sorted.

require
valid_index: index > 1 and index <= count

ensure
is_sorted: old (i_th (index-1) < i_th(index))

Listing 3.5: Specification feature for a sorted list of integers

the postcondition becomes an invariant. But in contrast to an invariant,
the test feature can work with arguments that have unknown values.

The drawback of this approach is that specification features pollute the
interface of a class with useless definitions. Though they make it possible
to provide all-quantified invariants, they seem to be a very unorthodox
way of providing specifications for classes. Until now, we have never seen
the use of specification predicates in contracts.



CHAPTER 4

MODULAR REASONING AND
VERIFICATION

The need for modular verification is not obvious. Instead we might argue
that proving properties about programs is such a difficult task that we
should first try to go for the “easier road” by proving properties in a non-
modular way.

In this chapter, we define what we mean by modular verification. Also,
we motivate why reasoning Eiffel needs to be modular. We argue that a
non-modular approach to verification violates the foundations of object-
oriented development and is thus not acceptable.

4.1 Modular boundary

Defining modular verification means defining a precise modular boundary:
which information is taken into account to prove that a class is correct. If
this information changes, the proof may be invalidated. Any information
that is not taken into account may change arbitrarily without violating the
correctness proof of the program.

The goal is to minimize the set of information that is inside this bound-
ary and thus to make the proofs as robust as possible to changes in the
system.

Assume that we want to prove the correctness of an implementation
of some class C. Obviously, the source text of C is required for the proof.
Other information might be about:

• direct parents, class that C directly inherits from.
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• indirect parents, the closure of the parent relationship, thus all an-
cestors of C.

• direct suppliers, classes that are used by C.

• indirect suppliers, the closure of the supplier relationship.

• other classes that are used in the system.

Orthognal to the source to the information is the question of information
hiding. The proof might either rely on the full class text, or restrict itself to
the information provided by the interface.

4.2 Modularity in inheritance

The interface specification of parent classes is needed for reasoning about
the correctness of a class: the implementation of a feature may call inher-
ited features using “unqualified calls” [56, sec. 8.23.4], the semantics of
these feature calls is carried in the feature contracts. Also, the inheritance
relation demands that redefined features must satisfy the inherited con-
tracts, and is only allowed to weaken the precondition and to strengthen
the postcondition [52, p. 578].

But relying only on the interface specification is not sufficient. Reason-
ing about the child requires information not provided by the interface.

1. Because of uniform access [52, p. 57], we do not know through the
interface specification if a given argument-less query is a function
or an attribute. But the assignment operator := is only allowed for
attributes. Thus, it is necessary to know whether a given argument-
less query is an attribute or a function.

2. Unqualified feature calls do not have to respect export restrictions.
Thus, it is possible to call features that are exported to NONE. These
features are not part of the interface specification.

3. Features do not have to preserve the class invariant when subject to
an unqualified call. The implementation of a feature is undefined
when called without a valid class invariant.

4. Feature redefinitions have to fulfill all inherited contracts. This in-
cludes postconditions that are using private features, and are thus
not part of the interface specification.
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5. Last but not least, inheritance and partial redefinition of feature im-
plementations can expose the fragile base class problem as defined by
Mikhajlov and Sekerinski [57]. The solution to this problem is to re-
prove all inherited features (proving the flattened text of a class). This
requires full knowledge of the feature implementation.

For the verification of Eiffel code, it is impossible to form a modular bound-
ary on the basis of the inheritance relation. Instead, we will assume that
we always have full knowledge of the text of all direct and indirect parent
classes. Using these classes, we are able to create the flattened class text.

4.3 Modularity of suppliers

To reason about the effect of feature invocations, we have to include the
interface specification of all classes defining the static types of the entities
we are using in our (flattened) class text. The legality and effect of a feature
invocation on the entity can then be understood by reasoning on the type,
and the pre- and postconditions carried by the interface specification.

It is possible to call an inherited feature on the entity. Consequently,
the interface specification of the supplier has to be the “fattened interface
specification”, that is the interface specification of all parent classes.

The interface specifications of child classes are not needed, although at
runtime the actual object stored in the entity may be of a subtype defined
by a child class. The reason lies in the rules for inheritance: the precon-
dition of a parent class implies the precondition of the child class, and
the postcondition of the child class implies the postcondition of the parent
class. We can reason on the basis of static type of an entity and on the
basis of the dynamic type of the attached object. Doing this, we loose in-
formation, but it reduces our modular boundary and very often the exact
dynamic type is not known anyway.

As explained in section 3.8, to reason only on the basis of contract, we
have to unfold these contracts. Thus, the contract of features used in con-
tracts needs to be included within out modular boundary. The modular
boundary needs to include the interface specification of all classes that
take part in this unfolding.

4.4 The imperative of modular verification

Verification of Eiffel must be modular. Otherwise, we sacrifice impor-
tant advantages of the object-oriented paradigm and we violate the Eif-
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fel development process and methodology. The next sections summarizes
the advantages of modular verification over an “a posteriori” verification
strategy using global analysis.

4.4.1 Non-modular verification is not easier

As personal experience with teaching loop invariants suggests, it is much
more difficult to come up with the right functional specifications than to
do the actual proof. Even during non-modular verification, we will invent
these theorems and carry them around in our proofs. But, in contrast to
modular verification using full specifications, these theorems do not be-
come part of the specification. So they have to be invented again every
time a feature is used.

Modular verification has to put all properties of a feature into the con-
tract of the feature. This simplifies reusing proofs and limits the domain of
discourse for a proof. The set of proof obligations and hypothesis remains
manageable.

4.4.2 Cluster development model

Eiffel suggests the cluster development model [52, pp. 926]. The idea is to
develop different parts of the software in parallel, each containing, among
other things, an own validation and verification phase.

Non-modular verification would instead require that the validation
and verification phase come after all required modules have been imple-
mented, putting the verification phase outside of the cluster model and
instead at the end of the development cycle.

4.4.3 Software reuse

The cluster development model promotes software reuse. After successful
implementation and verification, it should be possible to factor out parts
of the software to make them available to other systems.

If the proof of correctness is done using non-modular reasoning, it is
not possible to extract, from the proof of the whole system, proofs of in-
dividual parts. The part that is factored out for reuse has to be delivered
without a certificate of correctness.

With modular verification, the correctness proof of a class becomes a
certificate of correctness of the class. This certificate can be delivered to-
gether with the class. The class becomes a “trusted component”, a soft-
ware component with the certified quality of correctness.
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4.4.4 Modular continuity
The main motivation for object-orientation is the introduction of modu-
larity into the development process. Understanding that software main-
tenance takes up a large part of the software development cycle, changes
to the software should stay confined to the corresponding modules, as ex-
pressed by Modular Continuity:

A method satisfies Modular Continuity if, in the software architec-
tures that it yields, a small change in a problem specification will
trigger a change of just one module, or a small number of modules.
(Meyer [52, p. 44])

Non-modular verification violates Modular Continuity: specification
boundaries form the natural fence to confine change to a module or a small
number of modules. If the proofs do not rely on these specification bound-
aries, the proof needs to be redone completely after the change.

4.4.5 Complete functional specifications
Modular verification forces us to write full functional specifications for
all suppliers. Without modular specifications, there is no check that the
contracts of suppliers are sound or complete.

The problem of partial specifications is intricate: the fact that a spec-
ification is partial will not be revealed during the correctness proof. But
when the correctness proof is used as a certificate for the system quality,
then deploying the system in an environment will reveal these deficien-
cies. This is late in the development process and the costs of fixing the
deficiencies are very high.

The development process should discover holes in the specifications as
early as possible. Modular verification enforces this.

4.4.6 Subtyping and polymorphism
It is possible to subtype a class to extend it (see Open Closed Principle, [52, p.
57]). Through polymorphic attachment, the static type of an entity and the
dynamic type of its value may diverge. Eiffel provides a set of subtyping
rules [52, pp. 835] relating the contract of the parent class and the child
class. The purpose of these rules: any implementation that is correct for
the child’s contract is also correct for the parent’s contract.

If we can prove the correctness of a class using only the contract of the
static type of an entity (and not its implementation) we know that class is
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correct irrespectively of the dynamic type of the entity. This is a tremen-
dous reduction of proof complexity, as we do not have to take dynamic
binding into account.

4.5 Summary

We regard the ability to reason modularly about Eiffel code as a key quality
for the success of an Eiffel verification technique. Modular reasoning here
means the reasoning on the basis of:

• Text of the class.

• Text of all direct or indirect parent classes.

• Interface specification of all direct and indirect suppliers.

The success of object-orientation relies heavily on modularization, bottom-
up development and information hiding. Going for a non-modular veri-
fication technique would result in a mode of reasoning violating object-
orientation.

We have also seen that it is not possible to apply modular reasoning
for the inheritance relation. Instead, child classes always need to have all
details of the inherited code to certify correctness. Information hiding is
not possible through the inheritance relation. Privacy relations such as
private or protected as available in C++, C# or Java just obscure this
insight.
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LANGUAGE SEMANTICS

There is little point in verifying Eiffel without a well-defined semantics for
the language. The two successive Eiffel standards, ETL2 [50] and ECMA-
367 [56], provide extensive descriptions of the Eiffel language, but the se-
mantics is still provided in an informal, natural language form that is not
suited for formal reasoning.

The purpose of this chapter is to define a significant subset of Eif-
fel through the introduction of a natural, big-step operational semantic
description[63].

An early version of this semantics was published as Eiffel0 [76]. The
goal of Eiffel0 was mainly to explain the semantics of dynamic frame con-
tracts (see chapter 7). The semantics presented in this chapter significantly
extends Eiffel0, including weak purity, inheritance/subtyping, genericity,
once and creation procedures.

The language described tries to be as close as possible to the official
ECMA standard, but explicitly excludes some new language features:

• Attached types [56, sec. 8.11.19] an object tests [56, sec. 8.24.1]: The
problem with these constructs is that they are neither widely used
nor very well understood. It can be expected that these constructs
will change significantly in future revisions of the Eiffel language.

• Exception handling: Eiffel uses exception handling to introduce ro-
bustness, to describe behavior in the case of incorrect software. Cor-
rect code should not throw exceptions. Removing exception han-
dling from the operational semantics dramatically simplifies reason-
ing.

• Agents: reasoning with agents in Eiffel is problematic, as they do not
carry contracts.
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The semantics description of the Eiffel programming language proceeds
in three separate steps:

1. In the static model, we define sets and functions that describe the
Eiffel code as a high-level description. The functions declared are
constant throughout the execution of a program, as they describe
the analyzed program code, not the dynamic behavior at run-time.
We assume that all compilation checks have been performed on the
Eiffel source code and we do indeed have legal Eiffel code.

2. The state model describes the state of a machine executing Eiffel
code. The state is defined as an abstract data type.

3. The Execution model describes the effect of executing Eiffel code as
defined in the static model on the state as defined in the state model
by a von-Neumann type of machine.

Each model is based on the previous model, thus forms an extension. The
given structure makes it possible to replace any of the later models while
keeping the previous one.

The static model is not a direct model of the language or its abstract
syntax tree. It simplifies the language. The simplifications are not achieved
by removing language features, but instead by removing redundant in-
formation and flattening (resolving moving the inherited code from the
parent to the child). These transformations are described in section 5.3.4.

5.1 Related Work

A first description of the semantics of Eiffel was published in the book
“Eiffel, the language” [48], superseded in 1992 by a second revision [50].
A third revision is currently in preparation.

The main definition of the Eiffel language is the ECMA/ISO Eiffel stan-
dard[56]. This standard is the official document for the definition of the
Eiffel language. It incorporates a number of extensions to the language
as it currently implemented in Eiffel compilers, for example the work on
attached types or type safety. Some of these extensions might never get
implemented as the Eiffel ECMA committee is constantly reviewing these
extensions and is experimenting with alternative solutions.

Formal definitions of the Eiffel programming language are contained
in the work by Paige and Ostroff[70] as well as in the research on SCOOP
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by Nienaltowski[64]. Another semantics for a core subset of Eiffel was
done by Thomas Bietenhader [8].

A first version of the theory presented here was published under the
name of Eiffel0 [76].

The heap model presented here is based on the work by Müller[61] for
Java.

5.2 Mathematical notation

The mathematical notation used in this thesis is derived from two different
sources:

• First-order logic and Zermelo-Fraenkel set theory as introduced in
the B book by Abrial [1].

• The notation for defining abstract data types introduced by Müller
in his thesis [60].

Appendix A gives a summary of uncommon symbols.
Except for the heap model, all definitions and axioms are created specif-

ically for the Eiffel language, but try to follow text book examples for the
definition on an operational sematics. The heap model is based on a given
semantics for Java [60].

We always first express definitions and axioms mathematically, and
then explain the connected semantics in free form text, referencing the la-
bels of the formulas. This makes it possible to use the definition as refer-
ence, separating formalization from informal text.

Basic sets used for reasoning are called carrier sets (sometimes called
sorts). All carrier sets are not empty and disjoint from each other.

Regular sets start with capital letters, functions and relations — if not
using specific infix operators — have names starting with lower-case let-
ters. If a name is made out of multiple words, “CamelCase” is used.

Arbitrary function symbols combining prefix, postfix and infix nota-
tion are defined using the underscore to declare open argument posi-
tions. Binary functions using symbols use infix notation.

Proofs are a sequence of H1, H2, · · · ` G theorems, where H1, H2, . . . are
a list of hypothesis, and G is a given goal of the proof. Proofs are shown
using backwards reasoning, simplifying the theorem to simpler theorems
using implication rules. These proof steps are introduced by a justficiation
and theV symbol.
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5.3 Static model

The static model is a high-level view on the program text after compila-
tion. It defines Eiffel program text at a very late part of the compilation
phase. All names have been resolved and dynamic binding tables have
been computed.

5.3.1 Classes and Types

Class is a finite carrier set (5.1)
Type is a carrier set (5.2)

constraints : Class → Type∗ (5.3)
v: Type ↔ Type (5.4)

classOf : Type → Class (5.5)
parameters : Type → Type∗ (5.6)

(∀i : vi v constraints(C)i)⇒ C[−→v ] ∈ Type (5.7)
A v A (5.8)

(A v B) ∧ (B v C)⇒ (A v C) (5.9)
(A v B) ∧ (B v A)⇒ (A = B) (5.10)

FrozenType ⊂ Type (5.11)
∀T ∈ Type, F ∈ FrozenType : T v F ⇒ T = F (5.12)

EType ⊆ FrozenType (5.13)
RType = Type \ EType (5.14)

ANY ∈ RType (5.15)
∀T ∈ Type : T v ANY (5.16)

NONE ∈ RType (5.17)
∀T ∈ RType : NONE v T (5.18)

ANY 6= NONE (5.19)

The Eiffel system is defined by a set of classes (5.1). Each class can be
uniquely identified by a name, which we write using Eiffel-style capital
letters: INTEGER, BOOLEAN, etc. The set of all classes is finite, as the pro-
gram text is finite.

Each class defines a sequence (vector) of generic parameters and con-
straints −→p for these parameters (5.3). Constraints are types (5.2). If no
explicit constraint is given, then we assume that ANY (5.15) is the implicit
constraint. The sequence may be empty. A type is created from a class by
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instantiating the generic parameters with types that conform to the con-
straints.

If −→p is the empty sequence, then the type can be written as C instead
of C[]. In contrast to the set of classes, the set of types is infinite.

Every type can be queried for its constructing class (5.5) and its type
parameters (5.6).

As the set of types is potentially infinite, it is impossible to compute
the set of all dynamic types at compilation time. This differs from the
definition of dynamic type set in ETL2, which implies that the dynamic type
set of an entity can be computed at compilation time:

The set of possible dynamic types for an entity or expression x is called
the dynamic type set of x. [. . . ] It is possible to determine the dy-
namic type set of x through analysis of the classes in the system to
which x belongs, by considering all the attachment and reattachment
instructions involving x or its entities. (Meyer, ETL2 [50, p. 323])

The relation v (5.4) is the subtype relation. It is a partial ordering of types,
and is thus reflexive (5.8), transitive (5.9) and antisymetric (5.10). A v B
reads as “type A conforms to type B”.

Some types are frozen (5.11): they do not have subtypes (5.12). A given
type can be either an expanded type (5.13) or a reference type (5.14). Ex-
panded types are always frozen.

The special type ANY is a reference type (5.15). It is the supertype of all
types (5.16). The type NONE is a reference type (5.17) and the common sub-
type of all reference types (5.18). ANY and NONE are different types (5.19).

5.3.2 Features

Feature is a carrier set (5.20)
defIn : Feature → Type (5.21)

features : Type → P(Feature) (5.22)

∀T ∈ Type : features(T ) = defIn−1[T ] (5.23)
version : Type → (Feature 7→ Feature) (5.24)

∀T ∈ Type : ran(version(T )) ⊆ features(T ) (5.25)

∀B ∈ Type \ {NONE}, A ∈ Type :

B v A⇒ features(A) ⊆ dom(version(B))
(5.26)

features(NONE) = ∅ (5.27)
args : Feature → Type∗ (5.28)
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ret : Feature 7→ Type (5.29)

∀m ∈ ran(version), f ∈ Feature, T ∈ Type :

ret(f) = T ⇒ ret(m(f)) v T
(5.30)

∀m ∈ ran(version), f ∈ Feature, n ∈ dom(args(f)), T ∈ Type :

args(f)(n) = T ⇒ args(m(f))(n) v T
(5.31)

Query = dom(ret) (5.32)
Command = Feature \Query (5.33)

Eiffel code defines a set of features (5.20). Though features are defined
in classes, we regard features as introduced by types: features are always
relative to certain type (5.21), they never appear in more than one type. A
type can be queried for its features (5.22).

Features are linked together through the subtyping relation: for every
feature f of A and any subtype B of A, there exists exactly one feature g
in B that is the descendant version of f of A. This is expressed by the version
function (5.24) and axioms (5.25) and (5.26). The only exception to this rule
is the type NONE, that does not define any features (5.27), although it is a
subtype of all reference types. Excluding NONE from this rule creates the
problem of Void calls (a.k.a. null-pointer exceptions), causing version to be
undefined if we want to look up the descendant version of some feature
in Void.

Each features defines a sequence of argument types (5.28), and pos-
sibly a return type (5.29). The types for arguments and the return type
of descendant versions must conform to the type in the original version
(5.31) (5.30). This means that arguments and return values can be covari-
antly redefined in subtypes. As described in section 3.1, this may break
the type system.

Queries are all features defining a return type (5.32); the other features
are called Commands (5.33).

5.3.3 Program text

Expr is a carrier set (5.34)
Instr is a carrier set (5.35)
Local is a carrier set (5.36)
Current ∈ Local (5.37)
Result ∈ Local (5.38)

ManifestConstant is a carrier set (5.39)
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typeOf ∈ Expr → Type (5.40)

Actual implementations in Eiffel are supplied by program text. We dif-
ferentiate between instructions (5.35) and expressions (5.34). Expressions
are used to compute values and to express contracts. Instructions describe
state change and flow of control.

The grammar for expressions is extended by a construct not available
in Eiffel: the possibility to assign to local variables in expressions. The tar-
get local used for this assignment always has to be a fresh variable that is
not used somewhere except in the constructs that have explicitly rewrit-
ten. The introduction of this limited form of assignment into expressions
makes it possible to simplify many of the other language constructs, like
old expressions or argument passing. The simplifications are discussed in
section 5.3.4.

The following grammars for recursive trees defines these two data struc-
tures describing program text:

Expr :=Local

| (Local := Expr);Expr

| createFeature[(
−−−→
Local)]

|ManifestConstant

|Local = Local

| [Local .]Feature[(Local , . . . )]

(5.41)

Instr := ε

| [Local .]Feature[(Local , . . . )]

|Local := Expr

|Feature := Local

| Instr [; ] Instr

| fromuntilLocal

invariantExpr

variantExpr

loop Instr

end

| if Local then Instr else Instr end

| checkExpr end

| attribute

(5.42)
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Depending on the context, program text may reference a number of local
entities (5.36). Local entities are arguments of surrounding feature, de-
clared local variables, Current (5.37) and Result (5.38). In every context
(contract, routine body), local entities have a well-defined static type.

In section 3.5, we have described that Eiffel expressions are based on a
few number of constructs. We can see that only 6 production rules for ex-
pressions and 9 rules (including the special attribute rule) are needed
to define the full grammar of executable code in Eiffel. It is sufficient that
the only instruction referencing expressions is the assignment to local vari-
ables.

ManifestConstant(5.39) are special creation instructions creating con-
stant values. Examples are integer values like 0, 1, -40 or 4711 to create
instances of INTEGER, True and False to create instances of BOOLEAN or
"Hello" to create the corresponding instance of STRING.

We are referencing features directly, assuming that resolving the names
has already been done statically by the compiler. All features that ap-
pear in code are features of the of the static type of the target of the call.
The static type of any expression is available through the typeOf function
(5.40).

Instructions form the body of feature implementations. They are struc-
tured code. The special instruction attribute is used to mark that a
feature is implemented as an attribute. It may only appear at the top of an
instruction tree.

5.3.4 Language simpliciations
The given grammar assumes that we can do a number of simplifications
at compile-time without changing the semantics of the code:

1. Instructions in the from clause are moved in front of the loop:
from I1 until E1 invariant E2 loop I2 end
is rewritten to
I1 from until E1 invariant E2 loop I2 end

2. Empty else clauses are added to all if instructions:
if E then I end
is rewritten to
if E then I else end

3. elseif clauses are removed and replaced by corresponding inner if
clauses:
if E1 then I1 elseif E2 then I2 else I3 end
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is rewritten to
if E1 then I1 else if E2 then I2 else I3 end end

4. debug instructions are removed.

5. Multi branch instructions (inspect) are replaced by semantically
equivalent if instructions.

6. Object creation always happens in expressions: create x.make

is rewritten to
x := create make

As all features, in our case make are directly linked to a specific type,
adding information on the target type, like in create {T}.make is
not necessary.

7. Calls to old have been replaced by assigning to fresh local variables
in the precondition and then to reference these local variables in the
postcondition instead of the old expression:
require P do C ensure Q(old E)end
is rewritten to
require X := E ; P do C ensure Q(X)end
where X is a fresh local variable.

8. Arguments to features or creators are always local variables. Argu-
ments that are not local variables are replaced by an assignment to
a fresh local variable and then the use of this local variable as argu-
ment:
t.f(a)

is rewritten to
X := a ; t.f(X)

where X is a fresh local variable.

9. The same rule holds for the target of a call:
t.f(a)

is rewritten to
X := t ; X.f(a)

where X is a fresh local variable.

10. Also, we remove expressions from the condition expressions in if
clauses:
if E then A else B end
is rewritten to
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X := E ; if X then A else B end
where X is a fresh local variable.

11. In the case of loops, we remove expressions from termination condi-
tions:
from until T invariant I variant V loop B end
is rewritten to
TL := T

from until TL invariant I variant V loop
B ; TL := T end
where TL is a fresh local variables.

12. All calls of Precursor have been flattened out by the inherited im-
plementation. Flattening of Precursor can always be done as recur-
sion is not possible using such calls: The inheritance tree is always
finite and acyclic. Calls to Precursor functions are flattened by cre-
ating a private function in the current class and duplicating the im-
plementation of the inherited function. Precursor can never access
an attribute, as redefining attributes is not allowed.

All simplifications are possible by an analysis of the given program text,
using simple refactoring rules or other semantically neutral transforma-
tions.

5.3.5 Contracts

pre : Feature → Expr (5.43)
post : Feature → Expr (5.44)

inv : Type → Expr (5.45)

All features carry contracts. Each feature has a precondition (5.43) and a
postcondition (5.44). Each type has a class invariant (5.45). Contracts are
boolean expressions.

We can assume that every feature has a pre- and a postcondition, and
that every type has an invariant: if no contract is expressed in the Eiffel
code or inherited, then the expression is the ManifestConstant True.

Contracts include all inherited contracts, properly combined following
the Eiffel inheritance rules. The precise rules governing inheritance re-
quire an understanding of state and contract evaluation. They are defined
in section 5.8.
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5.3.6 Implementation

body : Feature 7→ Instr (5.46)
EffType ⊆ Type (5.47)

DefType = Type \ EffType (5.48)
∀T ∈ EffType, F ∈ features(T ) : F ∈ dom(body) (5.49)

Attribute = body−1[attribute] (5.50)
Attribute ⊆ Query (5.51)

Routine = dom(body)− Attribute (5.52)
Function = (dom(body) ∩ Query)− Attribute (5.53)

OnceFunction ⊆ Function (5.54)

Creator ⊆ (Command ∩ defIn−1[EffType]) (5.55)

Features may carry implementations, defined by the body function (5.46).
Some types are effective (5.47), all others are deferred (5.48). An effective
type defines an implementation for every feature (5.49). For other types,
the body function may be partial.

Feature implemented using the attribute instruction are contained
in the set Attribute(5.50). Attributes are always queries (5.51). All other
feature with implementations are called routines (5.52). Implemented queries
that are not attributes are called functions (5.53).

The implementation of a function might be declared as once (5.54).
Such an implementation is only executed once on the first call. Future
calls to the feature yield the same return value as the first call, without the
execution of the feature.

A subset of the features for a given effective type are used to initialize
instances of this type. These features are called creation procedures (5.55).
Creation procedures are always commands.

5.4 State model

State is a carrier set (5.56)
Heap is a carrier set (5.57)
Env is a carrier set (5.58)

Global is a carrier set (5.59)
env : State → Env (5.60)
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heap : State → Heap (5.61)
global : State →Global (5.62)

In an operational semantic, we define the execution of a program as a state
transformation, thus always considering a given piece of code and state,
and describing the resulting state. In this section, we define the data struc-
ture that is sufficiently precise to describe the state of an Eiffel program at
a discrete point in time.

The state (5.56) has three components: the heap (5.57), the environment
(5.58) and the global state (5.59). The heap describes objects and their as-
sociated attributes. The environment describes the state of local variables
and parameters, so information that is local to a feature execution. Finally,
the global state is used to store the return values of once features, making
the available for future look up.

To access the components of a state, we use total functions (5.60), (5.61)
and (5.62). As applications of these functions happen so often, indexes are
used: if s is a state, then sH is its heap, sE is its environment and sG is
its global state. Also, we can construct a state with a given environment,
heap and global state by using a tuple notation, i.e. (h, e, g).

Each component has got an access function written c(l) and an update
function written c〈l := v〉. Because it is defined for heaps, environments
and global states, both functions are overloaded.

5.4.1 Heap

Obj is a carrier set (5.63)
Loc is a carrier set (5.64)

. : Obj × Attribute → Loc (5.65)
( ) : Heap × Loc →Obj (5.66)

〈 := 〉 : Heap × Loc ×Obj → Heap (5.67)
new : Heap × EffType →Obj (5.68)
〈 〉 : Heap × EffType → Heap (5.69)

alloc : Obj × Heap → bool (5.70)
typeof : Obj → EffType (5.71)
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∀H ∈ Heap, l ∈ Loc, L, K, X, Y ∈ Obj , f, g ∈ Attribute, T ∈ Type :

L 6= K ∨ f 6= g ⇒H〈L.f := X〉(K.g) = H(K.g) (5.72)
H〈L.f := X〉(L.f) = X (5.73)

alloc(L, H)⇒H〈T 〉(L.f) = H(L.f) (5.74)
H〈T 〉(new(H).f) = Void (5.75)

alloc(X, H〈l := Y 〉) ⇔ alloc(X, H) (5.76)
alloc(X,H〈T 〉) ⇔ alloc(X,H) ∨X = new(H, T ) (5.77)

alloc(H(l), H) (5.78)
¬alloc(new(H, T ), H) (5.79)

typeof(new(H, T )) = T (5.80)

The heap model is taken from the heap model introduced by Müller [61].
The name of some sets are changed and the concept of object initialization
introduced.

It differentiates between objects (5.63) and locations (5.64). Objects are
references to instances of types. They are made up of a number of loca-
tions. Locations are created in the heap and carry information in form of
object references. The heap keeps track of the values stored in locations
and the set of objects currently allocated.

All functions (5.65)–(5.71) are total. Although not every attribute is
available in every object, we regard the values of these attributes as ar-
bitrary. Objects on the heap are always instances of effective types. The
semantics of Heap is defined by the axioms (5.72)–(5.80).

5.4.2 Environment

( ) : Env × Local →Obj

〈 := 〉 : Env × Local ×Obj → Env

∀E ∈ Env , L, K ∈ Local , x ∈ Obj :

E〈L := x〉(L) = x (5.81)
L 6= K ⇒ E〈L := x〉(K) = E(K) (5.82)

alloc(E(L), H) (5.83)

The environment maps locals to corresponding values. It is thus a simple
associative array. Again, functions (5.81) and (5.81) are total. Although
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not every local is available in the context of every program text, we regard
the values of these attributes as arbitrary. The semantics of Env is defined
by the axioms (5.81)–(5.82). Axiom (5.83) states that objects stored in the
environment are always allocated.

Sometimes an environment only matters with respect to the values it
defines for specific variables. The notation 〈a := x, b := y, . . . 〉 stands
for E〈a := x〉〈b := y〉 . . . where E is an arbitrary environment; the only
properties that we may use in connection with this notation are those of
the listed variables.

5.4.3 Global State

empty : Global (5.84)
( ) : Global ×OnceFunction →Obj (5.85)

〈 := 〉 : Global ×OnceFunction ×Obj →Global (5.86)
stored : Global ×OnceFunction → bool (5.87)

∀G ∈ Global , F,H ∈ OnceFunction, x ∈ Obj :

G〈F := x〉(F ) = x (5.88)
F 6= H ⇒G〈F := x〉(H) = E(H) (5.89)

stored(G, empty) = FALSE (5.90)
stored(G〈F := x〉, F ) = TRUE (5.91)

F 6= H ⇒ stored(G〈F := x〉, H) = stored(G, H) (5.92)
alloc(E(L), H) (5.93)

The global state keeps track of the return values created by the execution
of once routines. At the beginning of the execution, the global state is
empty.

The work only considers a very limited form of once evaluations, once
per type. This means that every type has its own set of once features, in-
dependent of parent types or other generic derivations. This is a more re-
stricted form when compared to the definitions [56, sec. 8.23.21] in ISO /
ECMA, which consider the explicit dynamic binding version of a feature.
Thus, multiple types may share a single once variable. It is possible to im-
plement the full semantics of once as in ISO/ECMA by using equivalence
classes of features that share a once variable.

Once per object is not considered here, as it can be implemented us-
ing an explicit caching attribute. Once per thread requires the concept of
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multi-threading, and this thesis only considers non-concurrent executions
of Eiffel.

Again, we use total functions (5.84)–(5.87) as the signature of the data
type. Looking up a feature in the empty global state yields an arbitrary
value. The semantics of Global is defined by the axioms (5.88)–(5.92). Ax-
iom (5.93) states that objects stored in the global state are always allocated.

5.4.4 Monomorphic state relation

v : State × State (5.94)

s v s′ ⇔∃τ : Obj ��Obj |
∀o : Obj |typeof(o) = typeof(τ(o))

∀o : Obj , a : Attribute|alloc(o, sH)⇒ τ(sH(o.a)) = s′H(τ(o).a)

∀l : Local |τ(sE(l)) = s′E(l)

∀f : OnceFunction|τ(sG(f)) = s′G(f)

∀f : OnceFunction|stored(f, s) = stored(f, s′)

(5.95)

A state is called monomorphic (in terms of category theory [24]) with
relation to another state, if it is equivalent, except for object identities and
new objects. Such a relation is needed when we want to show that two
states are equivalent, but a different order in which objects are created
might lead to different object identities or new allocated, but not reachable
object.

The monomorphism relation between states is transitive and reflexive.
It is not an isomorphism, as the second state can have more allocated ob-
jects than the first one.

Equivalent changes to monomorphic states preserve the monomorphic
property. If s v s′, then the following theorems hold:

(sH〈l := o〉, sE, sG) v (s′H〈l := o〉, s′E, s′G) (5.96)
(sH〈T 〉, sE, sG) v (s′H〈T 〉, s′E, s′G) (5.97)

(sH , sE〈l := o〉, sG) v (s′H , s′E〈l := o〉, s′G) (5.98)
(sH , sE, sG〈l := o〉) v (s′H , s′E, s′G〈l := o〉) (5.99)

(sH , sE, sH) v (sH〈T 〉, sE, sG) (5.100)

Proof outline: Assuming that f is the (existing) monomorphism relation
between s and s′. The equations (5.98) and (5.99) do not modify the heap,
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we can define f ′, the new mapping to be equivalent to f . Equations (5.97)
and (5.96) changes the heap, but because of axiom (5.74), all existing ob-
jects retain their attribute values. The difference between f ′ and f is the
new(sH) object. The initialization rule (5.75) causes all attributes to be
mapped to Void, making both objects equivalent for all functions.

5.5 Execution model

〈 , 〉 ⊆ Instr × State × State (5.101)
eval( , ) : Expr × State →Obj (5.102)

J , K ⊆ Expr × State × State (5.103)

The execution model describes the effect of executing program text on a
given state. We assume that the execution of Eiffel program text is always
deterministic: when started in the same state, the same program text al-
ways yields the same resulting state.

The model is defined through two relations and a function. Relation
(5.101) defines how an instruction transforms a given state. Relation (5.103)
defines how an expression transforms a given state. Function (5.102) de-
fines the resulting value of an expression evaluation. The two relations
and the function are mutually recursive.

The relation (5.101) is called the state transformation relation. The ex-
pression 〈I, s〉 s′ reads as “when started in a state s, the execution of the
instructions I results in the state s′”.

To describe expression evaluation, we must consider two effects: a re-
turn value is computed (5.102) and the query might change the state as a
side-effect (5.103). This is even true for code respecting command/query
separation: the evaluation of the expression can allocate new objects and
can assign values to these objects.

For the side-effect, the relation has a similar syntax as state transfor-
mation relation has for instructions. The expression JE, sK s′ informally
reads as “when evaluating E in a state s, the state will be changed to state
s′”. The actual return value is computed by the eval(E, s) function. It
reads as “evaluating expression E in state s yields eval(E, s)”.

In the definition of the execution model, we will use a number of free,
all-quantified variables. They are defined as follows: e, e1, e2, · · · ∈ Expr ,
a ∈ Attribute , f ∈ Function , c ∈ Creator , s, s′, s′′, s0, s1, · · · ∈ State, a0, a1, · · · ∈
Obj , arg1, arg2, . . . , l, l′, l′′, l0, l1, · · · ∈ Local , mc ∈ ManifestConstant .

The following sections contain the formal definition of the operational
semantics.
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5.5.1 Evaluating expressions

eval(l, s) = sE(l) (5.104)

eval(l = l′, s) = (sE(l) = sE(l′)) (5.105)

〈l := e, s〉 s′

eval(l := e; e′, s) = eval(e′, s′)
(5.106)

eval(create c(l1, . . . , ln), s) = new(s) (5.107)

eval(mc, s) = new(s) (5.108)

eval(l.a, s) = sH(sE(l).a) (5.109)


f 6∈ OnceFunction ∨ ¬stored(sG, f)

B = body(version(typeof(sE(l)))(f))

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉
〈B, (sH , E, sG)〉 s′


eval(l.f(l1, . . . , ln), s) = s′E(Result)

(5.110)

[
f ∈ OnceFunction ∧ stored(sG, f)

]
eval(l.f(l1, . . . , ln), s) = sG(f)

(5.111)

Reading a local entity causes a look up in the environment (5.104). Refer-
ence equality means looking up both local variables of the equation in the
environment and then comparing the objects (5.105). The assignment to a
fresh, local variable in expressions is evaluated by computing the effect of
the assignment on the environment, and the to continue the evaluation of
the remaining expression (5.106).

Creating a new object is done by mere allocation of the object on the
heap. There is not need to execute the creation feature, as this will have no
effect on the value of the expression (5.107), though it might have an effect
on its side-effect, as we will see below. Manifest constants are also created
in a similar way (5.108).
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Reading an attribute requires evaluating the target and look up the at-
tribute on the target object on the heap (5.109). Reading a local attribute e
is done using Current.a.

Calling functions (5.110) will first look up the actual body of the target
feature using the rules for dynamic binding: using the dynamic type of
the target object and the static feature to be called, we compute the corre-
sponding dynamic feature to be called using the version relation. We then
look up the body implementing the dynamic feature by using the body
function.

A new environment E is created for the execution of the body that
binds the target to Current and the arguments to the corresponding val-
ues. The body is then executed in a state composing of the original heap
and global state, and the temporary environment. The result value is then
gained by looking up the local Result in the environment of the post-state.

If the feature called is a once function that has already been executed,
then the pre-computed value is just returned (5.111).

5.5.2 Side effects in expressions

Jl, sK s (5.112)

Jl = l′, sK s (5.113)

Jl.a, sK s (5.114)

[
〈l := e, s〉 s′

Je′, s′K s′′

]
Jl := e; e′, sK s′′

(5.115)


f 6∈ OnceFunction

B = body(version(typeof(sE(l)))(f))

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉
〈B, (sH , E, sG)〉 s′


Jl.f(l1, . . . , ln), sK (s′H , sE, s′G)

(5.116)
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f ∈ OnceFunction

¬stored(sG, f)

B = body(version(typeof(sE(l)))(f))

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉
〈B, (sH , E, sG)〉 s′


Jl.f(l1, . . . , ln), sK (s′H , sE, s′G〈f := s′E(Result)〉)

(5.117)

[
f ∈ OnceFunction

stored(sG, f)

]
Jl.f(l1, . . . , ln), sK (sH , sE, sG)

(5.118)

[
E = 〈Current := new(s), arg1 := sE(l1), . . . , argn := sE(ln)〉

〈body(c), (sH〈defIn(c)〉, E, sG)〉 s′

]
Jcreate c(l1, . . . , ln), sK (s′H , sE, s′G)

(5.119)

Jmc, sK s (5.120)

To support weak purity (see section 5.7), the operational semantics has to
support side-effects in the evaluation of expressions. The J , K relation

Reading local entities causes no side-effects (5.112). Neither does com-
paring two locals (5.113) nor reading an attribute (5.114).

Assigning to a local variable requires the evaluation of the expression,
together with the side-effect of doing the actual assignments (defined by
the rules for instruction evaluation) (5.115).

The side-effect of the function call (5.116) is defined in a similar way
to the computation of the result value. The resulting state is taken from
the heap and global state of the post-state of the execution, while the en-
vironment remains unchanged. I a similar way, the execution of a creation
routine (5.119) is defined by executing the body (there is no need for dy-
namic binding here, as the target type is fixed) of the creation routine on
the new object.

The first execution of a once routine stores the computed value in the
global state (5.117) after execution. If there is already a value available,
then the this feature invocation does not have a side-effect, as just the pre-
computed value is returned (5.118).

The precise definition of ManifestConstant is defined by the semantics
of the underlying type of that manifest constant. We consider manifest
constants to be of types BOOLEAN, INTEGER or STRING. All of these type
are axiomatic classes as introduced in section 3.6. The creation of a new
instance of an axiomatic class causes no side-effects on our state.
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5.5.3 Executing instructions

〈ε, s〉 s (5.121)

[
〈S1, s〉 s′

〈S2, s′〉 s′′

]
〈S1S2, s〉 s′′

(5.122)

JE, sK s′

〈l := E, s〉 (s′H , s′E〈l := eval(E, s)〉, s′G)
(5.123)

〈a := l, s〉 (sH〈sE(Current).a := sE(l)〉, sE, sG) (5.124)

[
sE(C) = TRUE

〈S1, s〉 s′

]
〈ifC thenS1 elseS2 end, s〉 s′

(5.125)

[
sE(C) = FALSE

〈S2, s〉 s′

]
〈ifC thenS1 elseS2 end, s〉 s′′

(5.126)

 sE(C) = FALSE

〈S, s〉 s′

〈 from untilC invariant I variantV untilS end, s′〉 s′′


〈 from untilC invariant I variantV untilS end, s〉 s′′

(5.127)

[
sE(C) = TRUE

]
〈 from untilC invariant I variantV untilS end, s〉 s

(5.128)

[
B = body(version(typeof(sE(l)))(f))

〈B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 s′

]
〈l.f(a1, . . . , an), s0〉 (s′H , sE, s′G)

(5.129)
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〈check l end, s〉 s (5.130)

The empty operation ε (skip) does not change the state (5.121). Sequential
composition uses an intermediate state s′ to evaluate two commands in a
row(5.122).

Local assignments consider the side-effect to evaluate the expression,
then update the local variable in the environment (5.123). Assignments to
attribute also evaluate the expression, considering its side-effect, and then
assign the result to the target field of the current object (5.124).

We have two axioms for the case-distinction:: The first one (5.125) can
be applied if the condition evaluates to true, executing the then branch in
this case. The second one (5.126) can be applied if the condition evaluates
to false and executes the else branch.

Similarly, loops also have two rules: One for the execution of the loop
body by unfolding the loop once (5.127), and one for the termination of
the loop (5.128).

Calling commands (5.129) is similar to calling functions (5.110), only
that the result value is ignored. Check instruction are basically a skip
(5.130).

5.6 Monotonic properties of the state

This section lists a number of theorem about the state and its execution.

5.6.1 Object allocation
Once an object has been allocated, it never becomes unallocated by the
execution of an instruction (5.131) or an expression (5.132).

∀I ∈ Instr , s, s′ ∈ State, o ∈ Obj : e

〈I, s〉 s′ ∧ alloc(sH , o)⇒ alloc(s′H , o)
(5.131)

∀E ∈ Expr , s, s′ ∈ State, o ∈ Obj :

JE, sK s′ ∧ alloc(sH , o)⇒ alloc(s′H , o)
(5.132)

Proof outline: All semantic rules compute the post-state heap by modi-
fying the pre-state heap, using the operations defined in the abstract data
type. The abstract data type definition for heaps does not contain a func-
tion that deallocates an object. We ignore memory size and garbage col-
lection.
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5.6.2 Once setting
If a once function has been evaluated, the execution of Eiffel will never
overwrite the created value or unset it ((5.133) and (5.134)).

∀I ∈ Instr , s, s′ ∈ State, f ∈ OnceFunction :

(〈I, s〉 s′ ∧ stored(sG, o))⇒ (stored(s′G, o) ∧ sG(f) = s′G(f))
(5.133)

∀E ∈ Expr , s, s′ ∈ State, f ∈ OnceFunction :

(JE, sK s′ ∧ stored(sG, o))⇒ (stored(s′G, o) ∧ sG(f) = s′G(f))
(5.134)

Justification: All semantic rules compute post-state global state from pre-
state global state, using the operations defined in the abstract data type.
The abstract data type definition for global state does not contain a func-
tion that “unsets” a once value.

5.7 Weak purity

While queries may cause side-effects, Eiffel demands that these side-effects
are not visible: they are not allowed to create an effect onto the execution
of the program other than their return value. This property is called Com-
mand/Query Separation in OOSC2. It is summarized by the statement that
“asking a question should not change the answer” [52, pp. 748].

The chapter on side-effects in OOSC2 differentiates between concrete
side-effects and abstract side-effects. Concrete side-effects are created by as-
signments to attributes or calls of commands [52, p. 757]. Abstract side-
effects are “concrete side effects that can change the value of a non-secret
query”.

There are a number of obstacles that make it difficult to transform these
definitions into theorems of the operational semantics:

• The definition of concrete side-effects only talks informally about
memory allocation. More specifically, it ignores the problem of side-
effects created by the memory allocation itself, and by calling com-
mands on these newly created objects.

• The definition of abstract side-effects is difficult to formalize, as it
talks about all future evaluations of arbitrary queries and their re-
sults.

• There are a number of assumptions about references in Eiffel and
the memory model: The only operation available on references is
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comparison. There is no way to find out which object was created
first, or how many objects were created during the execution of a
routine. These assumptions are never stated explicitly, but instead
are implied by the full language definition. The assumptions are re-
quired, otherwise pure object creation or function calls could lead to
observable side-effects.

A number of theorems describe our requirements that queries be side-
effect free. The non-observable object creation is captured theorem (5.107)
and (5.119): the evaluation of a query, its side-effect or the effect of an
instruction is effected by the creation of an object.

Furthermore, there is the problem of weak purity [16]: even with full
command-query separation, query can have side-effects. A query is al-
lowed to create new objects, and arbitrarily change the state of these ob-
jects. These are state changes, although they are not visible from the caller.
To allow such changes, we define purity as a property of the evaluation
of expressions and creation routines as relative to the objects that existed
before the execution.

Definition 5.1: Pure query

A query q ∈ Query is called pure if fields belonging to objects that
were allocated before the evaluation of the query have the same
value after the evaluation of the query:

∀s, s′ : State, o ∈ Obj , a ∈ Attribute|
Jq, sK s′ ∧ alloc(o, sH)

⇒sH(o.a) = s′H(o.a)

(5.135)

Definition 5.2: Pure creation routine
A creator c ∈ Creator is called pure if fields belonging to objects
that were allocated before the execution of the creator, with the
exception of Current, have the same value after the evaluation of
the query:

∀s, s′ : State, o ∈ Obj , a ∈ Attribute|
Jq, sK s′ ∧ alloc(o, sH) ∧ o 6= sE(Current)

⇒sH(o.a) = s′H(o.a)

(5.136)

With regards to correctness, all queries and creators are required to be
pure. Any expression evaluation containing pure queries will also be pure:
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∀E ∈ Expr , s, s′ : State, o ∈ Obj , a ∈ Attribute|
JE, sK s′ ∧ o ∈ alloc(o, sH)

⇒sH(o.a) = s′(o.a)

(5.137)

Proof outline: The only subexpression in the syntax of expressions that
modifies the heap is the invocation of a query and the create expression.
Both subexpressions have to be pure, thus the whole expression is pure.

To simplify matters, we will also assume that the evaluation of once
queries for the first time, or for in future invocations, does not change the
result value of expressions. This simplification is acceptable, understand-
ing that once is primarily used to model singletons.

∀E ∈ Expr , s : State|ExprEs = ExprE(sH , sE, s′G) (5.138)

5.8 Correctness

To be called correct, an implementation needs to satisfy a number of prop-
erties. When verifying code, these properties become proof obligation. It,
using mathematical reasoning, we can show that a piece of code satisfies
all proof obligations, then we call the code to be functionally correct.

Every proof obligation is associated with a component, a class. If all
proof obligations associated with a class text have been proved, the class
is correct.
Postconditions: Every postcondition has to evaluate to true. We can as-
sume the precondition and invariant.

∀f ∈ Feature

eval(pre(f), s) = TRUE ∧
eval(inv(defIn(f)), s) = TRUE ∧

〈body(f), s〉 s′ ⇒
eval(post(f), s′) = TRUE (5.139)

Invariants: The class invariant has to be re-established at the end of a
feature execution.
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∀f ∈ Feature

eval(pre(f), s) = TRUE ∧
eval(inv(defIn(f)), s) = TRUE ∧

〈body(f), s〉 s′ ⇒
eval(inv(defIn(f)), s′) = TRUE (5.140)

Other than these two proof obligations, there are also a number of proof
obligations that need to be satisfied for some syntactical constructs.

Let s be a state under which a given instruction I or expression E is
evaluated. s must be a legal state of the execution of the routine, assuming
that the precondition and class invariant held at the start of the routine.

Void calls: Targets of calls may never be void.

E = l.f(l1, . . . , ln) ⇒ sE(l) 6= Void (5.141)
I = l.f(l1, . . . , ln) ⇒ sE(l) 6= Void (5.142)

Precondition holds: The precondition of the feature called has to be estab-
lished.

E = l.f(l1, . . . , ln) ⇒
eval(pre(f), (sH , 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,

sG)) = TRUE (5.143)

I = l.f(l1, . . . , ln) ⇒
eval(pre(f), (sH , 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,

sG)) = TRUE (5.144)

Check instructions: Check instructions must evaluate to true.

I = check C end ⇒ eval(C, s) = TRUE (5.145)

Loop variants and invariants: The loop invariant must be established at
the beginning of the loop and at the end of the loop. The variant must be
positive and decreasing.
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I = from until C invariant I variant V loop B end
〈from until C invariant I variant V loop B end, s〉 s′ ⇒

eval(I, s) = TRUE (5.146)
eval(V, s) ≥ 0 (5.147)

eval(I, s′) = TRUE (5.148)
eval(V, s′) ≥ 0 (5.149)

eval(V, s) > eval(V, s′) (5.150)

Loop variant and invariant checking: The loop variant and invariant
needs to be established after each iteration of the loop.
Purity: All queries and creators have to be pure, see (5.135) and (5.136).



CHAPTER 6

MODEL-BASED CONTRACTS

Understanding the concept of “object state is necessary to specify object-
oriented components using Design by Contract. Preconditions describe
requirements on the state of the target or arguments when a feature may be
called. Postconditions relate the pre-state to the post-state of the execution.
Invariants describe global constraints of the state of the object.

Only considering the fields of one object to define its state is not suf-
ficient: many objects rely on numerous “supporting objects” that partic-
ipate in defining the object’s state. For example, a list object (instance of
LIST[G]) relies on a number of cell objects (instances of LINKABLE[G]); a
database row might load contents from the database on demand from the
external source.

We cannot, at the other extreme, consider all objects reachable from the
object of interest: a person does not change its state when the company for
which the person is working hires another person, although the person
might have a reference to the employer and the employer object has a list
of employees. Considering everything reachable to be part of the state
makes reasoning non-modular.

Furthermore, we might not know the dynamic type of the object: rea-
soning happens on the basis of the static type of the entity. If the static type
is based on a deferred class, we do not have sufficient knowledge about
the fields of that class.

The solution used in this work and explained in this chapter is to use
models to describe the state of objects.

A model is a high-level abstraction of the state of an object. The model
itself is not an object structure, but a mathematical value. It is immutable
in the same way that the number 5 or the set {1, 2, 3} are immutable: eval-
uating 1 + 5 yields the value 6, but does not change the number 5. Adding
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a value 7 to the set {1, 2, 3}will give the set {1, 2, 3, 7}, but does not change
the original set.

At any time, objects can be queried for their model. Contractual obliga-
tions are expressed by stating properties of these models. The query that
yields the state is called the model query. The model query is an abstraction
from the concrete state of the heap to a mathematical value representing
the state of a single object.

6.1 Related work

An early article that suggests the use of models to capture state abstrac-
tions was published by Hoare in 1972[34].

ESC/Java [28] has a special construct dttfsa (Damn the Torpedoes,
Full Speed Ahead) that translates expressions directly into proof-obligations.
Using such constructs, it is possible to create libraries whose semantics is
defined in terms of the underlying theorem prover.

The Caduceus [27] tool for the verification of C programs follows a
similar approach, allowing define properties directly in terms of the un-
derlying Coq verification system.

Both approaches depend on the underlying theorem prover. Models as
presented in this thesis are more abstract: our goal is not only the verifica-
tion of software with a specific verification tools or environment, but the
extension of full Design by Contract as a whole.

Darvas and Müller [17] suggest the introduction of a general mapped_to
clause to the contract language of JML and Jive that can be used to re-

late classes and methods to types and functions in an underlying theorem
prover. Here, it is possible to target different provers by explicitly stating
which prover is targeted in the code.

Meyer describes the approach in OOSC2 [52, pp. 400-402]. He sug-
gests to define a strong relation between the programming language and
mathematics by the development of a library called IFL [53].

Mitchell and McKim [58] suggested to introduce an immutable list data
structure into Eiffel, but used extensive recursive contracts.

Earlier results of this work have been published by in [84] and [77].
Applications of the library of models have been conducted by Zietzling in
his semester thesis[85].

Further references are contained in the comparison in section 6.6.
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6.2 Mathematical language

We may express properties of the state of an object through the object’s
model. We have to introduce a mathematical theory describing models to
relate and compare them. Together with the theory we have to define a
language to express the properties.

The theory should be powerful enough to express the properties we
need. At the same time, it should be simple enough to allow fully auto-
mated proofs of programs.

The B Method [1] is a formal method used for top-down software de-
velopment. It was defined in 1996 by J.-R. Abrial. The goal was to de-
velop a methodology for program development that makes it feasible to
prove the functional correctness of large software systems, without suffer-
ing from problems of combinatorial explosion.

Together with the B methodology comes a mathematical theory and
notation used to express invariants, specifications and events. This mathe-
matical theory is based on first-order predicate logic and Zermelo-Fraenkel
set theory (with the axiom of choice)[29]. In fact, it is a limited form of
ZFC, as it drops a number of axioms that are not required [1, p. 56], in-
cluding the foundation axiom, which makes ZFC difficult to use for many
non-mathematicians. Instead, B requires of a type-checker to exclude non-
meaningful axioms.

The notation is mostly a subset of the Z specification language [79][80].
It uses standard operators for predicates and sets like ⇒, ∧, ∈, ⊆ or ∩.
Some of the operators are less commonly used, for example the description
of a partial injection using 7�, or domain subtraction of a relation usingC−.
A table of operators is included in appendix A.

As the basis for our mathematical modelling language, we have chosen
the mathematical language introduced by the B method.

6.3 Finite and typed models

Although we consider the notation and selection of operators of B to form
the basis of our mathematical theory of models, the mathematical founda-
tion is changed. The theory of models is typed set theory on finite sets. The
change from ZFC to typed set theory is a natural one: the Eiffel program-
ming language itself is a strongly typed language.

First, we will never encounter objects whose static type is unknown.
Typed set theory is easy to check. More importantly, its axioms are easy to
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understand for a developer who is already used to work with a strongly
typed programming language.

Second, we consider states of objects to be always finite values. At a
first glance, this seems obvious as the state of the system itself is always
finite, bound by the size of the heap. The following example illustrates
why it would still be nice to have a theory supporting infinite models:

The class RANDOM implements a random number generator. It inher-
its from COUNTABLE_SEQUENCE [INTEGER]. The mathematical model of a
random number generator is thus a sequence of values, as the model is
inherited, too. Assuming that we are not working with a fixed seed and
create finite circle of pseudo-random numbers, this sequence is potentially
infinite.

6.4 MML: a mathematical model library

The Mathematical Model Library is an implementation of set theory in terms
of a programming language. We reuse the capabilities of the programming
language to express mathematical expressions.

The library is available for current versions of Eiffel from the URL
http://se.inf.ethz.ch/people/schoeller/mml.html under the
permissive Eiffel Forum License, version 2 (an OSI-approved license similar
to the MIT or BSD license).

We have already mentioned that mathematical values are considered
immutable. All mathematical operations yield new values, but do not
change the existing ones. In contrast, objects in Eiffel are mutable: the state
of the object can change by changing the values of object fields. When im-
plementing mathematical values in terms of Eiffel classes, the objects have
to be immutable: they do not change their value after creation. Assuming
command/query separation, this results in the model library principle:

Definition 6.1: Model Library Principle

Model classes may not have commands. Queries in a model class
may only rely on queries of the class itself and public queries of
other model classes. Model objects are never compared by refer-
ence.

The model library principle is a refinement of the definition in [53]. The
first restriction makes it impossible to change fields of the object, as only
commands can change fields. The second restriction enforces that queries
in model classes cannot take some mutable part of the state outside of the

http://se.inf.ethz.ch/people/schoeller/mml.html
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model into account when computing a result value. The third restriction
ensures that the object identity has no effect on comparisons. Together,
they enforce that the class is immutable and behaves as a mathematical value.

There are two advantages of describing models using known concepts
of the programming language instead of a language extension or using
some kind of specific modelling language:

• Developers do not need to learn new notations. All reference docu-
mentation of the language remains the same.

• The tools available for the language automatically extend onto the
new notation.

6.5 Library design

A first version of the library was developed by Tobias Widmer as part of
his master thesis[84]. The goal of the second library design was to reuse as
much as possible the possibilities of the Eiffel type-checker to implement
the type-checker for typed set theory.

This resulted in a cleaned up hierarchy, shown in the BON [83][82]
diagram in figure 6.1. The diagram does not show the details of the inher-
itance relation between classes, which are as follows:

• MML_RELATION[G,H] is a subtype of MML_SET[MML_PAIR[G,H]], defin-
ing a relation to be a set of pairs.

• MML_ENDORELATION[G] is a subtype of MML_RELATION[G,G], to of-
fer specific functions that only make sense on relations where the
domain and range type are equivalent (for example to compute clo-
sures).

• MML_GRAPH[G] is a subtype of MML_PAIR[MML_SET[G],MML_ENDORE
LATION[G]], defining the set of vertices and edges of the graph.

• MML_BAG[G] is a subtype of MML_RELATION[G,INTEGER]. The bag is
a function that relates a given element to the number of occurrences
that the element has in the bag.

• MML_POWERSET[G] is a subtype of MML_SET[MML_SET[G]]. Power-
sets defined operations like generalized union and intersection.



78 CHAPTER 6. MODEL-BASED CONTRACTS
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Figure 6.1: Class hierarchy of MML
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• MML_SEQUENCE[G] is a subtype of MML_RELATION[INTEGER,G]. A
sequence is a function of the prefix of natural numbers to values
stored in the sequence.

The subtype relation has been chosen carefully to be aligned with the defi-
nitions of the different types given in the B book. [1] This makes it use each
class polymorphically, the same way that we are used from mathematics.

Although the graph class MML_GRAPH is included in the library, it has
not been fully explored and implemented, and is thus excluded from some
of the following discussions.

The classes also try to retain type information by covariant redefini-
tion of return types whenever possible. For example, in MML_SET[G] the
signature of the feature extended is
extended (v:G): MML_SET[G]

In class MML_RELATION[G], the feature is redefined from the inherited
signature
extended (v:MML_PAIR[G,H]): MML_SET[MML_PAIR[G,H]]

which would follow the inheritance clause, to the signature
extended (v:MML_PAIR[G,H]): MML_RELATION[G]

as every the resulting value of adding a pair to a relation is still a relation.
In class MML_SEQUENCE[G], a similar redefinition is not allowed, as

adding an arbitrary pair to a sequence might break the property of se-
quences that the domain is a finite prefix of the natural numbers. extended
in MML_SEQUENCE[G] has the same signature as in MML_RELATION[G,H].

6.6 Comparison of model libraries

The Java Modelling Language [10][43] offers a library of models as avail-
able as part of the of the org.jmlspec.models package [42].

Because of the complexity of the Java object model, the JML model li-
brary contains a total of 465 classes. Many of these classes express relations
between value and reference types.

The JML models are not axiomatic, their semantics is still defined by
their contracts with all the related problems as shown in section 3.9. The
JML model library is not derived from a coherent mathematical modelling
language.

In contrast, MML models are axiomatic. their semantic definition is
defined purely by the underlying theory, using the vehicle of a library to
offer a shallow embedding of the underlying theory.
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The ESpec workbench[67] for Eiffel defines a model library called ML.
The ML library was developed in parallel with MML, addressing similar
goals.

The ESpec verifier transforms Eiffel programs into code for the “Per-
fect Developer” verification system. ML offers a shallow embedding of
the data types available in Perfect Developer in form of a library. Similar
to MML, ML classes are thus implicitly defined by the semantics of the
underlying data types in Perfect Developer.

The data types from Perfect Developer do not form a consistent set
theoretical framework. Instead, they are a collection of unrelated types for
bags, sets and sequences. This makes ML-based difficult to port to other
theorem provers.

All three libraries, MML, ML and jmlspec, offer an implementation that
can be monitored at runtime.

6.7 Applying models

Feature put from class STACK[G]of EiffelBase describing the abstract no-
tion of stack is a typical feature exhibiting incomplete postconditions. It
implements the “push” operation on stacks (the name put is a result of
the strict consistency policy of Eiffel libraries [47, 51]). The “flat” form
taking inheritance of assertions into account is shown in listing 6.1.

The query item yields the top of the stack, and the query count its
number of items. Remove is the implementation of “pop”, removing the
top element of the stack.

The precondition is complete: if the stack is not empty, you may al-
ways remove an element from it or ask for the top element. The postcon-
ditions, however, are not: they only refer to the number of items and the
top item after the operation, but do not say what happens to the items
already present. As a result:

• It leaves some questions unanswered. For example, what will get
printed by the code of listing 6.2, whereas the corresponding abstract
data type specification [52] is sufficient to compute the correspond-
ing mathematical expression: item (remove (put (put (new, 47), 11))).

• It leaves the possibility of manifestly erroneous or hostile implemen-
tations, for example one that would push v but change some of the
previously present items.
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item: G is
-- Top element

require
not_empty: not is_empty

do
. . .

end

put (v: G) is
-- Push ‘v’ onto top.

do
. . .

ensure
item_on_top: item = v
count_increased: count = old count + 1

end

remove is
-- Remove the top of the stack.

require
not_empty: not is_empty

do
. . .

ensure
count_decreased: count = old count + 1

end

Listing 6.1: Contracts of STACK without models

The specification of STACK[G], like most specifications in existing li-
braries, tells the truth, and tells only the truth; but it does not tell the whole
truth.

With models from MML, we now have the possibility to give a full (in
terms of the data abstraction) contract of the behavior of a stack. First, a
model query needs to make the state of a stack explicit. The mathemat-
ical abstraction of a stack is a sequence of numbers, with the new stack
elements added to the end (they could also be added to the front, which
would be a different state abstraction). The model query is defined with
the following signature:

feature -- Model queries
model: MML_SEQUENCE [G]
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create stack.make_empty
stack.put (47)
stack.put (11)
stack.remove
print (stack.item)

Listing 6.2: Incomplete contracts exposed in STACK

The contract of put, remove and item is then extended by references to
the behavior on the model, as shown in listing 6.3. Using the mathematical
definitions of the operations (see appendix B), we can rewrite the contracts
into their corresponding mathematical forms. This is shown in listing 6.4.

With the added model contracts, it is possible to understand the exam-
ple given in listing 6.2. The proof sketch, using Hoare style intermediate
state annotations, is shown in listing 6.5. It shows that the print command
will output the number 47.

This small example illustrates how models can be used to improve the
expressiveness of contracts for unbounded data types.

6.8 Models and inheritance

Models work well together with the concept of inheritance. This is done by
projecting the model of the child onto the model of the parent. A binding
invariant expresses this projection, making it possible to understand the
child model in terms of the parent model. Because of renaming, we are
able to give the inherited model an expressive name.

For example, we might regard the width and the height as the model
of a abstract geometrical FIGURE. It is defined as a pair of two REAL values:

deferred class FIGURE

feature -- Model queries

model: MML_PAIR [REAL,REAL]
-- Width and height of the figure

feature -- Tranformations

scale (factor: REAL)
require
factor_positive: factor > 0
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ensure
width_adjusted: width = old width * factor
height_adjusted: height = old height * factor

end

A circle is a geometrical figure, but the model of the circle is its diameter.
We define the class CIRCLE using the following inheritance relation, model
query and binding invariant:

class CIRCLE

inherit
FIGURE
rename
model as model_of_figure

end

feature -- Model queries

model: REAL
-- Diameter of the circle

invariant
model_binding_to_figure: model_of_figure.first = model

and model_of_figure.second = model
end

The binding invariant makes it possible to understand the contractual obli-
gations inherited from parent feature in terms of the child model. The
scale command will have to adjust the diameter of the circle, following
the inherited obligations of its postconditions and the class invariant.

6.9 Composite models

In many of the more advanced examples it is not realistic to capture the
complete state of a data structure through an atomic model built directly
from one of the classes of MML, such as a single sequence in the examples
above. As an example, consider the EiffelBase class LINKED_LIST, describ-
ing a sequence of values equipped with a cursor to facilitate traversal and
manipulation (see figure 6.2).

To describe the full state, we may use a tuple of a sequence s and a
cursor position n, yielding an abstraction function of type:
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1 count

item

index

back forth

start finish

before after

Figure 6.2: LINKED_LIST with active cursor

model : LINKED LIST [G] ⇒ SEQUENCE[G]× N

To build this abstraction function into the class we first define an abstrac-
tion for each component of the model:

feature -- Model queries
model_index: INTEGER is

-- Model of the cursor position
do
Result := index

end

model_sequence: MML_SEQUENCE [G] is
do

. . .
end

Then we create a common model by pairing the two components:

model: MML_PAIR [MML_SEQUENCE [G],INTEGER] is
-- Model of the list

do
create {MML_DEFAULT_PAIR [MML_SEQUENCE [G], INTEGER}

Result.
make (model_sequence, model_index)

end

Our experience shows that this is a convenient practice. In particular
we have retained the technique, illustrated in all the above examples, of
always using a single model query expressing the entire abstraction func-
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tion and yielding a single object; if the model conceptually involves sev-
eral components — in the last example, a sequence and an integer — we
turn them into a single one by taking advantage of the MML classes for
pairs and sets. This rule yields a consistent style and enables us to refer
for any class to “the model” and “the abstraction function”.

6.10 Classic and model contracts

Most Eiffel classes, especially in libraries, are equipped with some con-
tracts expressing important elements of their intended semantics. We will
call them classic contracts in contrast to contracts relying on the model li-
brary, called model contracts.

Classic contracts are usually easy to understand for programmers, even
those who may be put off by more formal approaches. But, as noted, they
are often incomplete, especially postconditions and invariants. With the
help of model contracts we should be able to check that they are at least
sound, according to the following definition:

Definition 6.2: Soundness of a Model
A classic contract for a model-equipped class is sound if:

1. The classic preconditions are equivalent to the model pre-
conditions.

2. The model postconditions imply the classic postconditions.

3. The model invariant implies the classic invariant.

In the informal terms used at the beginning of this discussion: model con-
tracts give us “all the truth”; classic contracts, the only ones that less ad-
vanced or less interested programmers will see, are sound if what they
tell, while perhaps not the full truth, is still “the truth”.

To this effect, condition 1 guarantees that every call that appears correct
to a client programmer working on the sole knowledge of the classic con-
tracts will indeed satisfy all the required conditions. At the same time, the
model precondition will give the full information about when the feature
can be called.

Condition 2 guarantees that every call will, on return, deliver every
condition promised to clients - even if it might deliver more than classi-
cally advertised.
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Condition 3 guarantees that the consistency constraints expected of in-
stances of a class actually hold.

On the basis of this definition, let us examine the soundness of the
STACK specification extract. The interesting part is the postcondition, con-
sisting of three clauses, two classic and one model-related:

item_on_top: item = v
count_increased: count = old count + 1
model_changed: model.equals (old model.extended (v))

From the postconditions of count (not shown above) and item, we know
that

count = model.cardinality
item = model.last

By combining the assertions of the postcondition and the invariant, we can
derive the following two proof obligations to verify the soundness of the
classical contracts:

model.equals (old model.extended (v)) and
item = model.last implies
item = v

model.equals (old model.extended (v)) and
count = model.cardinality and
old count = old model.cardinality implies
count = old count + 1

Using the mathematical translations (see appendix B), we can create the
proof obligations:

model′ = (model ∪ (card model + 1, v)∧
item′ = model′(card model′)⇒ item′ = v

model′ = (model ∪ (card model + 1, v)∧
count = card model∧
count′ = card model′ ⇒ count′ = count

Both properties can be verified using the underlying set theory. The notion
of soundness is particularly interesting in combination with inheritance. It
is possible to prove soundness at an abstract level, in a deferred class such
as STACK, without having to redo the proof in effective descendants such
as ARRAYED_STACK. This point was discussed in extensively by Meyer [53].
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6.11 Default implementation

The MML library contains a default implementation for models based on
arrays as the main underlying data structures. The models are imple-
mented in the following way:

• MML_PAIR is implemented as a class with two attributes, each con-
taining the corresponding value. The implementing class is called
MML_DEFAULT_PAIR.

• MML_SET is implemented in two ways. First, as an array containing
the values stored in the set, called MML_DEFAULT_SET. Second, the
class MML_RANGE_SET models the set of the numbers contained in
the interval a . . . b by just storing the lower and upper bound of the
interval. This implementation is used when we access the domain of
a sequence.

• MML_RELATION is implemented in the class MML_DEFAULT_RELATION
mostly by inherting the implementation of MML_DEFAULT_SET and

relying on instances of MML_DEFAULT_PAIR, thus using an array of
references to pairs.

• MML_BAG is implemented in MML_DEFAULT_BAG by inheritance from
the implementation relation. A bag is thus an array of elements plus
a number denoting the occurrences of the element in the bag.

• MML_ENDORELATION is implemented in MML_DEFAULT_ENDORELATION

by inheriting the implementation from MML_DEFAULT_RELATION.

• MML_POWERSET is implemented in MML_DEFAULT_POWERSET by inher-
iting the implementation from MML_DEFAULT_SET.

• MML_SEQUENCE does not reuse the implementation of parents. In-
stead, it uses ARRAY directly to implement the sequence. This results
in a large re-implementation of all features, projecting the ARRAY to
the inherited queries, adapting the structures if necessary.

Although the implementation tries to be efficient, experiments show that
the run-time monitoring of models has a major impact on the executing
speed. Because models are immutable, most computations on models re-
quire heavy-weight copy operations, with an algorithmic complexity of
O(n). The computation of the intersection of two sets is in O(n ∗m).

On a current machine, we have created lists using the following code:
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LINKED LIST CC LINKED LIST
Contracts with without with without
Time 0m0.005s 0m0.003s 0m13.539s 0m0.003s

Table 6.1: Time measurements of the test case with 1,000 elements.

LINKED LIST CC LINKED LIST
Contracts with without with without
Time 0m0.603s 0m0.045s 162m11.846s (canceled) 0m0.046s

Table 6.2: Time measurements of the test case with 100,000 elements.

create linked_list.make

from
counter := 1

until
counter > number_of_elements

loop
linked_list.put_front (counter)
counter := counter + 1

end

Tables 6.1 and 6.2 shows the results of messuring the performance im-
pact of model-based contracts in EiffelBase. The table shows the perfor-
mance of the code with and without assertion checking enabled for insert-
ing 1,000 and 100,000 elements into the linked list.

There remains a great potential for optimizations, as all model struc-
tures are immutable and lazy evaluation and on-the-fly changes of the in-
ternal representation are possible. Hashing might also speed up search
operations, but require that the values stored in the data structures are
indeed HASHABLE.

The is also the possibility to perform runtime evaluation of model-
based contracts only up to a certain size of the data structure. This would
require the adoption of a three-valued boolean logic with the ability to
express that the result was not known because the values were too large.

6.12 Implementing the abstraction function

The relationship between a concrete software object and its MML model
is its “abstraction function” (a notion introduced in [34] in the form of the
“representation function”, its inverse, actually multi-valued).
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If we want to enable runtime monitoring using the default implemen-
tation suggested above, we also have to provide an implementation of
the abstraction function. For example, an abstraction function for the
ARRAYED_STACK[G] class is implemented in listing 6.6.

The example illustrates that the implementation of models can (and
very often have to) access parts the state that are not directly accessible
using the public interface of the class. Models have to capture the full state
of an object, and not only what is currently available through the public
interface.

Model queries always return an attached (non-void) result in the sense
of ISO/ECMA Eiffel. They have no feature-specific contracts (precondi-
tions or postconditions), but may have associated constraints as part of
the class invariant. Any implementation of the abstraction function (po-
tentially useful, as noted, for applications to testing) may only rely on the
invariant.

6.13 Applying models to EiffelBase

The main target of our study the EiffeBase library[51][47][25]. EiffelBase is
the ideal target of study:

• EiffelBase is an old and mature library.

• EiffelBase has been used extensively in commercial and non-com-
mercial applications. Few other Eiffel library are applied on such a
wide-spread domain of problems.

• The library has been carefully crafted, making heavy use of classi-
fications and separating concerns and later merging these concepts
into implementations, using multiple inheritance.

• The inheritance hierarchy is deep, with many intermediate classes
only introducing one or two new concepts.

• Data structure libraries are typically good at exposing the problems
adhered by the introduction of models.

Our work with EiffelBase can be split into two parts. In the first part of our
research, we tried to add model-based contracts to EiffelBase. The goal of
this endeavor was to see what the underlying abstraction of the EiffeBase
classes are and to discover potential modelling defects in EiffelBase.
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In the second part, we redesigned parts of the EiffelBase library with
the knowledge about its deficits gained in the first part. We concentrate
below on the hierarchy needed for LINKED_LIST, but as this class is very
low in the inheritance hierarchy, this means that we have to redesign a
large part of the library.

6.13.1 Analyzing existing EiffeBase
We produced a fully contracted version of the structural classes of Eif-
felBase, a significant endeavor since that part of the library includes 36
classes totalling 1853 exported (public) features.

The process of completing the specifications brought to light numerous
inconsistencies in the library. Using model specifications, we were able to
come up with a cleaned up hierarchy for EiffelBase. A full specification
for each class was done by Widmer[84].

Most problems we found in EiffelBase were caused by heavy under-
specifications, contradictions in contracts and flaws in the taxonomy. Here
are some examples:

• The equality relation of “active” (cursor-based) data structures might
involve not only elements of the structure, but also a cursor position
and other internal data. All active data structures were missing a
clear specification of whether they should be regarded equivalent if
they have the same data but different cursor positions.

• The class TRAVERSABLE_SUBSET does not inherit from class TRAVERS
ABLE, even though it implements all features offered by TRAVERSABLE
This design decision prohibits polymorphic use.

• The features prune and prune_all in class SEQUENCE move the cur-
sor to off, even if the element to be pruned is not present in the se-
quence.

• The feature wipe_out in class ARRAY is marked as obsolete. Obsolete
feature clauses are not the proper way to declare a feature as inap-
plicable.

• The class BILINEAR inherits twice from LINEAR to implement bi-
linearity. This makes specification difficult, as it is not always clear
which iteration features are derived for which inheritance relation.

• Internal cursors and functionals such as for_all, there_exists
and do_all do not represent the same concept and should be dis-
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tinguished. The linearity is not necessary for an implementation of
logic quantifiers.

A full list of problems discovered can be found in [84].
An interesting problem was discovered when trying to analyze the put

operation through the inheritance tree, and its relation to the extend com-
mand and extendible query, describing the extension of the container by
an element. We think that this kind of error is typical for the problems that
can be discovered using models, so it is explained here in detail.

The class COLLECTION introduces the operations put and extend as the
same feature:

extend (v: G)
-- Ensure that structure includes ‘v’.

require
extendible: extendible

deferred
ensure
item_inserted: is_inserted (v)

end

Feature is_inserted is an alias for has. The predicate extendible is in-
troduced as an opaque precondition, modelling the fact that data structure
can be full and reject the inclusion of a new object:

is_inserted (v: G): BOOLEAN is
-- Has ‘v’ been inserted by the most recent insertion?
-- (By default, the value returned is equivalent to

calling
-- ‘has (v)’. However, descendants might be able to

provide more
-- efficient implementations.)

do
Result := has (v)

end

extendible: BOOLEAN is
-- May new items be added?

deferred
end

The aliases put and extend are split up into two distinct features in class
BAG. The post-condition of extend is extended by the assertion that the
number of occurrences of the argument v will be increased by extend,
while put does not ensure this property:
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extend (v: G) is
-- Add a new occurrence of ‘v’.

deferred
ensure then
one_more_occurrence:
occurrences (v) = old (occurrences (v)) + 1

end

At this point, it is not clear what put on a bag will be. From the current
contractual obligations, put might add v to the data structure if v is al-
ready contained. It has to make sure that v is contained (following the
opaque definition of is_inserted). This suggests the definition of put to
be similar to a set-like insert, that only adds v if it is not already contained.
But because of the contract of extend, SET cannot inherit from BAG.

The main conceptual mistake of this model is introduced in the class
CHAIN, an indirect subclass of BAG through the classes ACTIVE and CURSOR_

STRUCTURE. CHAIN describes itself in the header comment as a “possibly
circular sequences of items, without commitment to a particular represen-
tation”. It has a very complex inheritance clause, inheriting twice from
SEQUENCE.

CHAIN redefines put as an alias for the replace operation. This over-
writes the “current item” (a notion introduced in class ACTIVE) of the
structure with a new value:

put (v: like item) is
-- Replace current item by ‘v’.
-- (Synonym for ‘replace’)

do
replace (v)

ensure then
same_count: count = old count

end

Flattening all the inherited contracts for put reveals the problem. Al-
though put does not add new elements to the data structure, it requires
the data structure to be extendible:

put (v: like item)
-- Replace current item by ‘v’.
-- (Synonym for replace)

require -- from COLLECTION
extendible: extendible

do
replace (v)

ensure -- from COLLECTION
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item_inserted: is_inserted (v)
ensure then
same_count: count = old count

end

This inherited contract makes is necessary to weaken the precondition of
put in FIXED_LIST, an implementation of a list with a maximum number
of elements:

put (v: like first) is
-- Replace current item by ‘v’.
-- (Synonym for ‘replace’)

require else
True

do
replace (v)

end

Other examples of features that are suffering from the imprecise use of
extendible are features like fill defined in class COLLECTION that “fills
with as many items of other as possible”. Again, as FIXED_LIST is not
extendible, this feature is useless here. Using export restrictions, fill is
exported to NONE for FIXED_LIST, creating a potential CAT-call when fixed
lists are regarded as any parent data structure.

The next section describes efforts to re-design EiffelBase, using the in-
sights gained.

6.13.2 Designing a new EiffeBase
The goal of the re-design was to see the changes that are necessary to Eiffel-
Base to add model contracts (and dynamic frame contracts, as discussed
in chapter 7). The new library only implements everything needed for
LINKED_LIST. This is sufficient as linked list uses many of the concepts
introduced by abstract parent classes, covering nearly all of EiffelBase. A
class diagram showing the different classes covered is shown in figure 6.3.

The new library is called CCEiffelBase, with CC standing for complex
contracts. To prevent collision with existing data structures, all classes of
the CCEiffelBase library have CC_ prepended in front.

We introduce the features extend, put (and later force_end) as vari-
ations of the same operations on the model. The difference between the
features is the level of “defensiveness”:

• extend is defined as non-defensive of putting elements into the con-
tainer. It adds an element to the collection, and will always fail if this
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*
CC_CONTAINER[G]

*
CC_COLLECTION[G]

*
CC_SET[G]

*
CC_TABLE[G,K]

*
CC_BAG[G]

*
CC_INDEXABLE[G]

*
CC_ACTIVE[G]

*
CC_CURSOR_STRUCTURE[G]

*
CC_LIST[G]

*
CC_SEQUENCE[G]

*
CC_DYNAMIC_LIST[G]

+
CC_LINKED_LIST[G]

*
CC_TRAVERSABLE[G]

*
CC_LINEAR[G]

*
CC_BILINEAR[G]

Figure 6.3: Class hierarchy of CCEiffelBase
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is not possible (for example if the element is already contained in a
set). It has the precondition can_extend(v).

• put is defined as the medium-defensive version. It represents the
underlying mathematical operation. For example, it will just not add
the element to a set to prevent duplication or overwrite entries in a
table. It has the precondition can_put(v).

• force_end is the most defensive version. It will does not have any
precondition, and will do its best to add the element. For example, it
will resize arrays. It is introduced in CC_SEQUENCE.

The predicates can_extend(v) and can_put(v) replace the extendible

query. The problem with extendible was that could not take the element
to be added into account, making it unsuited for sets or tables.

The model of CC_CONTAINER is a bag of elements:

model: MML_BAG[G]
-- Model of a general container

ensure
not_void: Result /= Void

This model is not changed in CC_COLLECTION. The contracts of put
and extend using models are as follows:

put (v: G)
-- Ensure that structure includes ‘v’.

require
can_add_element: can_put (v)

ensure
model_updated: model |=| old model.extended (v)

extend (v: G)
-- Ensure that structure includes ‘v’ iff ‘v’ can be

added.
require
can_add_element: can_extend (v)

ensure
model_updated: model |=| old model.extended (v)

The model is changed at a number of points in the inheritance relation.
This is always done by renaming the old definition to a name model_X,
where X is the name of the class where the model was introduced, and the
defining a new model. The two models are then related using the class
invariant.
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• CC_SET[G] defines the model to be MML_SET[G]:
model.equals(model_container.domain)

• CC_TABLE[G,K] defines the model to be MML_RELATION[K,G]:
model_container.equals(model.range_bag)

• CC_INDEXABLE[G] defines the model to be MML_RELATION[INTEGER
,G]:
model_container.equals(model.range_bag)

• CC_TRAVERSABLE[G] defines the model to be MML_PAIR[MML_SEQUENCE
[G],INTEGER]:
model_container.equals(model.first.range_bag)

• CC_LIST[G] has to merge multiple models. Its model is MML_PAIR

[MML_SEQUENCE[G],INTEGER], but it redefines the model from CC_

INDEXABLE to be equivalent to the sequence:
model_indexable.equals(model.first)

and it merges the model_container from all inherited data struc-
tures.

Following the inheritance relation and the model contracts, the put fea-
ture defined in CC_COLLECTION has the following contracts in CC_LIST:

put (v: G)
-- Ensure that structure includes ‘v’.
-- (from CC_COLLECTION)

require -- from CC_COLLECTION
can_add_element: can_put (v)

ensure -- from CC_COLLECTION
model_updated: model_container |=| old model_container

.extended (v)
model_correspondends: model_container.contains (v)
frame_confined: confined representation

ensure then -- from CC_SEQUENCE
new_count: count = old count + 1

The contractual obligations of put make it impossible to implement re-
place: the list, if seen as a bag, will not remove any element, but instead
add one occurrence of v.

The solution to this problem is to use rename instead of redefine: the put
feature in CC_LIST is a different feature from the put feature introduced
in CC_COLLECTION. The inheritance clause renames the put as inherited
from CC_CURSOR_STRUCTURE to put_end, to describe that v is added to the
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end of the list. The new put feature (inherited from CC_INDEXABLE) has
the following contract:

put (v: G) is
-- Replace current item by ‘v’.

require
not_off: not off
model_precondition: model.first.domain.has(index)

ensure
item_replaced: item = v
model_update: model.first.equals (old model.
domain_restricted_by (index).extended_by_pair (index,

v))
model_cursor_not_moved: model.second = old model.

second

There are numerous other details that were changed from the original Eif-
felBase by the introduction of models:

• Because of the constraints of the model library, all containers are fi-
nite. This made it possible to remove the FINITE, UNBOUNDED and
BOX.

• CC_TABLE does not inherit from CC_BAG. The idea in the original Eif-
felBase library was that a table is a bag with the elements accessible
by keys. Now the abstraction of the bag has already been moved to
CC_COLLECTION. The bag is now a “real bag”.

• In the same spirit, CC_ACTIVE is also not a heir of bag anymore.
CC_ACTIVE introduced the concept of item, a current element con-
tained in the structure that can be replaced or removed. There are
bags that are not active, and active objects that are not bags.

• In EiffelBase BILINEAR inherits twice from LINEAR. This double in-
heritance relation does not make any sense, as all of the features in-
troduced by the second inheritance relation are hidden through the
select statement anyway.

• The fill feature has been discarded for the reasons mentioned in
the last section.

• Strict command-query separation was introduced. This was not the
case for a number of queries in the EiffelBase implementation, as
they moved the cursor.
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• cursor was renamed to cursor_position, as the object really only
stores the cursor position (the index value), but cannot be used to
directly access the elements of the container.

A final observation: an open question that was raised numerous times
during discussions about active data structures was whether two lists that
contained the same elements but had their cursor at different positions
were considered as equivalent in the terms of is_equal. CCEiffelBase an-
swers this question by introducing following postcondition for is_equal
in CC_LIST:

feature -- Comparison
is_equal (other: like Current)
ensure
Result = (model.first |=| other.model.first)

This expresses that two lists are equivalent if the underlying sequences are
the same. The cursor position does not matter for comparing the value of
two lists.

6.14 Summary

This chapter has motivated and introduced the concept of models for writ-
ing contracts in Design by Contract. Models are representations of mathe-
matical values in the domain of a programming language.

We have introduced models by defining a model library. Each class
and feature in the model library was related to some mathematical set or
function. We have demonstrated how the proper use of genericity and
subtyping can translate the types of the underlying theory into the type
system of the programming language.

With the model library, it is possible to define the “state of an object”
precisely by providing an abstraction function — here always called model

— that yields a value of the mathematical domain. We have called this
abstraction function the model query. Using the model query, it is possible
to improve the contract for commands and queries, without the need to
fall back to recursive contracts.

Models give a better understanding of the inheritance relation, intro-
ducing the concept of model redefinition (which manifests in the renam-
ing of the inherited model and the introduction of a new model) and the
definition of glueing invariants between inherited and actual models.

Models are an important addition to the Design by Contract language,
and our experiments illustrate that the force the developer to have a better
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understanding of his abstractions and object state. At the same time, they
are necessary to make contracts strong enough for formal verification.
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item: G is
-- Top element

require
not_empty: not is_empty
model_not_empty: not model.is_empty

do
. . .

ensure
model_definition: Result = model.last

end

put (v: G) is
-- Push ‘v’ onto top.

do
. . .

ensure
item_on_top: item = v
count_increased: count = old count + 1
model_changed: model.equals (old model.extended (v))

end

remove is
-- Remove the top of the stack.

require
not_empty: not is_empty
model_not_empty: not model.is_empty

do
. . .

ensure
count_decreased: count = old count + 1
model_changed: model.equals (old model.front)

end

Listing 6.3: Contracts of STACK using models
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item: G is
-- Top element

require
not_empty: not is_empty
model_not_empty: model 6= ∅

do
. . .

ensure
model_definition: Result = model(card(model))

end

put (v: G) is
-- Push ‘v’ onto top.

do
. . .

ensure
item_on_top: item = v
count_increased: count = old count + 1
model_changed: model′ = model ∪ (card(model), v)

end

remove is
-- Remove the top of the stack.

require
not_empty: not is_empty
model_not_empty: model 6= ∅

do
. . .

ensure
count_decreased: count = old count + 1
model_changed: model′ = {card(M)}C−model

end

Listing 6.4: Mathematical translations of model contracts in STACK
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create stack.make_empty
{ stack.model = ∅ }
stack.put (47)
{ stack.model = {(1, 47)} }
stack.put (11)
{ stack.model = {(1, 47), (2, 11)} }
stack.remove
{ stack.model = {(1, 47)} }
print (stack.item)

Listing 6.5: Proof STACK

feature{SPECIFICATION} -- Model queries

model: MML_SEQUENCE [G] is
-- Model of the stack

local
i: INTEGER

do
from
i := a.lower

until
i > a.upper

loop
Result := Result.extended (a.i_th (i))
i := i + 1

end
end

Listing 6.6: Implementation of the abstraction function for class
ARRAYED_STACK.



CHAPTER 7

DYNAMIC FRAME CONTRACTS

In their seminal paper “Some Philosophical Problems from the Standpoint
of Artificial Intelligence” from 1969 [46], McCarthy and Hayes gave an
extensive study of problems and possible solutions that the artificial intel-
ligence community faced at that time. This paper identified and coined the
term “frame problem” as one of the open problem of formal specifications
for real world phenomena. The frame problem was informally described
as follows:

[...] in proving that one person could get into conversation with an-
other, we were obliged to add the hypothesis that if a person has a
telephone he still has it after looking up a number in the telephone
book. If we had a number of actions to be performed in sequence we
would have quite a number of conditions to write down that certain
actions do not change the values of certain fluents. In fact with n
actions and m fluents we might have to write down mn such condi-
tions. (McCarthy and Hayes [46, p. 30])

Applying more current software engineering terminology, we can trans-
late situation as state, fluent as state function and action as a state transfor-
mation function, a fluent where the range is another state. Propositional
fluents are state properties.

McCarthy’s and Hayes’s description of the frame problem is optimistic;
they assume that there is indeed a well-known number n or actions and
another well-known number m of fluents, such that it is possible to specify
the full effect of an action on all fluents. Whether or not this information
is known when writing down formalizations, and what to do if the infor-
mation is not known, is the question covered by this chapter.
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7.1 Closed world reasoning

One approach to transform the unbounded, unknown set of fluents into a
bounded, well-known one is closed world reasoning [74]. In artificial intel-
ligence, closing down the world means giving a default for all properties
that have not been mentioned so far or cannot be deduced by the given
knowledge base. For example, if the knowledge base contains “Fred has
a sister Ginny.”, and we ask if “Fred has a brother George?”, we would
deduce “No”, as we would have mentioned the brothers of Fred if he had
one in the underlying knowledge base.

Open-world reasoning does not allow such assumptions. We have
never implied that George is a brother of Fred, nor have we implied the
opposite. We can regard open world reasoning as closed world reasoning
with a default value of “unknown” in ternary logic.

Formally, closed world reasoning means the extension of the knowl-
edge base by a closed world assumption CWA. If a property holds on the
knowledge base KB without the closed world assumption, is must also
hold if we enrich the knowledge base with the closed world assumption:

KB ` P

KB ,CWA ` P

The introduction of the CWA needs to be sound: it must not introduce
contradictions into the knowledge base.

A typical example of closed world reasoning is implemented in Pro-
log’s negation as failure policy [14], as demonstrated by the script of listing
7.1. Although we never add the knowledge that Fred is not a sibling of
George, Prolog implies this information, as it cannot prove the opposite.

sibling(fred,ginny).
?- sibling(fred,george).
No

Listing 7.1: Prolog example of closed world reasoning

Applying closed world reasoning to the frame problem means to as-
sume that all fluents that are not mentioned in the specification of an ac-
tion will have a default new value, for example the same value as they
had in the situation in which the action was applied. Thus, all fluents not
mentioned in the specification are invariant under the action.
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7.2 Frame problem in software development

The frame problem arises in software engineering as well as in artificial in-
telligence. It arises when we combine formal reasoning, information hid-
ing and bottom-up software development.

Bottom-up software development means we want to be able to develop
different components to fulfill certain tasks of the software. Later in the
process, we combine these components into larger components to fulfill
more complex task. The existing components become subcomponents of
the new components. We repeat this process until the final component
fulfills the overall requirements for the system under development. The
top component is then the actual application.

The advantage of bottom-up development is the ability to reuse ex-
isting software in different contexts. It is possible to develop libraries
of components independently, without specific knowledge of the context
they will be used in later. Components from different sources can be com-
bined without the developers of the original components knowing about
this combination. Bottom-up development is a widespread approach to
software development.

Information hiding [72] separates interface and implementation. The in-
terface describes what a software component does, while the implementa-
tion has all the details of how the software component achieves its func-
tionality. When using an existing component in a new component, only
the (hopefully small) interface description needs to be consulted. This re-
sults in a separation of concerns and a reduction of complexity.

For formal verification, information hiding turns into modular reasoning
[61]. Modular reasoning means that it should be possible to verify the
correctness of a component only knowing the interfaces of the components
it uses.

For the frame problem, we can see that it is not sufficient for the inter-
face to talk about the pure functionality of a component. It is also neces-
sary for the interface to carry information on how it interacts with other
components when combined into an application. Trying to implement the
example from McCarthy mentioned earlier, we get the code shown in list-
ing 7.2.

Following McCarthy’s reasoning, we should mention as part of the
specification of the lookup_number in TELEPHONE_BOOK that looking up
a number will not change the ownership of telephones, affecting the value
returned by telephone or class PERSON.

This is contradicting with the rules of bottom-up development if PERSON
and TELEPHONE_BOOK are developed independently. Only later, both classes
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check
person.telephone /= Void

end

-- We know that the person has a telephone at this point
-- during the execution.

telephone_book.lookup_number ("Smith")

-- Do we still know that we have a telephone?
-- (otherwise we get a Void call on the next line)

person.telephone.dial_number (telephone_book.last_number)

Listing 7.2: McCarthy telephone problem as code

are joined together into a single application. The interface specification of
PERSON cannot talk about telephone books, nor can the interface specifica-
tion of TELEPHONE_BOOK talk about persons and their telephones.

A solution to this dilemma is to adopt a meaningful default, that is
to work under a closed world assumption as introduced by Reiter [74].
We develop specifications for software components to describe what is af-
fected by a certain operation. Then, we assume that everything not men-
tioned by the specification remains unchanged.

The major engineering problem that needs to be solved is the combi-
nation of these specifications with the information hiding principles. De-
scribing explicitly all the changes of a component would reveal how a com-
ponent is implemented. This is a violation of information hiding, where
the specification should only mention what a component does.

The next section contains the application of framing to the object-oriented
model as introduced in chapter 5. We then give a short overview of exist-
ing approaches to the frame problem in existing verification system. We
introduce the idea of dynamic frames as a new approach and discuss the
advantages and disadvantages of the approach when compared with pre-
vious work. We integrate dynamic frames into Design by Contract by
proposing “Dynamic Frame Contracts” and formalize these contracts. Fi-
nally, we apply dynamic frame contracts to real world examples and iden-
tify common contract patterns.
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7.3 Related work

For program verification, significant work has been done to specify and
enforce encapsulation of data. The most universal approach might be the
definition of separation logic [75][71][66].

Many papers approach solving frame problems by preventing unwanted
leaking of references within the program execution, guaranteeing the en-
capsulation of the data by preventing access [2][9][59][21]. The universe
type systems is used in Spec#[4] to maintain class invariants that rely on
foreign objects. All of these approaches is in common that they violate
information hiding by lacking an approach to specify read effects. Also,
they constrain the object structure.

Static modify clauses (in contrast to the modify clauses based on dy-
namic frames as presented in this thesis) are annotations added to the
contract language to restrict the set of object fields [33][13][10].

Static modify clauses introduce problems with information hiding and
subtyping. Data groups are a specification technique to counter these
problems by introducing abstract variable groups and only later assign
specific attributes to these groups[44].

Few papers are not only concerned with possible changes of the state,
but also to specify which functions are effected by change. Greenhouse
and Boyland coined the term read-effect[32] for this phenomenon.

VDM introduces the specification of read and write effects into its re-
finement calculus[7]. Reading and writing to variables is specified explic-
itly. A global frame can be used to enforce the independance of different
refinements. As a refinements calculus with top-down developement and
without dynamic storage allocations, the actual problems encountered are
very different from the work presented here.

Early work on framing in Eiffel was done by Mitchell and McKim [58].
This work included only adding standard descriptions of the form x =

old x to post-conditions, an approach which is not sufficient to overcome
the problems of framing.

Dynamic frames as applied in this thesis have been invented by Kas-
sios and extensively covered as part of his thesis[37] as well as a conference
paper[36]. A summary of of Kassios’ work is contained in section 7.5.

A comparison between Kassios’ Dynamic Frames and Dynamic Frame
Contracts as presented in this thesis is given in section 7.7.
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7.4 Frames in the object-oriented programs

Section 5.4 introduced a model of the state of an object-oriented program.
The state is define by three components: environment, heap and global
state.

The frame problem is encountered in program execution whenever we
call a feature. Only at this point during the execution do we use informa-
tion hiding: we potentially cross the boundary between two classes, with
the client class only aware of the supplier’s interface.

Every feature execution has its own environment (see equation (5.116);
and (5.129)). The current environment cannot be changed by the execution
of another feature. All values stored in the environment are never changed
by the call, we can assume them to be constant.

Values set in the global state will never change, and we can assume
that a routine has no way to tell whether a once feature has already been
evaluated or not (this is an explicit simplicification, as there are indeed
ways to detect the execution of a once routine, for example by side-effects).

The part of the state that is interesting for frame specifications is the
heap. This is where unwanted side-effects can take place.

The heap is contains two parts: a mapping from locations to objects
(see equation (5.66)) and which objects are allocated (see equation (5.70)).
Section 5.4.4 shows that object allocation alone does not produce visible
side-effects. Consequently, the frame problem can disregard allocation
and work with a similified heap from locations to objects.

For a concrete heap H , we will call this mapping σ. The mapping can
be constructed by closing the first argument in function ( ) (5.66). The
type of σ is Loc →Obj .

The heap itself is unbounded; there can be an arbitrary number of loca-
tions and objects. Frame specifications for object-oriented programs have
to identify a bounded set of locations whose values are read or modified
during the execution of a routine. We call this set the frame of the routine. All
other locations, outside of the frame, have to be constant. Given a trans-
formation of σ into a state σ′ and a frame f , a legal state transformation
would be the transformation that keeps all locations outside of the frame
constant:

f C− σ = f C− σ′

This equation of framing is too strong, as it ignores the allocation of new
objects and the change of these new objects. Knowing that state abstrac-
tions only use allocated objects, we can restrict our definition of framing
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to all locations of allocated objects.
The following equations for framing introduced by Kassios [36]:

Ξf , f C σ = f C σ′ (7.1)

∆f , Ξ(Used \ f) (7.2)

This definition of ∆f describes that all locations outside of the frame f
that are used by allocated objects in the pre-state of the computation have their
values unchanged by the computation.

Definition 7.1: Framing

Giving a state transformation T that transforms the locations of
the heap H from σ to σ′, a given set of locations f frames the
transformation T if and only if ∆f holds for T .

This definition allows the state transformation to change any of the
locations named in the frame, and also all locations of object unallocated
in the pre-state of the computation.

If the specifications of a feature in object-oriented programs gives suf-
ficient information about the frame needed by the feature to fulfill its con-
tract, it is easily possible to show the non-interference of the sequential
execution of two computations, if their frames do not overlap.

7.4.1 Read vs write effects
When reasoning about frames, we want to know which state predicate P
is affected by which state transformation T . The state predicate P might be
defined independently of the state transformation T , for example P might
be a query of one library, while T is a command defined in another library.
As noted, this makes it impossible to include a specification of the effect of
T on P in the specification of P or T .

We solve this problem by splitting the specification into two parts. We
know that the effect of T on P is conveyed by the state. T ’s changes to the
state are called its write effect. P ’s use of the state is called its read effect [32].

Definition 7.2: Write effect
The write effect of a state transformation T on the state s is the
set of locations in the heap sH whose values are changed between
the pre- and the post-state of the state transformation T .
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Definition 7.3: Read effect
The read effect of a state predicate P on the state s is the set of
locations in the heap sH that are read to compute the resulting
value of P .

Knowing that the heap is the only means of communication between P
and T , we can combine read and write effect to compute the actual effect of
T on P . We assume that the environment, global state and object creation
plays no role in read and write effects of T .

7.5 Dynamic Frames

In his thesis [37], Ioannis Kassios has developed an object-oriented pro-
gramming and verification model. To solve the problem of framing in his
programming model, Kassios introduced the idea of “dynamic frames”.
This section summarizes the idea of dynamic frames.

Kassios’s programming model defines modules. Subtyping and the
interface/implementation relation are handled through mathematical re-
finement of the modules.

Modules define specification variables, program variables and opera-
tions. Refinement of two machines means that the axioms of the refining
module imply the axioms of the refined module.

Along with program variables, which are part of the state, the model
introduces specification variables, defined in terms of other variables. Op-
erations are axioms defining state transitions, expressing a relation be-
tween a pre-state and a post-state. The value of a variable x in a post-state
is marked by a tick: x′.

Listing 7.3 shows the definition of a polar point data type that imple-
ments scaling. Listing 7.4 shows a possible implementation of the point
data type using Cartesian coordinates.

module Point
spec var a ∈ R
spec var r ∈ R

scale (f ∈ R) ensures r’ = r*f
end module

Listing 7.3: Definition of a polar point
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module Point
prog var x ∈ R
prog var y ∈ R
spec var a = . . .

spec var r =
√

x2 + y2

scale (f ∈ R) ensures x’ = x*f ∧ y’ = y*f
end module

Listing 7.4: Implementation of a point using Cartesian coordinates

One of the proof obligations of the refinement would be to show that
the new definition of scale implies the old definition.

(x′ = xf ∧ y′ = yf ∧ r =
√

x2 + y2 ∧ r′ =
√

x′2 + y′2 ⇒ r′ = rf) ⇔
(
√

x′2 + y′2 =
√

x2 + y2f) ⇔
(
√

(xf)2 + (yf)2 =
√

x2 + y2f) ⇔
(
√

(x2 + y2)f 2 =
√

x2 + y2f) ⇔
(
√

x2 + y2f =
√

x2 + y2f)

7.5.1 Object-orientation

Object-orientation is introduced by a heap structure similar to the one in-
troduced in section 5.4. Program variables are linked to certain address
locations.

Attributes are introduced making program variables shortcuts to look-
ing up values in the heap. Program variable x becomes an attribute by
looking up the value at addrx in the heap.

x = σ(addrx)

There is a special variable called self. Evaluating an expression on an-
other object means to replace self by the actual reference to the object:

p.E = E(p/self )
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7.5.2 Frame variables

A dynamic frame is a specification variable whose value is a set of locations.
As shown in listing 7.4, the frame is defined by an abstraction function on
the program state.

This, as introduced by Kassios, is different from previous approaches:
the frame is an abstraction of the full state. It has the full power of a state-
dependent expression. Frames can change any time the state changes.

Kassios introduces framing as part of the specification of a variable.
Frames are the memory locations that contribute to this variable. Let f be
a frame and v be a variable, we express that f frames v by writing:

f frames v , f ⊆ Used ∧ ∀σ′.Ξf ⇒ v′ = v (7.3)

This is the original definition from Kassios [36]. The following expanded
version of (7.3) might be more clear:

f ⊆ Used ∀σ, σ′.(f C σ = f C σ′)⇒ v = v′

f frames v
(7.4)

With a frame specification, we give a global invariant specifying the
relation between a variable and its frame: if no location included in the
frame f in the pre-state of any state transformation is changed by that
state transformation, then the value of the variable v will not change.

If v is a program variable, then the frame specification is trivially ful-
filled if the address of the program variable is always included in the
frame. If v is a specification variable, the all the addresses of program
variables that are used to compute the value of v has be in the frame. Oth-
erwise, the frame specification is not fulfilled by the implementation.

The power of dynamic frame specifications is the possibility of under-
specifying frame variables. This is because the following theorem holds
for domain restrictions:

g ⊆ f ∧ (f C σ = f C σ′)⇒ (g C σ = g C σ′) (7.5)

Proof:
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(g ⊆ f), (f C σ = f C σ′) ` (g C σ = g C σ′)

V Definition of C
(g ⊆ f), (∀o : o ∈ f ⇒ σ(o) = σ′(o)) ` (∀o : o ∈ g ⇒ σ(o) = σ′(o))

V Definition of ⊆
(∀o : o ∈ g ⇒ o ∈ f), (∀o : o ∈ f ⇒ σ(o) = σ′(o)) ` (∀o : o ∈ g ⇒ σ(o) = σ′(o))

V Simplification
(∀o : (o ∈ g ⇒ o ∈ f), (o ∈ f ⇒ σ(o) = σ′(o))) ` (∀o : o ∈ g ⇒ σ(o) = σ′(o))

V Transitivity of ⇒
(∀o : o ∈ g ⇒ σ(o) = σ′(o)) ` (∀o : o ∈ g ⇒ σ(o) = σ′(o))

�

Theorem (7.5) specifies that a given frame specification may describe a
superset of the actual frame specification that is given in later refinements
of the programs. As refinement is used for inheritance and information
hiding, the frame in the implementation has to be a subset of the frame in
the specifications, and redefinitions of frames in subtypes are only allowed
to specify smaller frames.

Two variables are independent if their dynamic frames are disjoint.
This makes is possible to maintain the knowledge about one abstraction
over some state transformation if the state transformation is constrained
by the ∆ predicate (7.2). This is expressed by the following theorem:

g frames y ∧ f ∩ g = ∅ ∧∆f ⇒ y = y′ (7.6)

Proof:

(g frames y), (f ∩ g = ∅), ∆f ` y = y′

V Definition (7.3)
(g ⊆ Used),∀o, o′.(g C o = g C o′ ⇒ y = y′), (f ∩ g = ∅), ∆f ` y = y′

V Definition (7.2)
(g ⊆ Used),∀o, o′.(g C o = g C o′ ⇒ y = y′), (f ∩ g = ∅), Ξ(Used \ f) ` y = y′

V Definition (7.1)
(g ⊆ Used),∀o, o′.(g C o = g C o′ ⇒ y = y′), (f ∩ g = ∅),

(Used \ f)C σ = (Used \ f)C σ′ ` y = y′

V Instantiation of the ∀ with σ, σ′
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(g ⊆ Used), (g C σ = g C σ′ ⇒ y = y′), (f ∩ g = ∅),

(Used \ f)C σ = (Used \ f)C σ′ ` y = y′

V Simplification (set-theory)
(g C σ = g C σ′ ⇒ y = y′), (Used \ f)C σ = (Used \ f)C σ′∧

g ⊆ (Used \ f) ` y = y′

V Theorem (7.5)
y = y′ ` y = y′

�

Theorem (7.6) is the key theorem to dynamic frame reasoning: if we
are able to ensure that two frames are disjoint, and we use one to frame
an arbitrary specification variable and restrict the modification of the state
to the second frame, we know that the modification will not change the
value of the specification variable.

As we have seen, the disjointness property of frames is the property
that needs to be maintained while reasoning about program executions.

7.5.3 Modular reasoning
Maintaining the disjointness of the frames requires understanding of how
frames change by state updates. Again, we face the dilemma of modular
reasoning: how can one module state that is does not change the frame in
another module if the two modules are developed independently?

The answer is self-framing frames. As frames are defined by specification
variables, frames themselves can carry frames. Most important, they can
frame themselves:

g frames g

This means that the frame (the set of addresses) will only change if
some the content of any of the addresses it contains changes. But if the
change is limited to a frame f disjoint from g, then g will not change.

g frames g ∧ (f ∩ g = ∅) ∧∆f ⇒ g = g′

The property g frames g is added to the specification of the module
defining g and the property ∆f is added to the specification of the mod-
ule defining f . The client that is integrating the two modules then can
maintain the property (f ∩ g = ∅) over state transitions restricted by ∆f .

For example, knowing in the module defining f that f will not change
makes it easy to maintain disjointness
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g frames g ∧ (f ∩ g = ∅) ∧∆f ∧ f = f ′ ⇒ (f ′ ∩ g′ = ∅)

which follows trivially by the fact that neither f nor g is changed by
the state transformation.

7.5.4 Object creation
The property f = f ′ is very restrictive. We might want a state transition
to change the frame. For example, adding a new element to a linked list
requires enlarging the frame of the list representation by the new cell that
builds up the list.

If we allow f to change arbitrarily, then we cannot maintain the dis-
jointness from g. But we know that g does not contain any unallocated
objects (7.3). Enlarging f by newly allocated objects will maintain the dis-
jointness. Enlarging the frame by new objects is defined by the Λ predicate:

Λf , f ′ ⊆ f ∪ Unused (7.7)

Λf is a predicate on a state transformation, relating pre- and post-state.
It can only be used to specify operations. Specifying an operation with Λf
makes it easy to maintain the disjointness of two frames:

g frames g ∧ (f ∩ g = ∅) ∧∆f ∧ Λf ⇒ (f ′ ∩ g′ = ∅)

7.5.5 Summary
Dynamic frames as introduced by Kassios [36, 37] defines frames as sets
of resources that can cause interference, in the case of object-orientation
memory locations on the heap.

They are dynamic as they are state abstractions, called specification
variables: whenever the state changes, the value of the frame can change
as well.

Framing invariants limit changes of variables: if a variable is framed by
a frame f , the framing invariant tells us that the value of the variable will
only change if a location in f changes its value. By showing that a state
transformation will not change any of the values in f , the value returned
by the query framed by f will not change.

Showing that a state transformation does not change f is done by defin-
ing a second frame g disjoint from f . By restricting the change of the state
transformations to the locations in g, we know that all location in f keep
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their value and the return value of the query is invariant over the state
transformation.

Frames are variables. It is possible to frame frames by other frames. It
is possible to have frames frame themselves. Self-framing frames help us
to develop modular specifications for software components.

Reasoning about dynamic frames requires maintaining disjointness prop-
erties of frames. As long as frames are disjoint, software components that
are limited in their specification by these frames will not interfere with
each other.

Reasoning about the disjointness of frames comes very naturally. Dis-
joint frames partition the heap. In that respect, reasoning about heap parti-
tions is similar to reasoning in separation logic [75], but avoids the defini-
tion of a full new logic. These partitions are used by components that make
up the system. If two components always work on separate partitions to
fulfill their contracts, then the two partitions trivially do not interfere with
each other.

Frame variables can carry their own specifications. The stronger the
specification of the frame variable, the more details are known to the client
and the easier it is for the client to show non-interference. As an obligation
to the supplier, strong specifications for frame variables restrict possible
implementations or subtypes, limiting the set of objects that can be used.

In contrast to static ownership, frames do not put any restrictions on
passing around references in the system. An “owner as modifier” policy
is not required. Frames work well with the inheritance relations and with
global data.

7.6 Frames as contracts

Kassios’s theory is developed on the basis of a non-existing programming
language. The language only contains elementary constructs needed illus-
trate and reason about pointer structure and framing.

Industrial strength programming languages integrate many concepts
into a single, consistent whole. The integration of frame specifications into
Eiffel needs to be consistent with all existing language constructs and the
overall design philosophy. For Eiffel, this means:

• The language extension has to be backward compatible with existing
Eiffel code. Existing Eiffel has to compile without changes.

• The semantics of existing code needs to be sound without the new
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annotations. Code without annotations must not imply or infer a
specification.

• The number of new keywords introduced into the language should
be minimal. Keywords should be align with existing ones, using
easy and understandable regular English words. At the same time,
it should be uncommon that the keywords are used as regular iden-
tifiers for features or class names.

• It must be possible to annotate frame specifications with tags to de-
scribe their semantics.

• Annotated code must be readable even for a person not familiar with
the Eiffel language.

• It has to be easy to for tools and readers to differentiate between
interface and implementation. It must be possible to extract the in-
terface from code.

• Eiffel uses expressions to express contracts, including calls to other
features. It should also be possible to use expressions in frame spec-
ifications.

• Numerous runtime notions are not available in the Eiffel language,
except through means like reflection or introspection. It is not pos-
sible to access encapsulated objects and it is not possible to access
the set of all allocated objects. Frame specifications must not talk
explicitly about such objects.

We introduce a new class called FRAME into the language that captures
sets of resources. Similar to the model classes introduced in chapter 6,
instances of FRAME are immutable and have a value semantics.

FRAMEs only offer a limited number of operations: existing sets can be
checked for inclusion (x ∈ F ), subset relations (F ⊆ G) and disjointness of
sets (F ∩G = ∅). Frames can be constructed by creating the empty frame
(∅), by including resources into existing frames (F ∪ x) and by joining
frames existing frames (F ∪G).

It is not necessary to create intersections of frames, except for the pur-
pose of checking disjointness, or to reduce the size of a frame by any other
means. All quantifications are also not needed.

Kassios’ specification variables are generalized using expressions: ex-
pressions are universal state abstraction functions. The resulting type of
specification variables that capture frames has to be FRAME.
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Using expressions to describe frames is consistent with the general use
of expressions in other parts of the contract language. This introduces new
needs for specifications. Kassios’ simplified language was clearly split into
two parts: observations of the state are handled using (specification or
programming) variables. State transformations are done by before/after
predicates. Only observations, that means variables, have to be framed.

When using expressions as frame specifications, commands can con-
tribute to the result of an expression: the expression can call some func-
tion, what itself makes use of some command while computing its Result
value. It has to be possible to frame command executions.

To express frames, we introduce the new keyword use into the lan-
guage. The syntax of a use clause is similar to the syntax of require or
ensure clauses such that it annotates a given feature with a number of
expressions.

feature
some_query (arg: ARG_TYPE): RESULT_TYPE
use
some_tag: some_expression -- Type: FRAME

These expressions describe the resources that a given feature uses to
accomplish its task: computing a result value or updating a number of
(potentially different) resources. If all resources described by the expres-
sions remain unchanged by a state transformation, then the resulting effect
of the feature invocation is also unchanged.

f frames g becomes g use f in Eiffel code. The frame becomes part of
the specification of a feature, limiting its implementation similar to strong
postconditions.

Complementary to use clauses, we introduce modify clauses. Modify
captures the intend of the ∆ function defined by Kassios (7.2): it limits
possible changes. As we demand command/query separation, modify
clauses only make sense as part of the contract for commands. Annotating
a feature with modify f is semantically equivalent with writing ∆f , thus
Ξ(Used \ f).

feature
some_command (arg: ARG_TYPE)
use
some_use_tag: some_expression -- Type: FRAME

modify
some_tag: some_expression -- Type: FRAME

Adding this feature as an extra clause make modify annotations sym-
metric to use annotations. An alternative would be to add modify expres-
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sions to ensure clauses, similar to old expressions, losing symmetry and
making it more difficult to reason about modify clauses in the context of
inheritance.

7.7 Extending dynamic frames

Adopting Kassios’ dynamic frames to a real-world programming language
required a number of changes. The following major differences exist be-
tween Kassios’ dynamic frames and Dynamic Frame Contracts:

• Kassios’s frame specifications need access to the set of all allocated
objects. Dynamic frame contracts do not require this.

• As an executable programming language, Eiffel needs to clearly sep-
arate the implementation from the specification. Kassios’s refine-
ment calculus does not provide this, treating inheritance and imple-
mentation using refinement.

• Queries are allowed to use commands for their implementation. Kas-
sios’s specification variables do not allow to execute a sequence of
operations on the state to compute result values.

• Kassios introduces a specific symbol (δ) to frame read effects on vari-
ables, while adding write effects to the postcondition of an operation.
The actual write effects have to be extracted from the postcondition.
Dynamic frame contracts establish a symmetry between read and
write effects, making them more accessible.

• Dynamic frame contracts are executable. In section 7.15, we give
instructions on how to monitor frames at runtime.

• As frames in Dynamic Frame Contracts are regular queries in the lan-
guage, they can contain arguments. Kassios’s specification variables
are all argument-less variables.

Dynamic frame contracts try to make frame specifications easy to iden-
tify and read. They try to maintain the verbosity and unambiguity of the
Eiffel programming language.
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7.8 Granularity of Frames

Until now we have talked about frames on an abstract level as sets “re-
sources”. Kassios defines frames to contain set of memory locations, mean-
ing fields of objects.

Frame specifications are used to exclude non-interference of compo-
nents that are developed independently. These components make use of
subcomponents, by instantiating the subcomponents classes. In the gen-
eral case, the two components will not work on different fields of shared
instances, but use different instances.

This observation allows frames introduced by the FRAME class to be
more course grained than frames introduced by Kassios. Instances of
FRAME capture sets of objects, and regard all the fields of the objects con-
tained in the set as the resources captured by the frame.

Frames as sets of objects are easier to understand and specify. There
is no easy way of describing a field in Eiffel. Writing down the field will
result in an evaluation of the field. Strings are cumbersome and are not
easy to check for consistency by the parser. Agents are a possible way to
specify fields, but are heavy weight and the notation of equivalence of two
agents is not well defined. In general, uniform access makes it difficult to
identify fields and inheritance may change a function to a field.

Both approaches, sets of fields and sets of objects, limit frame reason-
ing to the domain of objects within the object-oriented paradigm. Frames
could also capture other kinds of resources, like files on the file system or
states of hardware components. This is beyond the scope of this thesis.

7.9 Confining change

The Λ relation (7.7) used in the postcondition of a command describes that
the change to a frame is limited. The frame in the post-state can only con-
tain objects that were either in the frame before, or that have been created
during the execution of the command.

It is not possible to express this property with existing language con-
structs, as there is (outside of introspection) no way to tell which object
were created during the execution of a routine.

To solve this problem, we introduce the confined keyword, that is
similar to the Λ relation as introduced by Kassios. The boolean predicate
confined f can only be used in postconditions (similar to old) and ex-
presses that the new frame does not contain any objects in the post-state
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do
l := Allocated - f -- l is a fresh local id
-- Routine implementation

ensure
confine_f: f ∩ l = ∅

end

Listing 7.5: Sketch of flattened confined f postcondition

that were not already in the frame in the pre-state, except for object that
were created during the execution of the routine.

7.10 Formalization

use and modify clauses are introduced into the static model of the pro-
gramming language similar to pre- and postconditions. We define two
new functions that yield the expressions for the use and modify frame:

use : Feature → Expr (7.8)
modify : Feature → Expr (7.9)

The result type of the expressions always has to be FRAME.
The confined keyword is not present in the static model. It is instead

replaced by storing the used objects minus the value of the frame in the
precondition at the start of the execution, and then demanding that the
value of the frame in the postcondition is a subset to the stored set. The
outline of such a transformation is sketched in listing 7.5. This makes is
necessary — in this specific case — to allow access to the set of all allocated
objects. The set Allocated is the set of all allocated objects. It is defined as:

Allocated : State → P Obj (7.10)
Allocated(s) = {o ∈ Obj |alloc(o, sH)} (7.11)

7.10.1 Use sets
The use set of an execution is the set of all objects o that have fields read
during the execution of a routine or the evaluation of an instruction. Read-
ing a field from an object means using the ( ) function defined in (5.66).
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We define two functions to compute the use set of a given expression and
instruction:

UseSetE( , ) : Expr × State → P Obj (7.12)
UseSetI( , ) : Instr × State → P Obj (7.13)

Similar to the definitions given in the operational semantics, we define the
two functions inductively over all possible evaluation trees:

UseSetE(l, s) = ∅ (7.14)

UseSetE(l = l′, s) = ∅ (7.15)

〈l := e, s〉 s′

UseSetE(l := e; e′, s) = UseSetI(l := e, s) ∪UseSetE(e′, s′)
(7.16)

[
B = body(c)

E = 〈Current := new(s), arg1 := sE(l1), . . . , argn := sE(ln)〉

]
UseSetE(create c(l1, . . . , ln), s) = UseSetI(B, (sH , E, sG))

(7.17)

UseSetE(mc, s) = ∅ (7.18)

UseSetE(l.a, s) = {sE(l)} (7.19)

 f 6∈ OnceFunction ∨ ¬stored(sG, f)

B = body(version(typeof(sE(l)))(f))

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉


UseSetE(l.f(l1, . . . , ln), s) = UseSetI(B, (sH , E, sG))

(7.20)

[
f ∈ OnceFunction ∧ stored(sG, f)

]
UseSetE(l.f(l1, . . . , ln), s) = ∅

(7.21)

UseSetI(ε, s) = ∅ (7.22)
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〈S1, s〉 s′

]
UseSetI(S1S2, s) = UseSetI(S1, s) ∪UseSetI(S1, s′)

(7.23)

UseSetI(l := E, s) = UseSetE(E, s) (7.24)

〈a := l, s〉 = ∅ (7.25)

[
sE(C) = TRUE

]
UseSetI(ifC thenS1 elseS2 end, s) = UseSetI(S1, s)

(7.26)

[
sE(C) = FALSE

]
UseSetI(ifC thenS1 elseS2 end, s) = UseSetI(S2, s)

(7.27)

 sE(C) = FALSE

〈S, s〉 s′

R = UseSetI( from untilC invariant I variantV untilS end, s′)


[

UseSetI( from untilC invariant I variantV untilS end, s) =

UseSetI(S, s) ∪R

]
(7.28)

sE(C) = TRUE

UseSetI( from untilC invariant I variantV untilS end, s) = ∅
(7.29)

B = body(version(typeof(sE(l)))(f))[
UseSetI(l.f(a1, . . . , an), s) =

UseSetI(B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG))

]
(7.30)

UseSetI(check l end, s) = ∅ (7.31)
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7.10.2 Modify sets
The modify set of an execution of an instruction I for a given state s is the
set of all memory locations that have been changed during the execution.
The modify set is an over-approximation; it ignores the possibility that the
same value is written again into the memory location, which thus does not
change.

Only the assignment instruction can modify memory locations. We
also assume full command-query separation. This makes it possible to
define modify sets only on instructions, not on expressions, as the later
have no side-effects.

ModifySet( , ) : Instr × State → P Obj (7.32)

Again, we define modify sets over the syntax of instructions.

ModifySet(ε, s) = ∅ (7.33)

〈S1, s〉 s′

ModifySet(S1S2, s) = ModifySet(S1, s) ∪ModifySet(S2, s′)
(7.34)

ModifySet(l := E, =)∅ (7.35)

〈a := l, s〉 = {Current} (7.36)

sE(C) = TRUE

ModifySet(ifC thenS1 elseS2 end, s) = ModifySet(S1, s)
(7.37)

sE(C) = FALSE

ModifySet(ifC thenS1 elseS2 end, s) = ModifySet(S2, s)
(7.38)

 sE(C) = FALSE

〈S, s〉 s′

R = ModifySet( from untilC invariant I variantV untilS end, s′)


[

ModifySet( from untilC invariant I variantV untilS end, s) =

ModifySet(S, s) ∪R

]
(7.39)
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sE(C) = TRUE

ModifySet( from untilC invariant I variantV untilS end, s) = ∅
(7.40)

[
B = body(version(typeof(sE(l)))(f))

E = 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉

]
ModifySet(l.f(a1, . . . , an), s) = ModifySet(B, (sH , E, sG))

(7.41)

ModifySet(check l end, s) = ∅ (7.42)

7.10.3 Correctness
A given implementation satisfies the frame specification if the result of the
evaluation of use or modify expression in the pre-state of the execution is
a superset of the actual use or modify set.

∀f : Feature, s : State|
(UseSetI(body(f), ()s) ∩ Allocated(s)) ⊆ eval(use(f), s) (7.43)

(ModifySet(body(f), ()s) ∩ Allocated(s)) ⊆ eval(modify(f), s) (7.44)

Computing the use and modify frames is not modular. To compute UseSetI
and ModifySet, we need to look at the body of all suppliers of the routine.

In modular verification, the correctness of all suppliers can be assumed
to show the correctness of a routine. The solution is to use the transitivity
of the subset relation: if the supplier is correct, then its use and modify
frame has to be a subset of the evaluation of its use and modify clause.
Excluded from this subset relation are all objects that were allocated by
the routine itself or its suppliers.

• An implementation is correct with respect to its modify clause, eval-
uated to the set M , if there is an assignment to an attribute, Current
is an element of M and

• if an other routine f is called in state s and N contains the objects
that were created during the execution of the routine, then

eval(modify(f), s) ⊆ (M ∪N)

has to hold.
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• An implementation is correct with respect to its use clause, evalu-
ated to the set M , If an other routine f is called in state s and N
contains the objects that were created during the execution of the
routine, then

eval(use(f), s) ⊆ (U ∪N)

has to hold.

• The use and modify frames of every attribute must contain Current.

All features, commands and queries need to have a use frame. If no
explicit use frame is specified, then “the set of all living objects” (Allocated ,
see (7.10)) is assumed, making any implementation automatically correct,
as U ∪ N and M ∪ N contain all living objects at state s and the frame
always contains only living objects.

7.11 Reasoning with frames

The key rule behind frame based reasoning, defined as an axiomatic, Hoare
style rule, is

q use qf c modify cf {Q}c{R}
{Q ∧ P (q) ∧ qf ∩ cf = ∅}c{R ∧ P (q)}

(7.45)

This rule states: if a query q is framed by qf as its use frame and a
command c is framed with cf as its modify frame, and we know that if
the two frames are disjoint at the pre-state of the execution of c, then a
predicate P (q) is retained over the execution of c.

7.11.1 Soundness
The following theorem is the translation of rule (7.45) into the operational
semantics as presented here:

∀c : Routine, q, qf, cf : Query , s : State|
〈c, s〉 s′ ∧ P (eval(q, s)) ∧ (eval(qf, s) ∩ eval(cf, s) = ∅)⇒

P (eval(q, s′))

(7.46)

To prove the soundness of this important property, we first prove that
any allocated memory location outside of the modify frame cf will keep
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its value the execution of c. We have implied the validity of the call with
respect to precondition and invariant to shorten the proof text.

∀c : Routine, s, s′ : State, o : Obj , a : Attribute|
〈body(c), s〉 s′ ∧ o ∈ Allocated(sH)− eval(modify(c),⇒)sH(o.a) = s′H(o.a)

(7.47)

Proof: The theorem is proved inductively over all possible c. Because we
know that the modify set needs to be a subset of the actual specification,
we it is sufficient to prove

∀B : Instr , s, s′ : State, o : Obj , a : Feature|
〈B, s〉 s′ ∧ o ∈ Allocated(sH)−ModifySet(B, s)⇒ sH(o.a) = s′H(o.a)

which is also the induction hypothesis, which can be assumed to hold
for any subexpression of B, abbreviated as IH in the following proof.

Skip:

〈, s〉 s′, o ∈ Allocated(s)−ModifySet(T, s) ` sH(o.a) = s′H(o.a)

(5 .121 ) V 〈, s〉 s, o ∈ Allocated(sH)−ModifySet(T, s) ` sH(o.a) = sH(o.a) �

Sequential composition:

〈S1S2, s〉 s′, o ∈ Allocated(sH)−ModifySet(S1S2, s)

` sH(o.a) = s′H(o.a)

(5 .122 ) V 〈S1, s〉 s′′, 〈S2, s′′〉 s′, o ∈ Allocated(sH)−ModifySet(S1S2, s)

` sH(o.a) = s′H(o.a)

(7 .34 ) V 〈S1, s〉 s′′, 〈S2, s′′〉 s′, o ∈ Allocated(sH)− (ModifySet(S1, s)∪
ModifySet(S1, s′′))

` sH(o.a) = s′H(o.a)

V 〈S1, s〉 s′′, 〈S2, s′′〉 s′, o ∈ Allocated(sH)−ModifySet(S1, s),

o ∈ Allocated(sH)−ModifySet(S1, s′′))

` sH(o.a) = s′H(o.a)

IH V sH(o.a) = s′′H(o.a), s′′H(o.a) = s′H(o.a) ` sH(o.a) = s′H(o.a)
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Assignment to local:

〈l := E, s〉 s′, o ∈ Allocated(sH)−ModifySet(l := E, s)

` sH(o.a) = s′H(o.a)

(5 .123 ) V JE, sK s′′, (s′′H = s′H), o ∈ Allocated(sH)−ModifySet(l := E, s)

` sH(o.a) = s′H(o.a)

(5 .137 ) V (sH(o.a) = s′′H(o.a)), (s′′H = s′H), o ∈ Allocated(sH)−ModifySet(l := E, s)

` sH(o.a) = s′H(o.a)

V sH(o.a) = s′′H(o.a), s′′H(o.a) = s′H(o.a) ` sH(o.a) = s′H(o.a) �

Assignment to attribute:

〈a := l, s〉 s′, o ∈ Allocated(sH)−ModifySet(a := l, s)

` sH(o.a) = s′H(o.a)

(5 .124 ) V s′H = sH〈sECurrent.b := sE(l)〉, o ∈ Allocated(sH)−ModifySet(a := l, s)

` sH(o.a) = s′H(o.a)

(7 .36 ) V s′H = sH〈sE(Current).b := sE(l)〉, o ∈ Allocated(sH)− {sE(Current)}
` sH(o.a) = s′H(o.a)

(5 .72 ) V (∀p ∈ Allocated − {Current}|sH(p.a) = s′H(p.a)),

o ∈ Allocated(sH)− {sE(Current)}
` sH(o.a) = s′H(o.a)

V sH(o.a) = s′H(o.a) ` sH(o.a) = s′H(o.a) �

True case:

〈if C thenS1 elseS2 end, s〉 s′, sE(C) = TRUE,

o ∈ Allocated(sH)−ModifySet(if C thenS1 else , s)

` sH(o.a) = s′H(o.a)

(5 .125 ) V 〈S1, s〉 s′, o ∈ Allocated(sH)−ModifySet(if C thenS1 else , s)

` sH(o.a) = s′H(o.a)

(7 .37 ) V 〈S1, s〉 s′, o ∈ Allocated(sH)−ModifySet(S1, s)

` sH(o.a) = s′H(o.a)

IH V sH(o.a) = s′H(o.a) ` sH(o.a) = s′H(o.a) �

(false case the same way)
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Loop continuation:

〈fromuntilC invariant I variantV loopS end, s〉 s′,

o ∈ Allocated(sH)−
ModifySet(fromuntilC invariant I variantV loopS end, s),

sE(C) = FALSE,

` sH(o.a) = s′H(o.a)

(5 .127 ) V 〈S, s〉 s′,

〈fromuntilC invariant I variantV loopS end, s′′〉 s′,

o ∈ Allocated(sH)−
ModifySet(fromuntilC invariant I variantV loopS end, s)

sE(C) = FALSE

` sH(o.a) = s′H(o.a)

(7 .39 ) V 〈S, s〉 s′, sE(C) = FALSE,

〈fromuntilC invariant I variantV loopS end, s′′〉 s′,

o ∈ Allocated(sH)−ModifySet(S, s),

o ∈ Allocated(sH)−
ModifySet(fromuntilC invariant I variantV loopS end, s′′)

` sH(o.a) = s′H(o.a)

IH V sH(o.a) = s′′H(o.a), s′′H(o.a) = s′H(o.a) ` sH(o.a) = s′H(o.a) �

Loop termination:

〈fromuntilC invariant I variantV loopS end, s〉 s′,

o ∈ Allocated(sH)−
ModifySet(fromuntilC invariant I variantV loopS end, s)

sE(C) = TRUE

` sH(o.a) = s′H(o.a)

(5 .128 ) V sE(C) = TRUE, s = s′,

o ∈ Allocated(sH)−
ModifySet(fromuntilC invariant I variantV loopS end, s),

` sH(o.a) = s′H(o.a)

(7 .40 ) V sE(C) = TRUE, s = s′, o ∈ Allocated(sH)−∅
` sH(o.a) = s′H(o.a)

V ` sH(o.a) = sH(o.a) �
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Feature invocation:

〈l.f(a1, . . . , an), s〉 s′,

o ∈ Allocated(sH)−ModifySet(l.f(a1, . . . , an), s)

` sH(o.a) = s′H(o.a)

(5 .129 ) V B = body(version(typeof(sE(l)))(f))

〈B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 s′′,

s′′H = s′H , o ∈ Allocated(sH)−ModifySet(l.f(a1, . . . , an), s)

` sH(o.a) = s′H(o.a)

(7 .41 ) V B = body(version(typeof(sE(l)))(f))

〈B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 s′′,

s′′H = s′H ,

o ∈ Allocated(sH)−
ModifySet(B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . ,

argn := sE(an)〉, sG))

` sH(o.a) = s′H(o.a)

IH V ` sH(o.a) = sH(o.a) �

The second theorem show that the result of a boolean query will only
change if a memory location in the use-set of the computing routine is
changed.

∀q : Query , s, s′ : State, o, r : Obj , a : Attribute|
eval(q, s) = res ∧ o 6∈ eval(use(c), s)⇒

eval(q, (sH〈o.a := r〉, sE, sG))

(7.48)

Proof: The theorem is proved inductively over all possible q under a spe-
cific state s. Because we know that the use set needs to be a subset of the
actual specification, we it is sufficient to prove

∀E : Expr , s, s′ : State, o, r, res : Obj , a : Attribute|
eval(E, s) = res ∧ o 6∈ UseSetE(E, s)⇒

eval(E, (sH〈o.a := r〉, sE, sG)) = res

(IH1)

which is also the induction hypothesis, which can be assumed to hold for
any subexpression of B (with a corresponding sub-state), abbreviated as
IH1 in the following proof.
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In parallel, we have to prove that the following property holds for all
instructions I and states s:

∀I : Instr , s, s′ : State, o, r : Obj , a : Attribute|
〈I, s〉 s′ ∧ o 6∈ UseSetI(I, s)⇒

〈I, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(IH2)

Also, we have to prove that the following property holds for all instruc-
tions E and states s:

∀E : Expr , s, s′ : State, o, r : Obj , a : Attribute|
JE, sK s′ ∧ o 6∈ UseSetE(E, s)⇒

JE, (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(IH3)

Proofs for (IH1)

Local read:

eval(l, s) = res, o 6∈ UseSetE(l, s)

` eval(l, (sH〈o.a := r〉, sE, sG)) = res

(5 .104 ) V sE(l) = res, o 6∈ UseSetE(l, s)

` sE(l) = res �

Reference equality:

eval(l = l′, s) = res, o 6∈ UseSetE(l = l′, s)

` eval(l = l′, (sH〈o.a := r〉, sE, sG)) = res

(5 .105 ) V (sE(l) = sE(l′)) = res, o 6∈ UseSetE(l = l′, s)

` (sE(l) = sE(l′)) = res �
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Expression assignment:

eval(l := E1; E2, s) = res, o 6∈ UseSetE(l := E1; E2, s)

` eval(l := E1; E2, (sH〈o.a := r〉, sE, sG)) = res

(5 .106 ) V 〈l := E1, s〉 s′, eval(E2, s′) = res, o 6∈ UseSetE(l := E1; E2, s)

` 〈l := E1, (sH〈o.a := r〉, sE, sG)〉 s′′ ∧ eval(E2, s′′) = res

(7 .16 ) V 〈l := E1, s〉 s′, eval(E2, s′) = res,

o 6∈ UseSetE(E1, s), o 6∈ UseSetE(E2, s)

` 〈l := E1, (sH〈o.a := r〉, sE, sG)〉 s′′ ∧ eval(E2, s′′) = res

(5 .123 ) V eval(E2, (sH , sE〈l := eval(E1, s)〉, sG)) = res,

o 6∈ UseSetE(E1, s), o 6∈ UseSetE(E2, s)

` eval(E2, (sH〈o.a := r〉, sE〈l := eval(E1, s〈o.a := r〉)〉, sG)) = res

(IH1 ) V eval(E2, (sH , sE〈l := res′〉, sG)) = res,

o 6∈ UseSetE(E1, s), o 6∈ UseSetE(E2, s)

` eval(E2, (sH〈o.a := r〉, sE〈l := res′〉, sG)) = res

(IH1 ) V TRUE �

Create Expressions:

eval(createc(l1, . . . , ln), s) = res,

o 6∈ UseSetE(createT.c(l1, . . . , ln), s)

` eval(createc(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)) = res

(5 .107 ) V new(sH) = res, o 6∈ UseSetE(MC, s)

` new(sH〈o.a := r〉) = res

(5 .74 ) V new(sH) = res ` new(sH) = res �

Manifest Constants:

eval(MC, s) = res, o 6∈ UseSetE(MC, s)

` eval(MC, (sH〈o.a := r〉, sE, sG)) = res

(5 .108 ) V new(sH) = res, o 6∈ UseSetE(MC, s)

` new(sH〈o.a := r〉) = res

(5 .74 ) V new(sH) = res ` new(sH) = res �
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Attribute read:

eval(l.a, s) = res, o 6∈ UseSetE(l.a, s)

` eval(l.a, (sH〈o.a := r〉, sE, sG)) = res

(5 .109 ) V sH(sE(l).a) = res, o 6∈ UseSetE(l.a, s)

` sH〈o.a := r〉(sE(l).a) = res

(7 .19 ) V sH(sE(l).a) = res, o 6= sE(l)

` sH〈o.a := r〉(sE(l).a) = res

(5 .72 ) V ` TRUE �

Query call:

(f 6∈ OnceFunction ∨ ¬stored(sG, f)),

eval(l.f(l1, . . . , ln), s) = res, o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` eval(l.f(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)) = res

(5 .110 ) V (f 6∈ OnceFunction ∨ ¬stored(sG, f)),

B = body(version(typeof(sE(l)))(f)),

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,
eval(B, s) = res, o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` eval(B, (sH〈o.a := r〉, sE, sG)) = res

(7 .20 ) V (f 6∈ OnceFunction ∨ ¬stored(sG, f)),

B = body(version(typeof(sE(l)))(f)),

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,
eval(B, sH , E, sG) = res, o 6∈ UseSetE(B, s,E, sG)

` eval(B, sH〈o.a := r〉, E, sG) = res

(IH1 ) V ` TRUE �

Query call of old once value:

f ∈ OnceFunction, stored(sG, f),

eval(l.f(l1, . . . , ln), s) = res, o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` eval(l.f(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)) = res

(5 .111 ) V f ∈ OnceFunction, stored(sG, f),

sG(f) = res

` sG(f) = res �
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Proofs for (IH2)

Skip:

〈, s〉 s′, o 6∈ UseSetI(, s)

` 〈, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(5 .121 ) V o 6∈ UseSetI(, s)

` 〈, (sH〈o.a := r〉, sE, sG)〉 (sH〈o.a := r〉, sE, sG)

(5 .121 ) V TRUE �

Sequential composition:

〈S1 S2, s〉 s′, o 6∈ UseSetI(S1 S2, s)

` 〈S1 S2, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(5 .122 ) V 〈S1, s〉 s′′, 〈S2, s′′〉 s′, o 6∈ UseSetI(S1 S2, s)

` 〈S1 S2, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(7 .23 ) V 〈S1, s〉 s′′, 〈S2, s′′〉 s′,

o 6∈ UseSetI(S1, s), o 6∈ UseSetI(S2, s′′)

` 〈S1 S2, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(5 .122 ) V 〈S1, s〉 s′′, 〈S2, s′′〉 s′,

o 6∈ UseSetI(S1, s), o 6∈ UseSetI(S2, s′′)

` 〈S1, (sH〈o.a := r〉, sE, sG)〉 (s′′H〈o.a := r〉, s′′E, s′′G)∧
〈S2, (s′′H〈o.a := r〉, s′′E, s′′G)〉 (s′H〈o.a := r〉, s′E, s′G)

(IH2 ) V TRUE �

Assignment to local:

〈l := E, s〉 s′, o 6∈ UseSetI(l := E, s)

` 〈l := E, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(5 .123 ) V JE, sK s′′, s′ = (s′′H , s′′E〈l := eval(E, s)〉, s′′G),

o 6∈ UseSetI(l := E, s)

` 〈l := E, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(7 .24 ) V JE, sK s′′, s′ = (s′′H , s′′E〈l := eval(E, s)〉, s′′G),

o 6∈ UseSetE(E, s)

` 〈l := E, (sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)
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(5 .123 ) V JE, sK s′′, s′ = (s′′H , s′′E〈l := eval(E, s)〉, s′′G),

o 6∈ UseSetE(E, s),

JE, sH〈o.a := r〉, sE, sGK s′′′

` (s′〈o.a := r〉, s′E, s′G) = (s′′′H , s′′′E〈l := eval(E, sH〈o.a := r〉, sE, sG)〉, s′′′G))

(IH1 ) V JE, sK s′′, s′ = (s′′H , s′′E〈l := eval(E, s)〉, s′′G),

o 6∈ UseSetE(E, s),

JE, sH〈o.a := r〉, sE, sGK s′′′

` (s′〈o.a := r〉, s′E, s′G) = (s′′′H , s′′′E〈l := eval(E, s)〉, s′′′G))

(IH3 ) V JE, sH〈o.a := r〉, sE, sGK s′′,

(s′〈o.a := r〉, s′E, s′G) = (s′′H , s′′E〈l := eval(E, s)〉, s′′G),

o 6∈ UseSetE(E, s),

JE, sH〈o.a := r〉, sE, sGK s′′′

` (s′〈o.a := r〉, s′E, s′G) = (s′′′H , s′′′E〈l := eval(E, s)〉, s′′′G))

V TRUE �

Assignment to attribute:

〈a := l, s〉 s′, o 6∈ UseSetI(l := E, s)

` 〈a := l, sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G
(5 .124 ) V o 6∈ UseSetI(l := E, s)

` (sH〈o.a := r〉〈sE(Current).a := sE(l)〉, sE, sG) =

(sH〈sE(Current).a := sE(l)〉〈o.a := r〉, sE, sG)

(7 .25 ) V o 6= sE(Current)

` (sH〈o.a := r〉〈sE(Current).a := sE(l)〉, sE, sG) =

(sH〈sE(Current).a := sE(l)〉〈o.a := r〉, sE, sG)

(5 .72 ) V o 6= sE(Current)

` (sH〈o.a := r〉〈sE(Current).a := sE(l)〉, sE, sG) =

(sH〈o.a := r〉〈sE(Current).a := sE(l)〉, sE, sG) �

True case:

sE(C) = TRUE,

〈ifC thenS1 elseS2 end, s〉 s′,

o 6∈ UseSetI(ifC thenS1 elseS2 end, s)

` 〈ifC thenS1 elseS2 end, sH〈o.a := r〉, sE, sG)〉 
(s′H〈o.a := r〉, s′E, s′G)
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(5 .125 ) V sE(C) = TRUE,

〈S1, s〉 s′,

o 6∈ UseSetI(ifC thenS1 elseS2 end, s)

` 〈S1, sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(7 .26 ) V sE(C) = TRUE

〈S1, s〉 s′,

o 6∈ UseSetI(S1, s)

` 〈S1, sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(IH2 ) V TRUE �

(false case the same way)

Loop continuation:

sE(C) = FALSE,

〈fromuntilC invariant I variantV loopS end, s〉 s′,

o 6∈ UseSetI(fromuntilC invariant I variantV loopS end, s)

` 〈fromuntilC invariant I variantV loopS end, sH〈o.a := r〉, sE, sG)〉 
(s′H〈o.a := r〉, s′E, s′G)

(5 .127 ) V sE(C) = FALSE,

〈S, s〉 s′′,

〈fromuntilC invariant I variantV loopS end, s′′〉 s′,

o 6∈ UseSetI(fromuntilC invariant I variantV loopS end, s),

〈S, sH〈o.a := r〉, sE, sG)〉 s′′′

` 〈fromuntilC invariant I variantV loopS end, s′′′〉 
(s′H〈o.a := r〉, s′E, s′G)

(7 .28 ) V sE(C) = FALSE,

〈S, s〉 s′′,

〈fromuntilC invariant I variantV loopS end, s′′〉 s′,

o 6∈ UseSetI(S, s),

o 6∈ UseSetI(fromuntilC invariant I variantV loopS end, s′),

〈S, sH〈o.a := r〉, sE, sG)〉 s′′′

` 〈fromuntilC invariant I variantV loopS end, s′′′〉 
(s′H〈o.a := r〉, s′E, s′G)

(IH2 ) V sE(C) = FALSE,
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〈S, s〉 s′′,

〈fromuntilC invariant I variantV loopS end, s′′〉 s′,

o 6∈ UseSetI(S, s),

o 6∈ UseSetI(fromuntilC invariant I variantV loopS end, s′),

〈S, sH , sE, sG)〉 s′′′

` 〈fromuntilC invariant I variantV loopS end, s′′′〉 
(s′H , s′E, s′G)

V TRUE �

Loop termination:

sE(C) = TRUE

〈fromuntilC invariant I variantV loopS end, s〉 s′,

o 6∈ UseSetI(fromuntilC invariant I variantV loopS end, s)

` 〈fromuntilC invariant I variantV loopS end, sH〈o.a := r〉, sE, sG)〉 
(s′H〈o.a := r〉, s′E, s′G)

(5 .127 ) V sE(C) = TRUE,

〈, s〉 s′,

o 6∈ UseSetI(fromuntilC invariant I variantV loopS end, s)

` 〈, sH〈o.a := r〉, sE, sG)〉 
(s′H〈o.a := r〉, s′E, s′G)

(5 .121 ) V (sH〈o.a := r〉, sE, sG) = (sH〈o.a := r〉, sE, sG)

V TRUE �

Feature invocation:

〈l.f(l1, . . . , ln), s〉 s′,

o 6∈ UseSetI(l.f(l1, . . . , ln), s)

` 〈l.f(l1, . . . , ln), sH〈o.a := r〉, sE, sG)〉 (s′H〈o.a := r〉, s′E, s′G)

(5 .129 ) V B = body(version(typeof(sE(l)))(f)),

〈B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 
(s′H , s′′E, s′G),

o 6∈ UseSetI(l.f(l1, . . . , ln), s)

` 〈B, sH〈o.a := r〉,
〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 

(s′H〈o.a := r〉, s′′E, s′G)
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(7 .30 ) V B = body(version(typeof(sE(l)))(f)),

〈B, (sH , 〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 
(s′H , s′′E, s′G),

o 6∈ UseSetI(B, (sH ,

〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG))

` 〈B, sH〈o.a := r〉,
〈Current := sE(l), arg1 := sE(a1), . . . , argn := sE(an)〉, sG)〉 

(s′H〈o.a := r〉, s′′E, s′G)

(IH2 ) V TRUE �

Proofs for (IH3)

Local read:

Jl, sK s′, o 6∈ UseSetE(l, s)

` Jl, (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .112 ) V o 6∈ UseSetE(l, s)

` (sH〈o.a := r〉, sE, sG) = (sH〈o.a := r〉, sE, sG) �

Reference equality:

Jl = l′, sK s′, o 6∈ UseSetE(l = l′, s)

` Jl = l′, (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .113 ) V o 6∈ UseSetE(l = l′, s)

` (sH〈o.a := r〉, sE, sG) = (sH〈o.a := r〉, sE, sG) �

Expression assignment:

Jl := E1; E2, sK s′, o 6∈ UseSetE(l := E1; E2, s)

` Jl := E1; E2, (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .115 ) V 〈l := E1, s〉 s′′, JE2, s′′K s′, o 6∈ UseSetE(l := E1; E2, s)

〈l := E1, (sH〈o.a := r〉, sE, sG)〉 (s′′′H , s′′′E , s′′′G)

` JE2, s′′′K (s′H〈o.a := r〉, s′E, s′G)

(7 .16 ) V 〈l := E1, s〉 s′′, JE2, s′′K s′,
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o 6∈ UseSetI(l := E1, s)

o 6∈ UseSetE(E2, s′′)

〈l := E1, (sH〈o.a := r〉, sE, sG)〉 s′′′

` JE2, s′′′K (s′H〈o.a := r〉, s′E, s′G)

(IH2 ) V 〈l := E1, s〉 s′′, JE2, s′′K s′,

o 6∈ UseSetE(E2, s′′)

` JE2, s′′H〈o.a := r〉, s′′E, s′′G)K (s′H〈o.a := r〉, s′E, s′G)

(IH3 ) V ` TRUE �

Create Expressions:

Jcreate c(l1, . . . , ln), sK s′,

o 6∈ UseSetE(create c(l1, . . . , ln), s)

` Jcreate c(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .119 ) V E = 〈Current := new(s), arg1 := sE(l1), . . . , argn := sE(ln)〉
〈body(c), (sH〈defIn(c)〉, E, sG)〉 (s′H , E, s′G)

o 6∈ UseSetE(create c(l1, . . . , ln), s)

` 〈bodyc, (sH〈defIn(c)〉〈o.a := r〉, E, sG)〉 (s′H〈o.a := r〉, E, s′G)

(7 .17 ) V E = 〈Current := new(s), arg1 := sE(l1), . . . , argn := sE(ln)〉
〈body(c), (sH〈defIn(c)〉, E, sG)〉 (s′H , E, s′G)

o 6∈ UseSetE(body(c), (sH〈defIn(c)〉, E, sG))

` 〈bodyc, (sH〈defIn(c)〉〈o.a := r〉, E, sG)〉 (s′H〈o.a := r〉, E, s′G)

(IH2 ) V ` TRUE �

Manifest Constants:

JMC, sK s′, o 6∈ UseSetE(MC, s)

` JMC, (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .120 ) V o 6∈ UseSetE(MC, s)

` (sH〈o.a := r〉, sE, sG) = (sH〈o.a := r〉, sE, sG) �

Attribute read:

Jl.a, sK s′, o 6∈ UseSetE(l.a, s)

` Jl.a, (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .120 ) V o 6∈ UseSetE(MC, s)

` (sH〈o.a := r〉, sE, sG) = (sH〈o.a := r〉, sE, sG) �
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Query call:

f 6∈ OnceFunction

Jl.f(l1, . . . , ln), sK s′, o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` Jl.f(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .116 ) V B = body(version(typeof(sE(l)))(f)),

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,
JB, (sH , E, sG)K (s′H , s′E, s′G), o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` JB, (sH〈o.a := r〉, E, sG)K (s′H〈o.a := r〉, s′E, s′G)

(7 .20 ) V B = body(version(typeof(sE(l)))(f)),

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,
JB, (sH , E, sG)K (s′H , s′E, s′G), o 6∈ UseSetI(l.f(l1, . . . , ln), (sH , E, sG))

` JB, (sH〈o.a := r〉, E, sG)K (s′H〈o.a := r〉, s′E, s′G)

(7 .20 ) V TRUE �

Query call of new once value:

f ∈ OnceFunction,¬stored(sG, f),

Jl.f(l1, . . . , ln), sK s′, o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` Jl.f(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .117 ) V B = body(version(typeof(sE(l)))(f)),

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,
JB, (sH , E, sG)K (s′H , s′E, s′G), o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` JB, (sH〈o.a := r〉, E, sG)K (s′H〈o.a := r〉, s′E, s′G)

(7 .20 ) V B = body(version(typeof(sE(l)))(f)),

E = 〈Current := sE(l), arg1 := sE(l1), . . . , argn := sE(ln)〉,
JB, (sH , E, sG)K (s′H , s′E, s′G), o 6∈ UseSetI(l.f(l1, . . . , ln), (sH , E, sG))

` JB, (sH〈o.a := r〉, E, sG)K (s′H〈o.a := r〉, s′E, s′G)

(7 .20 ) V TRUE �

Query call of old once value:

f ∈ OnceFunction, stored(sG, f),

Jl.f(l1, . . . , ln), sK s′, o 6∈ UseSetE(l.f(l1, . . . , ln), s)

` Jl.f(l1, . . . , ln), (sH〈o.a := r〉, sE, sG)K (s′H〈o.a := r〉, s′E, s′G)

(5 .120 ) V o 6∈ UseSetE(MC, s)

` (sH〈o.a := r〉, sE, sG) = (sH〈o.a := r〉, sE, sG) �



7.11. REASONING WITH FRAMES 141

Through the repeated application of the proved theorem, we can show that
the attributes of all objects outside of the use frame can change without
changing the result of the expression:

eval(E, s) = res∧
∀o ∈ UseSetE(E, s), a ∈ Attribute|sH(o.a) = s′H(o.a)

⇒eval(E, (s′H , sE, sG)) = res

The two theorems just proved are used to show the main property of the
frame rule (7.45): if the frame of a command and a query are disjoint, then
calling the command will not change the result value of the query.

∀c : Routine, q, qf, cf : Query , s : State|
〈c, s〉 s′ ∧ P (eval(q, s)) ∧ (eval(qf, s) ∩ eval(cf, s) = ∅)⇒
P (eval(q, s′))

(7 .44 ) V 〈c, s〉 s′ ∧ P (eval(q, s))∧
(eval(qf, s) ∩ModifySet(cf, s) ∩ Allocated(s) = ∅)⇒
P (eval(q, s′))

(7 .43 ) V 〈c, s〉 s′ ∧ P (eval(q, s))∧
(UseSetE(qf, s) ∩ModifySet(cf, s) ∩ Allocated(s) = ∅)⇒
P (eval(q, s′))

Theorem1 V 〈c, s〉 s′ ∧ P (eval(q, s))∧
(UseSetE(qf, s) ∩ModifySet(cf, s) ∩ Allocated(s) = ∅)∧
(∀o : Obj , a : Attribute|eval(q, s) = res ∧ o 6∈ eval(use(c), s)⇒

eval(q, (sH〈o.a := r〉, sE, sG)) = res)⇒
P (eval(q, s′))

(5 .110 ) V 〈c, s〉 (s′H , sE, sG) ∧ P (eval(q, s))∧
(UseSetE(qf, s) ∩ModifySet(cf, s) ∩ Allocated(s) = ∅)∧
(∀o : Obj , a : Attribute|eval(q, s) = res ∧ o 6∈ eval(use(c), s)⇒

eval(q, (sH〈o.a := r〉, sE, sG)) = res)⇒
P (eval(q, (s′H , sE, s′G)))

(5 .138 ) V 〈c, s〉 (s′H , sE, sG) ∧ P (eval(q, s))∧
(UseSetE(qf, s) ∩ModifySet(cf, s) ∩ Allocated(s) = ∅)∧
(∀o : Obj , a : Attribute|eval(q, s) = res ∧ o 6∈ eval(use(c), s)⇒

eval(q, (sH〈o.a := r〉, sE, sG)) = res)⇒
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P (eval(q, (s′H , sE, sG)))

Theorem2 V 〈c, s〉 (s′H , sE, sG) ∧ P (eval(q, s))∧
(UseSetE(qf, s) ∩ModifySet(cf, s) ∩ Allocated(s) = ∅)∧
(∀o : Obj , a : Attribute|eval(q, s) = res ∧ o 6∈ eval(use(c), s)⇒

eval(q, (sH〈o.a := r〉, sE, sG)) = res)∧
eval(q, s) = eval(q, (s′H , sE, sG))⇒
P (eval(q, (s′H , sE, sG))) �

7.12 Frames and Inheritance

Frame specifications work well together with inheritance. There is a clear
understanding of what makes up a stronger specification when it comes to
frames: the smaller the frame, the stronger the contract.

Respecting the frames is an obligation of the supplier. Subtyping rules
enforces the strengthening of supplier obligations in subtypes. This means
that the frame specifications of subtypes have to be subsets of the frame
specifications in supersets.

As already with existing contracts, proving that a given frame is a sub-
set of another frame f ⊆ g might not be feasible. Instead we suggest to use
a similar mechanisms of combining new frame specifications with existing
specifications that will always result in a stronger contract.

We make use of the property of frames that the intersection of two sets
is always a subset of each of these sets:

∀A, B : FRAME|A ∩B ⊆ A

Whenever we inherit a frame specification, the unfolded contract form
is created by intersecting the new frame with the inherited one. To make
it easier for the developer to see that the inherited frame needs to be com-
bined with the frame of the parent, the only keyword introduced by ECMA
is reused. Listing 7.6 illustrates this. The unfolded form of Bs contract is
shown in listing 7.7.

7.13 Applying frames

Reasoning with frames is driven by establishing and maintaining the dis-
jointness of frames. Kassios introduced and proved a number of important
rules about frames (see [37, sec. 5.3]). These rules shown in section 7.5.3.
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Translated into the notation of dynamic frame contracts, we get a rule
specific for object creation:

c ensure confined f cmodify, f g use g

{true} n := create c {t 6= n⇒ t.g ∩ n.f = ∅}
(7.49)

and a rule for command invocations:

c ensure confined f cmodify f g use g

{g ∩ f = ∅} t.c(a) {g ∩ f = ∅}
(7.50)

All premises of these rules are state independent. Using these two
rules, it is very easy to reason about encapsulated data structures (see sec-
tion 7.14).

7.13.1 Contracts for frames
As for any other feature, the supplier may support the client in using a
component by specifying contracts for frame queries.

• A precondition for a frame query suggests that this frame can only
accessed in specific situations.

• A postcondition gives information about the content of the frame to
the user. If the frame query has not arguments, the postcondition
can also easily be turned into a class invariant.

• A use frame limits the abstraction function to only use the resources
specified in its use set.

The self-framing frame (f use f) is probably the contract of a frame
query encountered most often. Adding preconditions is dangerous: frame
are only used in contracts and partial functions in contracts are difficult to
resolve (see section 3.4).

Postconditions or invariants that give a lower bound for the frame (for
example “at least x is contained in the frame g”) are useless to the client.
The client is interested in an upper bound, as he has to try to maintain
disjointness of frames.

For example, lets consider the LINKABLE[G] class from EiffelBase. The
purpose of this class is to construct the cells that make up a linked list. If
we describe the frame of the cell as
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feature -- Frame

representation: FRAME
use
representation

we provide a very weak contract, describing that the cell can use an
arbitrary amount of objects to implement its contract and it is the job the
client (the actual linked-list object) to keep these frames disjoint.

If we instead explicitly state that the frame of the LINKABLE[G] is lim-
ited to the current object, using the following contract

feature -- Frame

representation: FRAME
ensure
only_current: Result = { Current }

it becomes trivial to derive that the frames of two cells are disjoint by
comparing the references:

c1 6= c2⇒ c1.representation ∩ c2.representation = ∅
This contract limits all implementations of cells to only use fields of the

current object and no “helper objects”.

7.14 Patterns of frames

After applying frames on numerous problems, it seems obvious that there
are a number of patterns that are encountered repeatedly. We call these
pattern Framing Patterns, similar to the concept of Design Patterns [30].
This section gives an overview about frame patterns with examples, with-
out any claim of completeness.

7.14.1 Encapsulation
The most common pattern that we have identified is the encapsulation
pattern. In the encapsulation pattern, there is a part of the state that is the
internal representation of the object state. In terms of models as introduced
in chapter 6, they are the concrete implementation of the model.

The internal representation has the following properties:

• There is a frame, called the representation frame. This frame is self-
framing, meaning its size is defined by the objects it frames.
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• On object creation, the representation frame is only populated with
new object, including the object that is just being created.

• Queries that only depend on the model are only using the represen-
tation frame.

• Commands that only change the model are framed to only modify
the representation frame.

• All commands of the class confine the representation by specifying
confined representation in the post-condition.

A typical example of a class implementing this pattern is given in listing
7.8. It shows how the command and the query implement are framed by
the representation. The return value of has only depends on the represen-
tation, and the command extend only modifies the representation.

7.14.2 Friend
A friend is a class that may violate the encapsulation pattern given above:
it operates on some other class (the subject) and may change the state of it.
Friendship can (but does not have to) be expressed by allowing access to
the internal representation using export restrictions of the subject.

A typical friend is a cursor. It has a state of it own (a current cursor
position) but offers a number of features that depend on or affect the rep-
resentation of the subject.

Friends are normally created by the subject through a factory query
(for example new_cursor:CURSOR) or the subject is passed to the friend
on creation as a target for operations.

• A friend has an internal representation frame and a query to access the
subject. The own representation and the representation of the subject
are disjoint.

• The internal representation behaves as described in the encapsula-
tion pattern.

• Some features only use or modify the own representation. These are
internal features. Calling these internal features does not effect the
representation of the subject.

• Features that access or modify the representation of the subject are
subject-dependent features.
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Listing 7.9 shows the class ELEMENT_REMOVER that will remove a fixed
element from the given integer set.

7.14.3 View
A view is very similar to the friend, except that it never modifies the sub-
ject. That means that a modify clauses referencing the representation of
the subject is not valid. Iterators are typical views.

The listing 7.10 shows the contract of an iterator that operates on an
INTEGER_SET as described in listing 7.8.

The contract clearly describes how the set and the iterator class relate:
any operation on the set will invalidate the iterator, changing its model
arbitrarily (use frames of the models of the iterator). It is common that the
documentation for iterators specifies that during iteration the underlying
data structure must not be changed.

Views are always independent from each other, even if they operate
on the same subject and thus have an aliased state. Two different iterators
can operate independently, as the forth operation only modifies the local,
encapsulated representation.

7.14.4 Proxy
The proxy is a friend that does not have a state of its own, but instead
completely relies on the state of another object.

• The proxy does not define a frame of its own.

• The subject to operate on is passed during creation.

• All commands and queries use and modify the representation of the
subject.

A typical scenario where is proxy is used for is interface adaption. To
interface C, many Eiffel libraries first wrap the low-level C interface in one
class and then provide a second class as a client to the first one implement-
ing a nice, object-oriented interface.

In the EiffelVision 2 library, all widgets are implemented as proxies
through the bridge design pattern.

Proxies are also used if access to the real object is costly. Proxies may
implement caching or on-demand techniques to give a fast interface to the
clients.
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7.14.5 Wrapper
A wrapper completely encloses the subject without revealing that it is ac-
tually operating on some enclosed entity. Because the reference to the sub-
ject is secret, the wrapper needs to include the subjects representation into
its own (if it has the need for an own representationx).

feature -- Frame

representation: FRAME
do
Result := subject.representation

end

A complete description of the relation between wrapper and subject is
normally given on object creation, but is not visible in the commands and
queries of the class.

The wrapper is very commonly used in stream-based class structures.
An abstract INPUT_STREAM is provided, but the contract does not give in-
formation where the stream is read from. A subclass, for example FILE_

INPUT_STREAM then gets a file handle on creation that it will use as a re-
source for the data.

The creation procedure of FILE_INPUT_STREAMwill have a post-condition
like the following:

feature

make (a_file: FILE) is
modify
own_representation: representation

ensure
representation: representation = subject.

representation

This information is not available to clients that use the abstract version
of INPUT_STREAM. If potential aliasing should be avoided, clients have to
establish this information through different means, for example through a
precondition (as it was done in listing 2.9)

7.15 Runtime monitoring

It is possible to runtime monitor dynamic frame contracts. This section
contains a sketch how this can be achieved.
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At the start of a routine execution, the frame expressions have to be
evaluated and stored in temporary variables. The runtime systems needs
to record all objects that were created during the execution of the routine.

On every call to a query, the use frame of the called query, minus the
set of new objects, has to be a subset of the use frame of the calling fea-
ture. On every call to a command, the use and modify frames of the called
command, minus the set of new objects, have to be subsets of the use and
modify frame of the calling feature.

Assigning to an attribute requires that Current is contained in the
modify set. Accessing an attribute requires that Current is contained in
the use set.

Should any of these subset relations become violated, a runtime asser-
tion violation is raised.

Runtime monitoring of frames has not been implemented as part of
this thesis, as it requires modifications to the runtime system to keep track
of newly created objects.

7.16 Summary

Dynamic frame contracts are a powerful technique to solve the problems
exposed by the frame problem. They are a technique that allows to add
information about possible interference without any violation of informa-
tion hiding. With frames, modular reasoning and verification of classes
that are using multiple other classes for their implementation becomes
possible.

Frames do not prevent any aliasing. They do not restrict the object
structure. They expose knowledge about read and write effects of features.

We have identified a number of common patterns of using dynamic
frame contracts. There is potential on improving the usability of dynamic
frame contracts by adding extra language constructs that implement the
patterns, possibly using the type system.
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class A

feature
f
use
a

modify
a

deferred
end

a: FRAME
end

class B

inherit
A
redefine f end

feature
f
use only
b

modify only
b

deferred
end

b: FRAME
end

Listing 7.6: Frame specifications and inheritance
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class B

feature
f
use
b ∩ a

modify
b ∩ a

deferred
end

a: FRAME
b: FRAME

end

Listing 7.7: Unfolded inherited frame specification
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class INTEGER_SET
create make_empty

feature -- Initialization
make_empty
modify
representation

ensure
model_definition: model.is_empty
frame_confined: confined representation

feature -- Model and Frame
model: MML_SET[INTEGER]

representation: FRAME
use
self_framing: representation

feature -- Access
has (v: INTEGER)
use
representation

ensure
model_definition: Result = model.has (v)

feature -- Modification
extend (v: INTEGER)
require
not_contained: not has (v)

use
representation

modify
representation

ensure
model_definition: model = old model.extended (v)
frame_confined: confined representation

end

Listing 7.8: Encapsulation of an integer set
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class ELEMENT_REMOVER
create make

feature -- Initialization
make (a_subject: INTEGER_SET, a_value:INTEGER)
modify
only_local: representation

ensure
subject_set: subject = a_subject
frame_confined: confined representation

feature -- Models and Frames
model: INTEGER
use
only_local: representation

representation: FRAME
use
self_framing: representation

feature -- Modification
remove_element
use
reads_subject: subject.representation.united (

representation)
modify
subject_changed: subject.representation

ensure
elements_removed: subject = old subject.pruned (model)

end

Listing 7.9: Class that removes elements from sets
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class ITERATOR
create make

feature -- Initialization
make (a_subject: INTEGER_SET)
modify
only_local: representation

ensure
subject_set: subject = a_subject
model_index_set: model_index = 1
frame_confined: confined representation

feature -- Model and Frame
model_sequence: MML_SEQUENCE[INTEGER]
use
reads_subject: subject.representation.united(

representation)
model_index: INTEGER
use
reads_subject: subject.representation.united(

representation)
representation: FRAME
use
self_framing: representation

feature -- Access
subject: INTEGER_SET
item: INTEGER
require
index_valid: model_sequence.domain.has (model_index)

use
reads_subject: subject.representation.united(

representation)
ensure
result_computed: Result = model_sequence.item (

model_index)

feature -- Modification
forth
use
reads_subject: subject.representation.united(

representation)
modify
only_local: representation

ensure
cursor_moved: model_index = old model_index + 1
sequence_not_changed: model_sequence = old

model_sequence
invariant
model_sequence_definition: model_sequence.range = subject

.representation
end

Listing 7.10: Iterator operating on an integer set
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CHAPTER 8

BALLET: A VERIFIER FOR EIFFEL

Ballet is an experimental implementation of an automatic verifier for Eiffel.
It takes a single class and tries to verify the implementation of the features
of the class based on the contracts of the features used by the contract and
implementation.

This chapter summarizes the design and implementation of Ballet and
the translation of contracted Eiffel into a representation that is passed on
to an existing theorem prover. The full source code is available as a branch
on EiffelStudio in its public subversion repository.

8.1 Related work

An early chain of systems for the automatic verification of code was the
Larch toolchain [33][13][40].

SPARK[3] is a verification system for an ADA-like language. It mostly
targets verification of properties of information-flow.

An automatic verification system for Eiffel called ES-Verify was devel-
oped by Ostroff et. al. [68]. This verifier also uses a model library for
the verification of unbounded data structures, similar to the work pre-
sented here. All types are value types to avoid aliasing. It uses Perfect
Developer[15] as the underlying proof engine.

The ESC/Java[28] and ESC/Java-2[12] systems are systems for the ver-
ification of contracted Java classes. Though they are neither sound nor
complete, they offer the developer support the developer by offering hints
at possible contract violations. They also provide the developer with mod-
els to support writing contracts.

The Spec# verification system[4] and the underlying Boogie[19] are the
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main sources of the work presented here. Other than Spec#, there is also a
formal translation of Java and JML to BoogiePL[11][39].

8.2 Verification technology

For software development, it is important to avoid conceptual breaks and
to provide fast round-trip between implementation and validation.

In software verification, we avoid conceptual breaks by providing a
single consistent environment and language for development and verifi-
cation. The developer learns a single language for both tasks.

Such a conceptual break exists if the system takes the development lan-
guage, transforms it into some other language (for example of the under-
lying prover), and then shows this representation to the developer for an
interactive proof or to report verification errors. The developer has to learn
a second language and needs to match expressions of the second language
to the corresponding expressions of the first language to understand the
verification problem.

The smaller the code changes are between two verification steps, the
easier it is for the developer to understand the problems raised during ver-
ification and to fix them. Many issues discovered during the verification
require a change in the code or specification. If development and verifi-
cation go hand-in-hand, the developer can constantly use the verification
infrastructure to check his progress and the consistency and correctness of
the overall system.

On-the-fly verification is a verification technique that works in the back-
ground of the development environment and reacts to change by issuing
its result as unobtrusive information to the developer. The Spec# program-
ming pioneered on-the-fly verification[4]. The prover works constantly in
the background and will directly (after a delay of a few seconds) mark
unprovable assertions and contracts with green squiggly lines. Error mes-
sages are presented in tool-tips.

Ballet is integrated into EiffelStudio and tries to achieve similar goals.
EiffelStudio implements an innovative recompilation strategy called melting-
ice technology[26]. This allows very fast recompilations of system and vx-
erification cycles.

While the recompilation is very fast, it still needs to be triggered explic-
itly by the developer. Ballet requires the result of recompilation, making
use of the compiler-generated intermediate representation. Thus, Ballet
needs to be called explicitly by the developer, though a typical Ballet run
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Figure 8.1: The Boogie tool chain.

only takes a few seconds (depending on the speed of the underlying Sim-
plify theorem prover).

8.3 Boogie and BoogiePL

Boogie is the verifier underlying the Spec# programming system. The
Spec# code is compiled to .NET byte-code using ssc (the Spec# compiler).
The resulting .NET assembly is annotated with the Spec# contracts.

The actual Boogie tool takes the annotated .NET assembly and first
transforms it to an intermediate representation called BoogiePL [19]. Then,
BoogiePL is transformed to produce verification conditions for a first-order
predicate prover and runs the prover. Traditionally, Boogie was relying on
Simplify [20] to discard proof obligations. Recently, the better maintained
prover Z3[18] has been added and is now the default. An overview of the
Boogie tool chain is given in figure 8.1.

BoogiePL is an imperative programming language targeted for compi-
lation. It includes a simple mathematical language to express axioms in
first-order predicate logic with an appropriate theory for arrays, booleans
and integers. New types can be introduced and defined by means of func-
tion declarations and axioms to define the underlying ADT[45].

The program state is defined by a set of variables; procedures define
state transformations. Each procedure is declared through a signature.
The declaration can contain preconditions and postconditions, both de-
clared by an first-order expression on the given state. The pre-state of the
computation in the postcondition of a procedure can be referenced using
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the old keyword.
Implementation clauses provide code for declared procedures. The

main imperative instructions are assert and assume. The only control-
flow construct available is a non-deterministic goto. Together with assert
and assume, this can be used to model all other control-flow instructions.

The main task of the Boogie backend is to derive proof obligations from
the imperative code given in the procedure implementations. This is done
by using weakest-precondition reasoning [22][23].

BoogiePL takes away the burden of implementing a weakest-precondition
generator. Although it was designed for the Spec# programming lan-
guage, it does not enforce any specific details of the object model, not
even object-oriented code. This makes is well suited for the verification
of Eiffel, whose object model is significantly different from the .NET/Java
object model.

Listing 8.1 shows an example implementation of a max function that
computes the maximum value from two given input integers. The “.” and
“$” are just normal characters in identifiers, with no special meaning.

We first define the mathematical definition of the maximum through
the math max function. Then we specify that the result of the procedure
needs to match the mathematical definition.

8.4 Eiffel byte-code

EiffelStudio offers two intermediate representations. The first one is the
standard abstract syntax tree generated from the Eiffel parser. During the
traversal of the type checker, a second intermediate representation is gen-
erated called the byte-code IR. The byte-code IR is the representation of Eif-
fel that is used for the different backends for the Eiffel compiler (finalized
C code, workbench C code, melted interpretation, .NET CIL).

The byte-code IR significantly simplifies the representation of Eiffel. It
is similar to the static model presented in chapter 5. All types (includ-
ing anchored declarations) are resolved, identifiers for local variables and
arguments are replaced by abstract values. All creation instructions are
replaced by equivalent creation expressions. The flattened version of the
contracts is made accessible.

Each feature is represented in the byte-code IR as a tree of byte nodes,
implementing a composite pattern. An abstract iterator for this tree is pro-
vided through the class BYTE_NODE_VISITOR. Most generation of Boo-
giePL in Ballet is implemented using the visitor pattern.
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function math_max(a:int,b:int) returns (int);
axiom (forall a:int,b:int :: (math_max(a,b) == a)

|| (math_max(a,b) == b));
axiom (forall a:int,b:int :: math_max(a,b) >= a);
axiom (forall a:int,b:int :: math_max(a,b) >= b);

procedure max (a:int,b:int) returns (Result:int);
ensures Result == math_max(a,b);

implementation max (a:int,b:int) returns (Result:int) {
start:
goto a_is_max,b_is_max;

a_is_max:
assume (a >= b);
Result := a;
goto end;

b_is_max:
assume (!(a >= b));
Result := b;
goto end;

end:
return;

}

Listing 8.1: Maximum of two values as BoogiePL

8.5 Verification strategy

Ballet is implemented similarly to Boogie. An overview is shown in figure
8.2. The Eiffel code is read and analyzed by the standard Eiffel compiler.
The compiler performs the necessary syntax and type checks. Then the
generated intermediate representation is passed on to Ballet. Ballet gener-
ates the BoogiePL code used by the Boogie backend to create the verifica-
tion conditions. Simplify or Z3 will then try to verify the code.

Ballet always verifies a single class at a time. The following phases
structure the generation of BoogiePL in Ballet:

• The analysis phase traverses the list of features in the class and sepa-
rates them into attributes, functions, and procedures.

• In the attribute phase, the necessary field definitions are generated for
each attribute.
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Figure 8.2: Overview of the Ballet tool chain.

• A functional version of every function (query that is not an attribute)
is generated during the function phase.

• The BPL procedures declaration for each routine (function or pro-
cedure) is generated during the signature phase. This includes the
generation of the contracts.

• The actual BPL implementation for each feature is generated during
the implementation phase.

• During all previous phases, Ballet kept track of all features from
other classes that were used in the class to verify. The use phase de-
clares the required functional and procedural version of these fea-
tures.

The BoogiePL code generated in each phase, except for the trivial analysis
phase, is explained in detail in section 8.7.

8.6 Background theory

The background theory is a set of declarations that is prepended to every
generated BoogiePL file. It includes the definition of the state and the
axiomatization of the set theory required for models and frames. It also
includes a number of support definitions for some axiomatic classes like
STRING, BOOLEAN, INTEGER and for ANY.
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8.6.1 Memory model
The memory model is a simplified version of the one used by Boogie
for the verification of .NET assemblies. It defines the heap to be a two-
dimensional array of references and names, containing values, that satis-
fies a certain heap condition:

function IsHeap(h:[ref,name]any)
returns (bool);

var Heap: [ref,name]any where IsHeap(Heap);

A special field $allocated marks an object as currently allocated. The
IsAllocated function accesses this field. If an object is allocated, all
reachable objects are allocated as well.

const unique $allocated:name;
function IsAllocated(h:[ref,name]any,o: any)
returns (bool);

axiom (forall h: [ref,name]any, o: ref ::
IsAllocated(h,o) <==> cast(h[o,$allocated],bool));

axiom (forall h:[ref,name]any,o:ref,f:name ::
{ IsAllocated(h,h[o,f]) }
IsHeap(h) ==> IsAllocated(h,h[o,f]));

Two function describe object creation: new allocates a new, unallocated
object and returns it. X returns the heap modified by the allocation.

function new([ref,name]any) returns (ref);
function X([ref,name]any) returns ([ref,name]any);
axiom (forall h:[ref,name]any ::

{IsAllocated(X(h),new(h))}
IsAllocated(X(h),new(h)));

axiom (forall h:[ref,name]any ::
!IsAllocated(h,new(h)));

axiom (forall h:[ref,name]any, o:ref, f:name ::
{X(h)[o,f]}
IsAllocated(h,o) ==> (X(h)[o,f] == h[o,f]));

Finally, we declare Void, which is a predefined reference called null in
BoogiePL, to be always allocated.

axiom (forall h: [ref,name]any ::
{ IsAllocated(h,null) }
IsAllocated(h,null));

Remark: The clauses in curly { and } are triggers. Triggers are hints to the
prover, telling when to apply a rule. While they do not carry semantic
information, they are critical for the prover to be efficient.
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8.6.2 Set theory

The background theory defines sets using abstract data types. The sets
are used as models as well as dynamic frames. While the background
theory currently only includes sets, other data type like relations, bags
and sequences can be added later.

Sets are introduced as a new type with the definition of a constant ∅
and the possibility to add a single element to the set S ∪ {x}.

type set;

const set.make_empty: set;
function set.extended (set,any) returns (set);

Other features defined in the MML_SET data type have corresponding
functions. All axioms try to simplify the given set to a form that only con-
tains set.make empty and set.extended. The full background theory
is listed in appendix C.

8.7 Translations

This section contains descriptions of the different phases of the BoogiePL
generation and the translation rules that are implemented.

Eiffel contracts contain executable code. BoogiePL does not allow pro-
cedure invocations in the contract language. Only first-order predicates
are allowed. This makes it necessary to create two versions in BoogiePL
for every query that may occur in the contract.

The first version is the regular procedure implementation that is used
when query is used inside the body of a routine. The second version is
a definition of a BoogiePL function that mimics the abstraction function
implemented by the query.

8.7.1 Types

The current implementation of Ballet only supports three expanded types:
BOOLEAN, CHARACTER and INTEGER. Booleans are mapped to the BoogiePL
boolan type, characters and integers to the BoogiePL integer type. All
other types have to be reference types. Table 8.1 shows the mapping of the
Eiffel to the corresponding BoogiePL types.
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Eiffel BoogiePL
ANY ref
BOOLEAN bool
INTEGER,
INTEGER_*, int
INTEGER_*_REF

CHARACTER,
CHARACTER_*, int
CHARACTER_*_REF

FRAME,
MML_SET, set
MML_DEFAULT_SET

other reference type ref

Table 8.1: Translation of Eiffel to BoogiePL types

8.7.2 Attribute phase

In the attribute phase, we are defining a name for the field and generate
the functional version to read the attribute. For example, the following
definition of an attribute

feature -- Access

x: INTEGER

in class SIMPLE_COUNTER is translated into the following BoogiePL code:

const unique field.SIMPLE_COUNTER.x:name;
function fun.SIMPLE_COUNTER.x([ref, name]any, ref) returns

(int);
axiom (forall H:[ref,name]any, C:ref :: {fun.

SIMPLE_COUNTER.x(H, C)} fun.SIMPLE_COUNTER.x(H, C) ==
H[C,field.SIMPLE_COUNTER.x]);

The unique keyword makes sure that the field name is different from all
other field names. BoogiePL allows . (dot) and $ (dollar) to be a regular
part of an identifier. This makes it possible to map single Eiffel identi-
fiers to multiple BoogiePL identifiers. We use the prefix field. for field
names, fun. for function names and (as we will see later) proc. for the
procedural version of an identifier. Arguments are prefixed with arg..
Also, we include the class name of the feature in the name to BoogiePL
avoid name clashes, as BoogiePL assumes a global name space.
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8.7.3 Function phase
For each feature we generate the functional version by first declaring a
function that takes two or more arguments: the heap of the pre-state, the
reference to the target object and the arguments (if any).

Then, we declare an axiom quantified over all states, current objects
and arguments. The axiom expresses that the precondition implies the
postcondition, where we replace all occurrences of Result by the function
application.

For example, the following function

plus (y:INTEGER): INTEGER is
-- The attribute ‘x’ plus the argument ‘y’

do
Result := x + y

ensure
added: x = Result - y

end

is translated into the following function declaration and axiom:

function fun.SIMPLE_COUNTER.plus([ref, name]any, ref, arg.y
:int) returns (int);

axiom (forall H:[ref, name]any, C:ref, arg.y:int:: (C !=
null) ==> fun.SIMPLE_COUNTER.x(H, C) == fun.
SIMPLE_COUNTER.plus(H, C, arg.y) - arg.y);

We can see how the function definition makes use the previous function
definition for the attribute to compute the value.

There is an inherit problem with translating contracts this way. If we
introduce an unsound contract like the following

strange: INTEGER
-- Impossible contract

ensure
added: false

we get the following functional definition

function fun.SIMPLE_COUNTER.strange([ref, name]any, ref)
returns (int);

axiom (forall H:[ref, name]any, C:ref :: false);

which introduces the expression false into the set of hypothesis. This
makes it possible to prove everything, making the whole theory unsound.
It is a known weakness of the overall approach and present in Spec# and
Boogie.
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Features that belong to axiomatic classes (expanded classes and model
classes) are treated specially: they are translated into the corresponding
expressions in the background theory.

The Eiffel code a + b, where a and b are of type INTEGER is conceptu-
ally a call to the feature infix "+". But as INTEGER is an axiomatic class,
Ballet translates the call to the BoogiePL addition (a + b).

Calls to features of the class FRAME or MML_SET are translated into the
corresponding function calls of the background theory. The feature invo-
cation s.united(t) on FRAME is translated to the application of the func-
tion set.united(s,t) and not to a function invocation fun.FRAME.
united(Heap,s,t). Also, the feature united is not marked to be gen-
erated in the use phase (see section 8.7.6).

8.7.4 Signature phase
In the signature phase, Ballet generates the signatures of all features. The
signature of the feature plus from the previous section produces the fol-
lowing signature definition:

procedure proc.SIMPLE_COUNTER.plus(Current: ref, arg.y:int)
returns (Result:int);

requires Current != null;
free ensures (fun.SIMPLE_COUNTER.plus(Heap, Current, arg.

y) == Result);
ensures (fun.SIMPLE_COUNTER.x(Heap, Current) == Result -

arg.y);

Every feature call requires that the target of the call is not Void, putting
an obligation on the caller. Once attached types [56] are in place, the require
clause can be rewritten into a free require clause, that gives extra in-
formation to the body of a routine, but will assume that the correctness of
the call has already been taken care of by the type system.

8.7.5 Implementation phase
In the implementation phase, Ballet generates the body (implementation)
of every routine.

All control flow instructions are translated into a version only using
non-deterministic goto statements. The condition

if p1 then
b1

elseif p2 then
b2
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else
b3

end

goto true1,false2;
true1:
assume(p1);
b1
goto endif5;

false2:
assume(!(p1));
goto true3,false4;

true3:
assume(p2);
b2
goto endif5;

false4:
assume(!(p2));
b3
goto endif5;

endif5:

Listing 8.2: Translation of a condition into BoogiePL

is translated to BoogiePL code shown in listing 8.2 and the loop statement

from b1 invariant p1 until p2 loop
b2

end

b1
assert(p1);
goto loop1,exit2;

loop1:
assume(!(p2));
b2
assert(p1);
goto loop1,exit2;

exit2:
assume(p2);

Listing 8.3: Translation of a loop into BoogiePL
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is translated to the BoogiePL code shown in listing 8.3. Calls to commands
and assignments are translated using the BoogiePL call and := syntax.

There are numerous locations where expressions are used in Eiffel:
right side of assignments, arguments to commands, in conditions (for bran-
ches and loops), loop invariants and check instructions.

We have to make sure to satisfy the precondition of queries used in
expressions before the call. This is done by creating calls to the procedure
version of the query before the use of the function version as an argument.

The Eiffel code incr_n_times(x) (where incr_n_times and x are a
queries of the class SIMPLE_COUNTER) is translated into the following Boo-
giePL code:

call attr1 := proc.SIMPLE_COUNTER.x(Current);
call proc.SIMPLE_COUNTER.incr_n_times(Current,fun.

SIMPLE_COUNTER.x(Heap, Current));

The contents of the variable attr1 are not used after the call. BoogiePL
requires that the result of a call to a procedure with a return value needs
to be assigned.

8.7.6 Use phase
During previous phases, Ballet kept track of all features used in the con-
tracts and the code. Only feature that were neither part of the analyzed
class nor of axiomatic classes were recorded.

The use phase will use the generation routines from the functional
phase and signature phase to generate the function and procedure ver-
sions of all used features. The implementations are not generated; we as-
sume that they are correctly implemented.

While processing the used features and generating the BoogiePL code,
new features will be encountered that are used in the contracts of the used
features. These are indirect clients to the current class. Such features are
also added to the set of used features. Generation will terminate once a
fixpoint has been reached and the set of used and generated features is the
same.

8.7.7 Translating frames
BoogiePL provides framing using the modifies keyword. This keyword
list a set of variables that might be modified by the procedure invocation.
All other variables will remain untouched.

For a object-oriented language such as Eiffel, this is useless: the state is
defined completely by a the single variable Heap. Any feature that mod-
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ifies the heap (including queries due to weak purity[16]) will need to list
the heap in the modifies clause.

A direct translation of the frame axiom into the BoogiePL background
theory would require the quantification over all commands or queries.
This cannot be expressed in first-order predicate logic.

It is possible to express dynamic frame contracts as regular contracts re-
solving the quantification during generation. We generate an assertion for
every command and every query in form of a free ensures in the post-
condition of the command that describes the interference with the query.
An assertion needs to be added for every query that might interfere with
the command.

The generated postcondition states that the result of the query will not
have changed by the feature call if its use frame of the query and the mod-
ify frame of the command were disjoint. For a command c and a query q,
with c framed by the modify frame cf and q framed by the use frame qf ,
we generate the following assertion in the postcondition:

∀o : Obj :: old(cf(o) ∩ qf(o) = ∅)⇒ q(o) = old(q(o))

Translated to BoogiePL, this postcondition becomes a little more difficult
to read:

free ensures (forall o:ref ::
((set.is_disjoint_from (fun.C.cf(old(Heap),o),
fun.C.qf(old(Heap),Current))) ==>

(fun.C.q(Heap,o) == fun.C.q(old(Heap),o))));

Such a clause is generated for every command that carries a modifies
clause, for every query with a use frame that is used in the system. The ex-
tra overhead could be reduced if BoogiePL would include dynamic frames
into the language.

The current version of Ballet does not include assertions to check that
a given implementation satisfies a given frame. It can be implemented by
storing the use and modify frame, as well as the set of all allocated object
at the beginning of the execution in local variables. Assume that we have
named these variables U , M and A. Then, the following assertions are
added to the code:

• Every assignment to a local variable requires that Current is con-
tained in M .

• Access to a local attribute requires Current to be contained in U .
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• Every call to a command requires that the use frame of the command
intersected A is a subset of U and the modify frame of the command
intersected with A is a subset of M .

• Every call to a query requires the use frame of the query intersected
with A is a subset of U .

These assertions check that the implementation adheres to its use and
modify sets (see section 7.10.1 and 7.10.2) and — as the use and modify
sets are always subsets of theirs frames — its frame specification.

8.8 Error reporting

Ballet implements a very simple error reporting strategy that adds the line
number, the column number and the assertion tag of any assertion as a
comment to the generated BoogiePL code.

Boogie will report the line number with the assertion (assert or post-
condition) that could not be proved. Ballet then searches the BoogiePL
code for the corresponding line and extracts the position and tag from the
BoogiePL comment. It then generates an error message in the EiffelStudio
error dialog that describes the error, error position and tag.

8.9 Experiments

The following sections contain examples of code fragments that we were
able to verify for correctness using Ballet.

8.9.1 Regular Eiffel
The following counter class implements many features of the Eiffel lan-
guage that can be proved without the help of models or frames. The com-
ments describe what kind of language construct was tested with in the
feature.

class
SIMPLE_COUNTER

feature -- Access

x: INTEGER
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increase is
-- Simple contract

do
x := x + 1

ensure
increase_ok: x = old x + 1

end

move_to_zero is
-- if-then-elseif-else condition

do
if x > 0 then
x := x - 1

elseif x < 0 then
x := x + 1

else
x := 0

end
ensure
close_to_zero: (x.abs < (old x.abs)) or (x = 0)

end

increase_twice is
-- Sequential feature calls

do
increase
increase

ensure
double_increase_ok: x = old x + 2

end

increase_n_times (i: INTEGER) is
-- Loop and feature call

require
i_not_neg: i >= 0

local
old_x: INTEGER

do
from
old_x := x

invariant
loop_inv: x <= old_x + i

until
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x >= old_x + i
loop
increase

end
ensure
increase_ok: x = old x + i

end

add (other:SIMPLE_COUNTER) is
-- Simple aliasing problem

require
not_void: other /= Void
not_same: other /= Current

do
x := x + other.x

ensure
x_added: x = old x + other.x

end

move_one (other:SIMPLE_COUNTER) is
-- Complex aliasing problem with feature invocation

require
not_void: other /= Void
not_same: other /= Current

local
tmp: INTEGER

do
tmp := x
other.increase_n_times (1)
x := tmp - 1

ensure
current_decr: x = old x - 1
other_increase: other.x = old other.x + 1

end
end

The code is correctly translated into BoogiePL and proved to be correct
within a few seconds on Pentium 4 3.6 GHz machine.

Feature add and move_one shows that simple aliasing problem can be
verified without the need for models or frames. In the case of move_one,
temporary variables were needed to enforce the frame separations.
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8.9.2 Model-based contracts
The following scenario describes a specification that cannot be contracted
with regular Eiffel: we want the class TOKEN_DISPENSER to issue tokens,
but never the same token twice. The problem with this contract is that
it needs to talk about an unbounded set of tokens: all tokens that have
already been issued by the dispenser.

We regard the set of all tokens already issued as the model of the TOKEN_DISPENSER
. The token dispenser then asserts that the new token generated was not in
the old model, but has been added to the updated model. The Eiffel code
is shown in listing 8.4.

With the model-based contract, the following code is provable:

local
x: TOKEN
y: TOKEN
z: TOKEN

do
t.generate_token
x := t.last_token
t.generate_token
y := t.last_token
t.generate_token
z := t.last_token
check not_same1: x /= y end
check not_same2: y /= z end
check not_same3: x /= z end

end
end

Without models, assertion not same3 could not be verified. With models,
the verification is made possible.

8.9.3 Dynamic frame contracts
For dynamic frame contracts, we were able to prove the INT_STORE exam-
ple as discussed in section 2.7. For set_item, Ballet generated the follow-
ing procedure definition:

procedure proc.FRAME_TEST.set_item(Current: ref, arg.
a_value:int);

requires Current != null;
modifies Heap;
ensures (fun.FRAME_TEST.item(Heap, Current) == arg.

a_value);
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class TOKEN_DISPENSER

feature -- Access

last_token: TOKEN

feature -- Creation

generate_token is
-- Generate a new token

do
create last_token.make

ensure
model_expanded: model = old model.extended (last_token

)
new_token: not (old model).contains(last_token)
different_token: last_token /= old last_token

end

feature -- Model

model: MML_SET[TOKEN]

end

Listing 8.4: Example of a contract based on models

ensures (set.equals(fun.FRAME_TEST.representation(Heap,
Current), old(fun.FRAME_TEST.representation(Heap,
Current))));

free ensures (forall o:ref :: ((set.is_disjoint_from (fun
.FRAME_TEST.representation (old (Heap), o), fun.
FRAME_TEST.representation (old (Heap), Current))) ==>
(fun.FRAME_TEST.representation (Heap, o) == fun.
FRAME_TEST.representation (old (Heap), o))));

free ensures (forall o:ref :: ((set.is_disjoint_from (fun
.FRAME_TEST.representation (old (Heap), o), fun.
FRAME_TEST.representation (old (Heap), Current))) ==>
(fun.FRAME_TEST.item (Heap, o) == fun.FRAME_TEST.item
(old (Heap), o))));

The generated free ensure clauses make it possible for a client of INT_STORE
to prove the copy feature that was not provable before (see listing 2.9).
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8.10 Summary

Ballet demonstrates how Eiffel can be verified. It shows how contracts are
translated to BoogiePL and what is provable in Eiffel as it is today.

We showed how a background theory formalizes a theory for mod-
els and how model-based contracts are translated directly into this back-
ground theory. The automatic provers underlying the Boogie tool chain
are able to discard proof obligations generated by model-based contracts.

BoogiePL only offers very primitive constructs for framing. For reference-
based languages that uses a heap-like memory model, such modifies clauses
are insufficient to express dynamic frame contracts. Instead, we had to
generate explicit free postconditions that express the framing axiom (7.45).

The current implementation of ballet misses the definition of supplier
obligations for dynamic frames. We have sketched how these proof obli-
gations can be translated into BoogiePL.

Overall, once the correct BoogiePL was generated, the experiments
were able to prove the correctness of the code. The most difficult part
was to add the right triggers to the background theory for the proof to go
through. From discussions with the researchers behind Boogie, this seems
to be similar in the case of verifying.
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CONCLUSIONS

Modern provers seem to be powerful enough to prove real-world code.
More difficult than the proofs are the specifications: getting the specifica-
tions sufficiently strong for the client of a class to be able to reason about
his own code requires new ways to express contracts.

Modularity is curse and blessing. It is difficult devise specifications
that are complete enough for the users to reason about a software module
and at the same time open enough to retain the benefits of functional de-
composition and information hiding. Once we have managed to overcome
these difficulties, modular verification can help to manage the combina-
torial explosions that are inherit in formal verification and make proofs
reusable.

9.1 Contributions

This thesis improves the Design by Contract specification language to be-
come powerful enough for the modular verification of object-oriented code.
We do this by improving the specification language in two ways:

• Express the state of an object explicitly by providing models.

• Express the possible interference of software components with other
components though frame specifications.

Both mechanisms are carefully designed to be conservative extensions
to the existing specification language. By conservative, we mean the fol-
lowing properties:
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• We minimize the changes to the existing language. For models, we
have shown how all can be expressed through a library, understand-
ing the concept of axiomatic class. For frames, we have introduced
three new keywords into the language.

• The mechanisms support information hiding. It is possible to ex-
press all necessary properties of a class for formal verification with-
out revealing details of the implementation.

• The mechanisms agree with the inheritance relation. There are rules
how models and frames can be redefined. The contracts of subtypes
are proper refinements of the supertypes.

• If the new specification mechanisms are not used, the semantics of
the specified software component is exactly the same as it was before
the introduction of the new mechanisms.

Models and frames are real extensions to Design by Contract. They do
not only extend the language to make proof possible. Instead, using mod-
els and frames creates insights into design decisions and make implicit
assumptions explicit.

Models give a clean definition of what the state of an object is. The state
of the object is its model. Deciding for a model removes ambiguity in
abstractions. Our research conducted on the EiffelBase library illustrates
the problems of subtyping and maintaining a precise understanding of
the features through the inheritance relation. Models define the state of
the object even for deferred classes. The quality of contracts is improved
by relating to the model.

Frames express the boundaries of an objects state. They can be used
to reason about interference. Not many libraries document their possible
interference with other libraries.

Most non-interference properties are obvious and the engineers intu-
ition is good enough to avoid potential problems. From personal discus-
sions it seems that few engineers are even aware of the problem.

But there are corner cases where asserting non-interference becomes
difficult, for example for Complex data models with a lot of implicit code
invocations and shared state.

Already trivial object-oriented concepts such as iterators create prob-
lems. The Java documentation uses free form sentences to describe these
frame problems:
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The behavior of an iterator is unspecified if the underlying collection
is modified while the iteration is in progress in any way other than by
calling this method. (Java 5.0 API[81]).

The specification of other behavior, for example what happens if multiple
streams try to read from the same source, is not defined at all. Read-ahead
and buffering may create unexpected behavior. It is assumed that the de-
veloper is aware of the potential problems and avoids using the library
this way.

Dynamic frame contracts force us to make these assumptions explicit.
They make us think about problems that we can encounter when using
references and aliasing. We have shown how typical object structure create
patterns of frames.

This thesis demonstrates how the wish to prove software using veri-
fication tools forces us to gain a better understanding of our implicit and
hidden assumptions underlying software development.

Consequently, the success of our efforts require validation by a rigor-
ous formalization and the extension of verification technology. This thesis
includes an operational semantics for Eiffel and an verification tool to val-
idate our improved understanding of software specifications.

9.2 Future work

The operational semantics in chapter 5 explicitly excludes a number of
concepts from the Eiffel language.

Exceptions are excluded, justified by the understanding that exceptions
in Eiffel manifest bugs, and the successful verification of code with prevent
exceptions from being raised.

New concepts of the ISO/ECMA standard were excluded, such as at-
tached types or type tests. These new concepts try to overcome prob-
lems of Eiffel with respect to type safety or void calls. A formalization
of these concepts would improve their understanding and might improve
the overall quality of the standard.

The long term goal is the full formalization of Eiffel and the inclusion
of this formalization into the Eiffel standard.

We have described the performance impact of using models for run-
time assertion checking in section 6.11. Assertion checking in production
code seems to become difficult. Smart caching can improve the situation.
We also suggest to explore using a three-valued logic underlying MML
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to overcome these problems. Models are only generated up to a certain
upper bound, after which an unknown value is assumed.

Dynamic frame contracts are described in chapter 7. We have defined
the basic rules for frame specifications. We have also observed that the en-
capsulation pattern seems to be very common. Systems like universe types
[59] offer a much lighter (in terms of proofs) solution, but create problems
with ownership transfer and iterators. Future work should investigate
how dynamic frame contracts and universe types relate and if it is possi-
ble to move specific frame patterns into the type system.

A problem not explored in this thesis is the relation between frames
and class invariants. Eiffel is not sound when invariants rely on the state
of other objects or when reentrant calls are executed while the invariant
is temporarily broken. Can dynamic frame contracts help to solve these
problems?

The Ballet verifier as described in chapter 8 needs further improve-
ments. A number of assumptions were made to simplify proofs, for ex-
ample limiting the set of expanded types to integers and booleans. Also,
being a research vehicle, the tool is unreliable and not ready for productive
use.

9.3 Summary

This thesis includes multiple contributions to the state-of-the-art in mod-
ular specification and verification of object-oriented programs. We have
extended the specification language of an existing development method
by two concepts needed to make functional specifications strong enough
to prove code. We have formalized the programming language and ver-
ified the soundness and practicality of the approach through proofs and
experiments.

A major improvement to existing solutions is that we were able to re-
tain the full power of object-orientation, including free aliasing, implicit
invocations, bottom-up development and information hiding. Instead of
forcing the developer to adopt a certain implementation strategy, we have
made the specification language powerful and abstract enough to describe
all necessary properties of real-world code for formal verification.



APPENDIX A

MATHEMATICAL SYMBOLS

The following table summarizes all the B and other mathematical sym-
bols used in the thesis as a help to the reader. For a complete, axiomatic
definition of the B symbol, please consult the B book[1].

Symbol Description
card(S) cardinality of the set S
{x, y} explicit denotation of a set containing x and y
(x 7→ y) tuple with the first value x and second value y
P(S) powerset of S
A×B set cross procuduct of A and B
dom(R) domain of the relation R
ran(R) range of the relation R
id generic identity relation
R−1 inverse relation of relation R
A↔B set of all relations from A to B
A→B set of all total functions from A to B
A 7→B set of all partial functions from A to B
A 7�B set of all partial injections from A to B
A�B set of all total injections from A to B
A 7�B set of all partial surjections from A to B
A�B set of all total surjections from A to B
A��B set of all total bijections from A to B
R; S relation composition
S \ T subtraction of the set T from S
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Symbol Description
RC− T override the relation T with the relation S
S CR domain restriction — relation R restricted to the tuples

where the first element is in S
S C−R domain subtraction — relation R restricted to the tuples

where the first element is in S
S BR range restriction — relation R restricted to the tuples where

the second element is in S
S B−R range subtraction — relation R restricted to the tuples

where the second element is not in S
R∗ reflexive transitive closure of R
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MML LIBRARY FUNCTIONS

The following table summarizes all feature available in the MML library,
together with precondition and their mathematical counterpart.

Functions marked by ∗ are creation procedures. M is the target model
if the call. r is the result value. Not included in this table are redefinitions
of signatures for covariant return types and renaming of existing features
to avoid name collisions. The prefix MML_ has been removed.

B.1 MML ANY

M.equals(other:ANY) M = other
Value equality

B.2 MML PAIR [G,H]

make_from(one:G,two:H)∗ (one, two)
Denotation of a pair
first:G Mfirst

Accessing the first element in a pair
second:H Msecond

Accessing the second element in a pair
is_identity:BOOLEAN Mfirst = Msecond

Is the pair element an identity value ?
inversed:PAIR[H,G] (Msecond, Mfirst)
Inverse pair
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B.3 MML SET [G]

any_item:G r ∈ M
Non-deterministic selection
item_where(pred:PREDICATE[TUPLE[G]]):G r :∈ M ∧ pred(r)
Accessing the first element in a pair
identity:RELATION[G,G] id(M)
Identity relation
lifted:POWERSET[G] P M
Set of all possible subsets
randomly_ordered:SEQUENCE[G] ran(Result) = M
Randomly ordered sequence containing M
count:INTEGER card(M)
Cardinality of the set
contains(v:G):BOOLEAN v ∈ M
Does M contain v ?
is_empty:BOOLEAN M = ∅
Is the set empty ?
is_disjoint_from(other:SET[G]):BOOLEAN M ∩ other = ∅
Are M and other disjoint ?
is_superset_of(other:SET[G]):BOOLEAN other ⊆ M
Superset relation (including equality)
is_subset_of(other:SET[G]):BOOLEAN M ⊆ other
Subset relation (including equality)
is_proper_superset_of(other:SET[G]):BOOLEAN other ⊂ M
Superset relation (excluding equality)
is_proper_subset_of(other:SET[G]):BOOLEAN M ⊂ other
Subset relation (excluding equality)
intersected(other:SET[G]):SET[G] other ∩M
Intersection
united(other:SET[G]):SET[G] other ∪M
Union
subtracted(other:SET[G]):SET[G] M \ other
Subtraction of one set from another
difference(other:SET[G]):SET[G] (M ∪ other)− (M ∩ other)
Symetric subtraction
extended(v:G):SET[G] M ∪ {v}
Set extended by one element
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pruned(v:G):SET[G] M \ {v}
Removal of an element from the set
there_exists(pred:PREDICATE[TUPLE[ANY]]):BOOLEAN

∃x ∈ M : pred(x)
Does any element in M satisfy a given predicate ?
for_all(pred:PREDICATE[TUPLE[ANY]]):BOOLEAN

∀x ∈ M : pred(x)
Do all elements in M satisfy a given predicate ?
is_partitioned_by(other:SET[SET[G]]):BOOLEAN⋃

other = M ∧ ∀x, y ∈ other : x ∩ y = ∅
Is other a partion of M ?

B.4 MML POWERSET [G]

generalized_united:SET[G]
⋃

M
Union of all sets contained in M
generalized_intersected:SET[G]

⋂
M

Intersection of all sets contained in M
is_generalized_disjoint:BOOLEAN

⋂
M = ∅

Is there no element contained in all set of M ?

B.5 MML RELATION [G,H]

is_function:BOOLEAN M ∈ G 7→H
Is M a function ?
is_injective:BOOLEAN M ∈ G 7�H
Is M an injective relation ?
contains_pair (v1:G,v2:H):BOOLEAN (v1, v2) ∈ M
Does M contain the pair (v1, v2) ?
extended_by_pair (g:G,h:H):RELATION[G,H] M ∪ {(g, h)}
Relation extended by the pair (g, h)

domain:SET[G] dom(M)
Domain of the relation
range:SET[G] ran(M)
Range of the relation
domain_bag:BAG[G] {(x, y)|x ∈ dom(M), y = card({x}CM)}
Domain of the relation as a bag



184 APPENDIX B. MML LIBRARY FUNCTIONS

range_bag:BAG[G] {(x, y)|x ∈ ran(M), y = card(M B {x})}
Range of the relation as a bag
image_of(g:G):SET[H] M [{g}]
Projection of the single element g through M
image(p:SET[G]):SET[H] M [p]
Projection of the set p through M
anti_image_of(h:H):SET[G] M−1[{h}]
Reverse projection of the single element h through M
anti_image(p:SET[H]):SET[G] M−1[p]
Reverse projection of the set p through M
domain_restricted_by (g:G):RELATION[G,H] {g}CM
Domain restricted to the single element g
domain_restricted (p:SET[G]):RELATION[G,H] pCM
Domain restricted to the elements in p
range_restricted_by (h:H):RELATION[G,H] M B {h}
Range restricted to the single element h
range_restricted (p:SET[H]):RELATION[G,H] M B p
Range restricted to the elements in p
domain_anti_restricted_by (g:G):RELATION[G,H] {g}C−M
g removed from the domain of M
domain_anti_restricted (p:SET[G]):RELATION[G,H] pC−M
Domain restricted to the elements not in p
range_anti_restricted_by (h:H):RELATION[G,H] M B− {h}
h removed from the range of M
range_anti_restricted (p:SET[H]):RELATION[G,H] M B− p
Range restricted to the elements not in p
item (v:G):H M(v)
Application of the function M to v
inversed:RELATION[H,G] M−1

Inversion of the relation

B.6 MML ENDORELATION [G]

sequenced(other:ENDORELATION[G]):ENDORELATION[G] M ; other
Sequential composition
closured:ENDORELATION[G] M∗
Transitive closure
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B.7 MML BAG [G]

is_superbag_of(other:SET[G]):BOOLEAN
∀x : dom(other) : other(x) ≤ M(x)

Superbag relation (including equality)
is_subbag_of(other:SET[G]):BOOLEAN

∀x : dom(other) : M(x) ≤ other(x)
Subbag relation (including equality)
is_proper_superbag_of(other:SET[G]):BOOLEAN

∀x : dom(other) : other(x) < M(x)
Superbag relation (excluding equality)
is_proper_subbag_of(other:SET[G]):BOOLEAN

∀x : dom(other) : M(x) < other(x)
Subbag relation (excluding equality)
occurrences(v:G):INTEGER M(v)
Number of occurrences of v
any_item:G r ∈ (dom({0}C−M))
Non-deterministic element
item_where(pred:PREDICATE[TUPLE[G]]):G

r ∈ (dom({0}C−M)) ∧ pred(r)
Any element of M satisfying pred
randomly_ordered:SEQUENCE[G]
A random sequence containing the elements of the bag
count:INTEGER

∑
ran(M)

Number of elements contained in the bag
contains(v:G):BOOLEAN M(v) > 0
Does the bag contain v ?
is_disjoint_from(other:BAG[G]):BOOLEAN

({0}C−M) ∩ ({0}C− other) = ∅

extended_n(v:G; n:INTEGER):BAG[G] {(v, M(v) + n)}C−M
Extend the bag by n occurrences of v

B.8 MML SEQUENCE [G]

any_element:G r ∈ ran(M)
Any element of the sequence
is_member(v:G):BOOLEAN v ∈ ran(M)
Is v contained in the sequence ?
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is_defined(i:INTEGER):BOOLEAN i ∈ dom(M)
Does the sequence have an index i ?
is_supersequence_of(other:SET[G]):BOOLEAN

∃x : ∀i ∈ dom(other) : other(i) = M(i + x)
Supersequence relation (including equality)
is_subsequence_of(other:SET[G]):BOOLEAN

∃x : ∀i ∈ dom(M) : M(i) = other(i + x)
Subsequence relation (including equality)
is_proper_supersequence_of(other:SET[G]):BOOLEAN

card(other) < card(M) ∧ ∃x : ∀i ∈ dom(M) : M(i) = other(i + x)
Superbag relation (excluding equality)
is_proper_subsequence_of(other:SET[G]):BOOLEAN

card(M) < card(other) ∧ ∃x : ∀i ∈ dom(other) : other(i) = M(i + x)
Subsequence relation (excluding equality)
is_supersequence_of_at(other:SET[G];x:INTEGER):BOOLEAN

∀i ∈ dom(other) : other(i) = M(i + x)
Supersequence relation (including equality), starting at x
is_subsequence_of(other:SET[G];x:INTEGER):BOOLEAN

∀i ∈ dom(M) : M(i) = other(i + x)
Subsequence relation (including equality), starting at x
is_proper_supersequence_of(other:SET[G];x:INTEGER):BOOLEAN

card(other) < card(M) ∧ ∀i ∈ dom(M) : M(i) = other(i + x)
Superbag relation (excluding equality), starting at x
is_proper_subsequence_of(other:SET[G];x:INTEGER):BOOLEAN

card(M) < card(other) ∧ ∀i ∈ dom(other) : other(i) = M(i + x)
Subsequence relation (excluding equality), starting at x
replaced_at(other:G;x:INTEGER):SEQUENCE[G] (x, other)C−M
Replace sequence element at x
first:G M(1)
First element of the sequence
last:G M(card(M))
Last element of the sequence
tail:SEQUENCE[G]
Tail of the sequence (without the first element)
front:SEQUENCE[G] {card(M)}C−M
Front of the sequence (without the last element)
interval(lower:INTEGER;upper:INTEGER):SEQUENCE[G]
Elements of the interval between lower and upper
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extended(v:G):SEQUENCE[G] M ∪ (card(M) + 1, v)
Sequence extended by v
prepended(v:G):MML_SEQUENCE[G]
Sequence with v prepended
concatinated(other:SEQUENCE[G]):SEQUENCE[G]
Current list with other appended at the end
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APPENDIX C

BOOGIEPL BACKGROUND THEORY

// Some things are heaps
function IsHeap(h:[ref,name]any) returns (bool);

// Given an heap, some things are allocated
const unique $allocated:name;
function IsAllocated(h: [ref,name]any, o: any) returns (

bool);
axiom (forall h: [ref,name]any, o: ref :: IsAllocated(h,o)

<==> cast(h[o,$allocated],bool));

// Every reference stored in the heap is allocated
axiom (forall h:[ref,name]any, o: ref, f: name :: {

IsAllocated(h,h[o,f]) } IsHeap(h) ==> IsAllocated(h,h[o,
f]));

function new([ref,name]any) returns (ref);
function X([ref,name]any) returns ([ref,name]any);

axiom (forall h:[ref,name]any :: {IsAllocated(X(h),new(h))}
IsAllocated(X(h),new(h)));

axiom (forall h:[ref,name]any :: !IsAllocated(h,new(h)));

axiom (forall h:[ref,name]any, o:ref, f:name :: {X(h)[o,f]}
IsAllocated(h,o) ==> (X(h)[o,f] == h[o,f]));

// Void are always allocated
axiom (forall h: [ref,name]any :: { IsAllocated(h,null) }

IsAllocated(h,null));
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// The global heap is a heap
var Heap: [ref,name]any where IsHeap(Heap);

// ADT set

type set;

// Constructors
const set.make_empty: set;
function set.extended (set,any) returns (set);

// Content
function set.is_member (set,any) returns (bool);
axiom (forall s:set,x:any :: {set.is_member(set.extended(s,

x),x)} set.is_member(set.extended(s,x),x));
axiom (forall s:set,x:any,y:any :: x != y ==> set.is_member

(set.extended(s,y),x) == set.is_member(s,x));
axiom (forall x:any :: !set.is_member (set.make_empty,x));

// Pruning
function set.pruned (set,any) returns (set);
axiom (forall x:any :: {set.pruned(set.make_empty,x)} set.

pruned(set.make_empty,x) == set.make_empty);
axiom (forall s:set,x:any :: {set.pruned(set.extended(s,x),

x)} set.pruned(set.extended(s,x),x) == set.pruned(s,x));
axiom (forall s:set,x:any,y:set :: {set.pruned(set.extended

(s,x),y)} (x != y) ==> set.pruned(set.extended(s,x),y)
== set.extended(set.pruned(s,y),x));

// Emptiness
function set.is_empty (set) returns (bool);
axiom (forall s:set,x:any :: !set.is_empty(set.extended(s,x

)));
axiom (set.is_empty (set.make_empty));

// Cardinality
function set.cardinality (set) returns (int);
axiom (set.cardinality(set.make_empty) == 0);
axiom (forall s:set,x:any :: { set.cardinality(set.extended

(s,x)) } !set.is_member(s,x) ==> set.cardinality(set.
extended(s,x)) == set.cardinality(s) + 1);

axiom (forall s:set,x:any :: { set.cardinality(set.extended
(s,x)) } set.is_member(s,x) ==> set.cardinality(set.
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extended(s,x)) == set.cardinality(s));

// Any element
function set.any_element (set) returns (any);
axiom (forall s:set,x:any :: set.any_element(set.extended(s

,x)) == x);

// Subset
function set.is_subset_of (set, set) returns (bool);
axiom (forall s:set :: set.is_subset_of (s, set.make_empty)

);
axiom (forall s1:set, s2:set, x:any :: set.is_subset_of (s1

, set.extended(s2, x)) == (set.is_subset_of (s1, s2) &&
set.is_member (s1, x)));

// Equality
function set.equals (set, set) returns (bool);
axiom (forall s1:set, s2:set :: (s1 == s2) == (set.

is_subset_of (s1, s2) && set.is_subset_of (s2, s1)));
axiom (forall s1:set, s2:set :: (s1 == s2) == (set.equals (

s1, s2)));

// Union
function set.united (set,set) returns (set);
axiom (forall s:set :: {set.united (s,set.make_empty)} set.

united (s,set.make_empty) == s);
axiom (forall s1:set,s2:set,x:any :: {set.united(s1,set.

extended(s2,x))} set.united(s1,set.extended(s2,x)) ==
set.extended(set.united(s1,s2),x));

// Intersected
function set.intersected (set,set) returns (set);
axiom (forall s:set :: {set.intersected(s,set.make_empty)}

set.intersected(s,set.make_empty) == set.make_empty);
axiom (forall s1:set,s2:set,x:any :: {set.intersected(s1,

set.extended(s2, x))} set.is_member(s1,x) ==> (set.
intersected(s1,set.extended(s2,x)) == set.extended (set.
intersected(s1,s2),x)));

axiom (forall s1:set,s2:set,x:any :: {set.intersected(s1,
set.extended(s2, x))} !set.is_member(s1,x) ==> (set.
intersected(s1,set.extended(s2,x)) == set.intersected(s1
,s2)));



192 APPENDIX C. BOOGIEPL BACKGROUND THEORY

// Disjoint
function set.is_disjoint_from (set,set) returns (bool);
axiom (forall s:set :: {set.is_disjoint_from (s,set.

make_empty)} set.is_disjoint_from (s,set.make_empty));
axiom (forall s1:set,s2:set,x:any :: set.is_disjoint_from (

s1,set.extended(s2,x)) == (!set.is_member(s1,x) && set.
is_disjoint_from (s1, s2)));

axiom (forall s1:set, s2:set :: set.is_disjoint_from (s1,
s2) == set.is_disjoint_from (s2, s1));

// Superset
function set.is_superset_of (set, set) returns (bool);
axiom (forall s1:set, s2:set :: {set.is_superset_of (s1, s2

)} set.is_superset_of (s1, s2) == set.is_subset_of (s2,
s1));

// proper Subset
function set.is_proper_superset (set, set) returns (bool);
axiom (forall s1:set, s2:set :: {set.is_proper_superset (s1

, s2)} set.is_proper_superset (s1, s2) == (set.
is_subset_of (s2, s1) && (s1 != s2)));

// proper Superset
function set.is_proper_subset (set,set) returns (bool);
axiom (forall s1:set,s2:set :: {set.is_proper_subset (s1,

s2)} set.is_proper_subset (s1,s2) == (set.is_subset_of (
s1, s2) && (s1 != s2)));

// Substracted
function set.subtracted (set,set) returns (set);
axiom (forall s:set :: {set.subtracted(s,set.make_empty)}

set.subtracted(s,set.make_empty) == s);
axiom (forall s1:set,s2:set,x:any :: {set.subtracted(s1,set

.extended(s2,x))} set.subtracted(s1,set.extended(s2,x))
== set.pruned(set.subtracted(s1,s2),x));

// Difference
function set.difference (set,set) returns (set);
axiom (forall s1:set,s2:set :: {set.difference(s1,s2)} set.

difference(s1,s2) == set.subtracted(set.united(s1,s2),
set.intersected(s1,s2)));
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[16] Á. Darvas and P. Müller. Reasoning About Method Calls in Interface
Specifications. Journal of Object Technology (JOT), 5(5):59–85, June 2006.
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