
EiffelVision for Mac OS X

Master Thesis

Daniel Furrer
ETH Zurich

dfurrer@ethz.ch

April 16, 2009 - September 16, 2009

Supervised by:
Benjamin Morandi
Prof. Bertrand Meyer

Abstract

EiffelVision is an object-oriented framework for graphical user interface develop-
ment, originally created by Eiffel Software. Although generally designed to be
platform independent, there is currently no native version for Mac OS X. While
the GTK+/X11 based version (used on Linux) works on Mac OS X as well it
has many problems which cannot be overcome with the current architecture.
For this reason we developed an implementation of EiffelVision which is based
on Cocoa - the native graphics framework of Mac OS X. The development of
this implementation also led to an Eiffel based Cocoa framework which can be
used to write native applications on Mac OS X and inspired the development
of an iPhone library for Eiffel.

Acknowledgments

My gratitude goes to my supervisor Benjamin Morandi and to Emmanuel
Stapf from Eiffel Software for their continuous support, interesting discussions
and valuable feedback, to Prof. Bertrand Meyer for giving me the possibility to
work on this interesting topic, and to my family and friends who supported me
during my whole time at ETH.

Contents

1 Introduction 6
1.1 Goal . 6
1.2 Outline . 7
1.3 Related Work . 7

1.3.1 Vision4Mac . 7
1.3.2 MacEiffel . 7
1.3.3 Other Objective-C/Cocoa Bridges 7

2 Architecture 8
2.1 Overview . 8

3 The Eiffel/Objective-C Bridge 9
3.1 Duality of Classes (and Objects) 9
3.2 Foundation Framework . 9
3.3 Short Comparison of Objective-C and Eiffel 10
3.4 Calling an Objective-C Function from Eiffel 11
3.5 Names . 11
3.6 Types . 11
3.7 Other Language Constructs . 12

3.7.1 Protocols . 12
3.7.2 Categories . 12
3.7.3 Contracts . 12

3.8 Memory Management . 13
3.8.1 Reverse lookup: Finding the dual Eiffel object 13

3.9 Callbacks and Inheritance . 14
3.9.1 The Problem when Inheriting from an Objective-C Class 14
3.9.2 Calling an Eiffel Feature from Objective-C 14
3.9.3 Our Solution . 15

4 Application Kit Wrapper 17
4.1 Wrapper Generator . 17
4.2 Inheritance for Wrapped Classes 18
4.3 The Target-Action Mechanism 19
4.4 The Delegation Pattern . 20

4

5 Cocoa EiffelVision Implementation 21
5.1 A Quick Introduction to EiffelVision 21
5.2 Event Handling . 22
5.3 The Layout Engine . 22

5.3.1 Vertical box . 23
5.4 Coordinate Systems . 23
5.5 Other Platform Differences . 24

6 Conculsions 25
6.1 How well does it work? . 25
6.2 Summary . 25

7 Future Work 27
7.1 EiffelStudio . 27
7.2 Objective-C Wrapper Generator 27
7.3 Eiffel-Cocoa Wrapper . 27
7.4 iPhone Library . 28

A Development 29
A.1 Layout Inspector . 29
A.2 Tests . 29
A.3 Developer’s Guide . 30

A.3.1 Index . 30
A.3.2 Setup . 31

B Status of our EiffelVision implementation 32

Bibliography 47

Chapter 1

Introduction

EiffelVision is an object-oriented framework for graphical user interface devel-
opment, originally created by Eiffel Software.

The EiffelVision library offers an object-oriented framework for
graphical user interface (GUI) development. Using EiffelVision, de-
velopers can access all necessary GUI components, called widgets
(buttons, windows, list views) as well as truly graphical elements
such as points, lines, arcs, polygons and the like – to develop a mod-
ern, functional and good-looking graphical interactive application.

EiffelVision has played a major role at Eiffel Software and pro-
vided numerous Eiffel projects with a powerful, portable graphics
development platform. EiffelStudio is totally reliant on EiffelVision
for its graphical elements and overall interaction with the user.

Eiffel Software

Currently EiffelVision on Mac OS X has many problems, many of which
can be attributed to it’s GTK+/X11 based nature. It is not able to integrate
with the Mac OS X platform as a whole and could never do so with the current
approach. One example is that copy&paste commands in EiffelVision could
not use the regular key-bindings and would sometimes miss line breaks. Other
examples of problematic areas with this implementation include multi-screens
setups and the handling of file associations. Because of the dependency on
GTK+, which depends on a lot of other packages itself, we were not able to
provide a simple binary installation package for EiffelStudio on Mac OS X.

1.1 Goal

The native programming environement for Mac OS X is called Cocoa and it is
centered around the Objective-C programming language. It was the goal of this
thesis to write a Cocoa based implementation of EiffelVision thus ultimately
getting rid of the GTK+ dependency of EiffelVision on Mac OS X.

6

Introduction - Outline 7

1.2 Outline

In chapter 2 we present an overview of the architecture and how we can split up
the system in three major layers. Chapters 3, 4 and 5 discuss our solutions for
each of these layers as well as the implementation issues we encountered. We
conclude in chapter 6 and present some ideas for future work in chapter 7.

1.3 Related Work

1.3.1 Vision4Mac

Vision4Mac is a Carbon based EiffelVision2 implementation that was never com-
pleted. Carbon was originally a legacy API which allowed pre-OS X applications
to be ported to OS X without a major rewrite. For a while it was unclear what
the future of Carbon would be as Apple continued to add new functionality.
With it’s latest operating system Apple has dropped support for user inter-
face programming using Carbon which effectively makes this implementation
obsolete.

1.3.2 MacEiffel

MacEiffel comes as two Eiffel libraries called EiffelCocoa and EiffelCarbon that
wrap Cocoa respectively Carbon. The project has not seen any major updates
since 2002 and could not be used as the base of our work, because it was not
available under an open source license.

1.3.3 Other Objective-C/Cocoa Bridges

Several other language bindings for Cocoa exist, most notably the D/Objective-
C bridge[1] and monoobjc[3] for bridging between .NET and Objective-C.

Chapter 2

Architecture

2.1 Overview

The whole system consists of three major layers. We begin with a short overview
of the responsibilities of each layer and then proceed by explaining them in more
details in the next three chapters.

1. Bridging between Eiffel and Objective-C
This lowest layer takes care of the direct interfacing with the Objective-C
language. Our solution handles the gap between Eiffel and Objective-C
by mapping Eiffel objects to Cocoa objects and the other way around.
Two important concerns are handled in this layer: Memory management
and callbacks from Objective-C to Eiffel. We also provide high-level Eiffel
abstractions of Objective-C’s language primitives where necessary.

2. Wrapper for Objective-C GUI classes (Cocoa)
This is a set of classes that wrap most of Cocoa’s Objective-C classes to
Eiffel classes. Using the classes in this layer is similar to the way their
counterparts are used in Objective-C. There are a few places however,
where we replaced Cocoa design patterns by something which makes more
sense in the context of Eiffel.

3. Cocoa based EiffelVision implementation
The final layer is the implementation of EiffelVision for Cocoa based on the
previous two layers. Thanks to the previous abstractions the interaction
with Objective-C and Cocoa is usually straight forward. The focus here
is on implementing the features required by EiffelVision with the facilities
provided by the Cocoa framework. This entails the mapping between
widgets and widget structures, the transformation of coordinates, events,
etc.

8

Chapter 3

The Eiffel/Objective-C
Bridge

The objc base library is the core of the bridge between Eiffel and Objective-C.
It presents a low-level interface to the Objective-C language and its run-time
system, including classes for accessing and manipulating Objective-C primitives
such as classes, selectors and messages. It handles the mapping between Eiffel
and Objective-C objects, the callbacks from Objective-C to Eiffel, the conversion
of types and memory management.

3.1 Duality of Classes (and Objects)

For every Objective-C class we created an associated Eiffel class which offers
mostly the same functionality. Moreover, each Objective-C object will have its
dual wrapper object in Eiffel, and we will map the calls between the two sides
so that we can call Objective-C messages from Eiffel features and vice versa.
Our Cocoa framework can thus be used like any other Eiffel framework and
the binding to Objective-C happens transparently, without any intervention or
required knowledge of the user. In the following sections we will explain the
details of how this mapping works. More information about the generation fo
those wrapper classes can be found in section 4.1.

3.2 Foundation Framework

Also part of this layer is the equivalent of the Foundation framework on Mac
OS X. It contains the core classes which are, strictly speaking, not part of the
language itself, but work closely with it and provide the basis for all other frame-
works. The Foundation framework contains the root class NSObject, some basic
protocols like NSCopying and various standard library classes such as NSArray,
NSDictionary or NSSet.

9

The Eiffel/Objective-C Bridge - Short Comparison of Objective-C
and Eiffel 10

3.3 Short Comparison of Objective-C and Eiffel

Objective-C is the language of choice for user interface programming on Mac
OS X (or perhaps the only choice) and we will use many of the basic and also
some of the more advanced features that it offers. It is important to understand
the basic concepts and the differences with respect to Eiffel to understand some
of the design decisions we had to take. A very short overview is presented in
table 3.1.

Eiffel Objective-C

Object-oriented inheritance, dynamic binding, polymorphism

Inheritance multiple single (protocols, categories)

Type system static dynamic(/static)a

strong (including genericity) weak (no genericity)

Memory management garbage collector reference counting

or garbage collector

Other Design by Contract delegation patternb

agents reflection

Eiffel method dynamic loading

aObjective-C’s type system was originally dynamic but some optional static type checks
have been added.

bNot to be confused with C# delegates

Table 3.1: Comparison chart of Eiffel and Objective-C

Both languages are object-oriented and they both appeared around the same
time in 1986. Eiffel was developed as a new programming language, free of con-
cerns for supporting legacy code, whereas Objective-C is designed as a superset
of C to which many concepts from Smalltalk have been added. Both languages
claim to be the holy grail of reusability and share the core principles of object-
orientation, namely: inheritance, polymorphism and dynamic binding.

Objective-C uses Smalltalk’s message analogy, which means that instead of
talking about methods being called on objects we say that a message is sent to an
object. Throughout this text we will use the term message when talking about
Objective-C and feature when talking about Eiffel. In Objective-C, classes are
objects themselves and thus may implement messages as well (similar to static
members in C++ or Java). These static methods are used to create objects or
get references to global objects and values.

The simple example in listing 3.1 demonstrates how a class message is used
to create an object and how a message can be sent to that object. The syntax
of Objective-C is inspired by Smalltalk and might look strange to program-
mers used to the dot-syntax at first. Another peculiarity is the use of named
parameters. For example, the full name of the first message in listing 3.1 is

The Eiffel/Objective-C Bridge - Calling an Objective-C Function
from Eiffel 11

createWithInitial:andOverdrawLimit:.

Listing 3.1: Objective-C syntax
1 BankAccount* account =

2 [BankAccount createWithInitial: 50 andOverdrawLimit: -1000];

3 [account deposit: 50];

Eiffel works with references and uses a garbage collector to automatically free
unused memory. In Objective-C the programmer deals with pointers directly
and two ways of memory management are available: Reference Counting and
Garbage Collection. Garbage collection was added to Objective-C recently and
is not supported on some platforms, such as the iPhone.

3.4 Calling an Objective-C Function from Eiffel

The Eiffel standard defines the external keyword to be used for the integration
of code written in other languages into Eiffel source code. We have a simple
patch that adds support for ’Objective-C’ to ISE’s Eiffel compiler. Its usage
is illustrated in listing 3.2.

Listing 3.2: Calling an Objective-C function
1 array_object_at_index (target: POINTER; a_index: INTEGER):

POINTER

2 external

3 "Objective -C inline use <Foundation/NSArray.h>"

4 alias

5 "return [(NSArray *) $target objectAtIndex: $a_index];"

6 end

3.5 Names

By convention Objective-C programmers use camelCase in the naming scheme
for identifiers whereas Eiffel [5] propagates the more readable spaced out naming
style. NSWindow becomes NS_WINDOW and setFrame: becomes set_frame. Where
Objective-C uses named parameters in some messages such as initWithContentRect
:styleMask:backing:defer: we will often drop the named parameters and simply
call the feature init.

3.6 Types

When going from Objective-C to Eiffel the dynamic and weak type information
is replaced by static, strong typing and generic parameters are added where
appropriate. Although the Objective-C compiler does not enforce the type con-
straints as rigorously as the Eiffel compiler, this enforcement is actually not

The Eiffel/Objective-C Bridge - Other Language Constructs 12

a problem in practice: We did not run into any limitations with static check-
ing. Moreover we were able to benefit from all the advantages of static typing.
Thanks to the Eiffel type system the original type annotations can often be made
more precise: First, through the use of genericity (NSArray becomes NS_ARRAY [G

]), second, by adding the void-safety keywords (detachable or attached) where
appropriate.

3.7 Other Language Constructs

3.7.1 Protocols

An Objective-C protocol is a collection of messages, similar to an interface in
Java. An class conforms to a protocol if it implements the specified messages.
Protocols can be mapped to a deferred classes in Eiffel and conforming to that
protocol turns into writing an effective class that inherits from the protocol’s
deferred class.

3.7.2 Categories

A category is an Objective-C construct to add methods to a class at runtime.
The dynamic nature of categories has implications for the separation of con-
cerns. It allows, for example, the UIKit framework to add drawing methods
to the Foundation framework’s NSString without imposing any dependencies
on NSString. There is no such concept in Eiffel, but fortunately categories are
only used sparingly in Cocoa. There is only the single case of NS_STRING in our
wrapper, where we use inheritance instead.

3.7.3 Contracts

Eiffel allows us to add contracts to features and classes. It is a good idea to
take advantage of this. There are several cases where contracts are useful in the
bridge:

• to check the range of parameters, especially if the type of a parameter or
the type of the result was an enum in Objective-C.

• to check some input parameters or parameter combinations for validity if
explicitly stated in the documentation of the original Objective-C message.

We do not generally need assertions to check void-values as our wrapper is fully
void-safe[7], i.e. we have type annotations where necessary and the type system
guarantees all calls to be valid.

The Eiffel/Objective-C Bridge - Memory Management 13

3.8 Memory Management

The memory spaces of Eiffel and Objective-C are conceptually separated, which
means that the memory management systems of either side do not follow ref-
erences into the other world. Therefore some manual bookkeeping is necessary
in this layer. Since garbage collection for Objective-C is not supported on some
platforms and because a Objective-C garbage collector would not help us much,
we quickly decided to rely on reference counting. Thus we need to make sure
that an Eiffel wrapper object will initialize a valid pointer to an Objective-C
object at creation time, maintain that pointer during the lifetime of the Eiffel
object and properly release the Objective-C object when the Eiffel object gets
released.

The basic features that we’ve come up with to implement the idea depicted
here are listed in the following paragraphs. They are implemented in the root
class NS_OBJECT:

make_from_pointer (a_ptr: POINTER)

Create a new Eiffel object whose Objective-C counterpart was just initial-
ized via an external call. This creation procedure is usually not exported
to the outside of the framework but used by descendants.

share_from_pointer (a_ptr: POINTER)

Create a new Eiffel object with the given Objective-C object and retain1

the reference. This call must be used when the Objective-C object was
not created by the Eiffel wrapper. Again this creation procedure is usually
not exported, but in this case it is often used by functions of other classes
when returning an object as the result of a query.

dispose

When the Eiffel object is collected by the garbage collector we can release
the pointer to the Objective-C object. Objective-C takes care of freeing
the object if the reference count is zero.

3.8.1 Reverse lookup: Finding the dual Eiffel object

Since the pointer to the dual Objective-C object is stored as an attribute of the
Eiffel object, it is easy to do a lookup in that direction. But how can we find
out the dual Eiffel object, given an Objective-C pointer?

One simple idea is to keep a reference to the Eiffel object as an attribute of
the Objective-C object. This would create problems with the memory menage-
ment described above unless we find a smart way to releasing that reference.
We cannot wait for the Objective-C object to be destroyed because that can
only happen after its Eiffel dual has called dispose. If the reference to the Eiffel
object is not freed that would prevent the garbage collector from collecting the
Eiffel object.

1retain and release are Objective-C messages that increase/decrease the reference count
of an object.

The Eiffel/Objective-C Bridge - Callbacks and Inheritance 14

Our current solution is to use a hash-map with pointers to Objective-C
objects as keys and weak references to Eiffel objects (IDENTIFIED) as values.
Objects can be put into this hash-map when they are created

3.9 Callbacks and Inheritance

3.9.1 The Problem when Inheriting from an Objective-C
Class

Since Cocoa is an object-oriented framework it is necessary – especially for the
more advanced customizations of the standard widgets – to redefine certain
methods through subclassing. We want to support a similar inheritance struc-
ture on the Eiffel side as on the Objective-C side. Moreover we would like to
be able to customize the behaviour of a message by making a redefinition of a
feature in Eiffel in just the same way as we would in Objective-C. One example
is the mouseDown: message of NSResponder which is redefined by NSButton and
many other classes. The most straight forward and transparent way to do this
is if we can allow the user of our wrapper to inherit from NS_BUTTON and redefine
the mouse_down feature.2

This is not trivial since overriding a method in the Eiffel system will not be
visible to the Objective-C runtime. But before we can even think about solv-
ing this problem we need to make a short digress and take a look how simple
callbacks work.

3.9.2 Calling an Eiffel Feature from Objective-C

We have seen how to call C and Objecitve-C code from Eiffel, but how can we
call Eiffel code? CECIL (short for C-Eiffel Call-In Library) is a library used to
do just that [6]. Listing 3.3 shows how such a feature call may look like from
the C side and listing 3.4 shows how the respective Eiffel features could look
like. For simplicity, the object and feature to be called are directly passed to
the C function here.

Listing 3.3: A C function calling an Eiffel feature
1 void call_eiffel (EIF_OBJECT obj , void (*ep) (EIF_REFERENCE ,

EIF_INTEGER))

2 {

3 // Cal l f e a t u r e ‘ ep ’ o f E i f f e l ob j e c t ‘ obj ’ with argument 123
4 (ep) (eif_access(obj), 123);

5 }

2A similar approach will be used whenever Objective-C delagetes need to be made available
to Eiffel. See chapter 4.

The Eiffel/Objective-C Bridge - Callbacks and Inheritance 15

Listing 3.4: Calling the C-callback from Eiffel
1 execute_callback

2 do

3 call_eiffel (Current , $call_me)

4 end

5
6 call_me (a_int: INTEGER)

7 do

8 print_string("Callback with argument " + a_int.out)

9 end

10
11 call_eiffel (obj: ANY; ep: POINTER)

12 external

13 "C inline use %"c_file.h%""

14 end

3.9.3 Our Solution

Objective-C is more dynamic than many other programming languages in that
it provides an API for the creation and manipulation of classes at runtime [4].
Moreover it provides simple ways for accessing runtime-specific features, such as
getting a function pointer to the precursor of a message. This made it possible
to come up with an interesting design, in which we centralize the callbacks to
just one Eiffel singleton class (OBJC_CALLBACK_MARSHAL) and a single Objective-C
file (objc_callback_marshal.m).

Create a new subclass of the desired Objective-C class and redefine its mes-
sages to point to a common C function. In that C function inspect the object’s
class and the selector being called, pass all the parameters to the callback feature
of OBJC_CALLBACK_MARSHAL. (Special care has to be taken if Objective-C passes
struct values on the stack.) The Eiffel feature can then access its Objective-C
precursor, if needed, by determining the superclass and calling the respective
method.

On a side note: We did not use this design from the beginning. Our initial
approach was to manually create Objective-C classes for the features with the
need of a callback. This would mean that a .h and .m file had to be written,
defining a subclass of the original Objective-C class with facilities to forward
certain messages to a given Eiffel feature and return the result. An instance
of that class would then be initialized with a reference to the Eiffel object3.
This approach turned out to be time-consuming and inflexible as it showed that
the number of places where this pattern was needed was much greater than
anticipated.

3Note that it is problematic to keep a regular Eiffel reference in the Objective-C object,
because this prevents the Eiffel object from being garbage collected (See 3.8)

The Eiffel/Objective-C Bridge - Callbacks and Inheritance 16

Figure 3.1: Illustration of the dispatching process

Chapter 4

Application Kit Wrapper

The Application Kit Wrapper library is a set of classes that wrap most of Apple’s
ApplicationKit – around 170 classes also known under the name Cocoa – to Eiffel
classes. Using the classes and features of this layer is similar to the Objective-C
pendants and anybody who has experience with Cocoa should feel right at home.
The minor differences are due to the discrepancies between the two languages
as explained in the previous chapter and because we replaced a few of Cocoa’s
design patterns with other solutions.

4.1 Wrapper Generator

Creating all the wrapper classes is a tedious and time consuming task. For this
reason we wrote a simple Objective-C wrapper generator. A Python program
which, given an Objective-C class name, parses the header file1 of that class and
Apple’s documentation to generate initial Eiffel wrapper features. Manual tun-
ing and refining is still needed because there are parts of the code that cannot be
inferred automatically. Such tasks include the addition of assertions, deciding
whether a type should be attached or detachable, generic type parameters and
some other type mappings.

Let’s have a look at how a feature of class NSButton gets mapped:

1. The wrapper will generate an Eiffel class called NS_BUTTON_API that con-
tains all the calls to Objective-C features of the given Objective-C class.
These features are usually only used by NS_BUTTON but the separation into
another file helps avoiding clutter. (Listing 4.1)

2. NS_BUTTON – also generated by the wrapper generator – is the Eiffel ab-
straction of NSButton: The class that will be used by the EiffelVision
implementation or other applications. (Listing 4.2)

1Although there exist Objective-C grammars for both YACC and ANTLR are available it
was decided that those were too complex for our purposes. Our parser is thus based on simple
regular expression matching. Further ideas are presented in section 7.2.

17

Application Kit Wrapper - Inheritance for Wrapped Classes 18

3. After the initial work by the wrapper some manual customizations may be
necessary. In our example we have added another note to the description
of the feature and a postcondition. (Listing 4.3)

Listing 4.1: A low-level feature as generated by our script
1 frozen set_title (a_button: POINTER; a_string: POINTER)

2 −− − (vo id) s e t T i t l e : (NSString ∗) aS t r i ng
3 external

4 "Objective -C inline use <Cocoa/Cocoa.h>"

5 alias

6 "[(NSButton *) $a_button setTitle: $a_string];"

7 end

Listing 4.2: A wrapper feature as generated by our script
1 set_title (a_title: NS_STRING)

2 −− Se t s the t i t l e d i s p l ay ed by the r e c e i v e r when in
i t s normal s t a t e and , i f nece s sa ry , redraws the
button ’ s con t en t s .

3 do

4 {NS_BUTTON_API }. set_title (item , a_title.item)

5 end

Listing 4.3: A wrapper feature after manual tuning
1 set_title (a_title: NS_STRING)

2 −− Se t s the t i t l e d i s p l ay ed by the r e c e i v e r when in
i t s normal s t a t e and , i f nece s sa ry , redraws the
button ’ s con t en t s .

3 −− This t i t l e i s a lways shown on buttons that don ’ t
use t h e i r a l t e r n a t e con t en t s when h i g h l i g h t i n g or
d i s p l a y i n g t h e i r a l t e r n a t e s t a t e .

4 do

5 {NS_BUTTON_API }. set_title (item , a_title.item)

6 ensure

7 title_set: a_title.is_equal (title)

8 end

4.2 Inheritance for Wrapped Classes

To detect a click on a button we need to redefine mouseDown: of NSButton in
Objective-C. The redefinition then needs to forward this message to the correct
Eiffel feature (using the callback mechanism). The Eiffel class NS_BUTTON takes
care of this by creating a subclass of NSButton using OBJC_CLASS in a once

feature of NS_BUTTON as sketched in listing 4.4. In practise we often need to
bind many more features and can use calls to the superclass to do this in an
elegant way. We can then create an object of this class by calling button_class

.create_instance.

Application Kit Wrapper - The Target-Action Mechanism 19

Listing 4.4: Binding Objective-C messages to Eiffel features
1 class NS_BUTTON

2
3 button_class: OBJC_CLASS

4 −− Binds Object ive−C messages to E i f f e l f e a t u r e s
5 once

6 create Result.make_with_name ("EiffelWrapperButton")

7 Result.set_superclass (create {OBJC_CLASS }.

make_with_name ("NSButton"))

8 Result.add_method ("mouseDown:", agent mouse_down)

9 Result.add_method ("mouseUp:", agent mouse_up)

10 −− . . .
11 Result.register

12 end

13
14 make

15 −− Create a new button
16 do

17 item := button_class.create_instance

18 end

4.3 The Target-Action Mechanism

The target-action mechanism is an implementation of the well-known command
pattern. This pattern is used in Cocoa to send certain event notifications as an
application specific message to the appropriate object. One example where it is
used is NSButton, which sends a notification when the button was pressed2.

Classes implementing this pattern implement two messages, setTarget: and
setAction: which can be used to set the target, an object to which a message
will be sent, and the action, the name of the message to be called on that object.

In Eiffel we can use the powerful notion of agents to support this pattern.
We therefore only have a set_target feature which takes a PROCEDURE as argu-
ment. We can then call button.set_target (agent my_application.do_stuff) if
we want feature do_stuff of object my_application to be called when button is
pressed.

Internally we have to set up a simple Objective-C class which implements
a single message and forwards it to an Eiffel object that can then invoke the
agent. The creation of this Objective-C class and its binding to Eiffel are very
similar to what we have seen in listing 4.4.

Similar invocations are used elsewhere in Cocoa and we apply the same
mapping (e.g. for NS_TIMER and NS_NOTIFICATION_CENTER).

2Not to be confused with just clicking a button, meaning that a mouseDown: message is
sent to the button object. Pressing a button is more abstract and can also happen when the
user presses certain keys.

Application Kit Wrapper - The Delegation Pattern 20

4.4 The Delegation Pattern

The delegation pattern – an object that acts on behalf of another object – is used
frequently in Cocoa and often so where it is not common practice in Eiffel. One
example is NSWindow which has a setDelegate: message. Instead of implementing
similar features itself (or in addition to) the window is sending messages such
as windowDidResize: or windowWillClose: to its delegate. The same behaviour
is achieved in Eiffel using agents and even more flexibility is gained by using
lists of agents. At this point we did not reach a decision whether to use agents
or delegate classes in our Cocoa wrapper and so we use both approaches.

Chapter 5

Cocoa EiffelVision
Implementation

Thanks to the abstractions described in the previous two chapters we do not
need to deal with the low-level details of Objective-C or Cocoa anymore when
implementing EiffelVision on Mac OS X. What remains to do in this final layer
is to provide the necessary mapping between widgets and widget structures
by implementing the EiffelVision features in terms of the wrapper classes from
the lower layer. Sometimes this is as easy as forwarding a call but in other
places we will see that a one-to-one mapping may not make any sense1, be hard
or impossible. In this chapter we give a brief overview of EiffelVision and its
internals in general. We proceed by describing the problems encountered and
the respective solutions.

5.1 A Quick Introduction to EiffelVision

EiffelVision uses the bridge pattern which makes it easy to change the imple-
mentation on different platforms. This means that every platform-dependent
component consists of two classes, plus an implementation for each platform.
The interface (e.g. EV_BUTTON) – the class used by applications using EiffelVision
– only defines the available features and delegates any calls to the implemen-
tation object which is coupled to it. The implementation class (EV_BUTTON_IMP)
is a subtype of the implementation interface (EV_BUTTON_I) and implements the
platform specific features.

1For example because it would contradict fundamental principles of GUI design on Mac
OS X.

21

Cocoa EiffelVision Implementation - Event Handling 22

Figure 5.1: A simplified BON diagram illustrating our button implementation

5.2 Event Handling

Cocoa and EiffelVision both send events to their widgets when certain things
happen. In Cocoa2 every class whose objects can receive events inherits from
NS_RESPONDER which has messages like key_down (a_event: NS_EVENT). By re-
defining those messages in a subclass custom behavior can be implemented. In
EiffelVision there is no global event class. The widgets define certain actions
as a list of agents to be called in case of an event. An example of such an
agent list is key_press_actions which is of type LIST [PROCEDURE [ANY, TUPLE

[key: EV_KEY]]]. So what that remains to do in this case is that we have to
redefine key_down, extract from the NS_EVENT to the information needed by the
key_press_actions and call them.

Initially we experimented with an approach where we inspect the events in
the application’s main event loop in EV_APPLICATION_IMP to translate and forward
them to the corresponding EiffelVision widget. Since we would only get a pointer
to the Objective-C object from Cocoa we had to rely on a mechanism similar
to what we described in section 3.8.1 (Reverse lookup: Finding the dual Eiffel
object). This worked well in general but there was one problem with modal
windows: A modal Cocoa window runs with its own event loop which is not
accessible from the outside and so the events did not get forwarded in that case.

5.3 The Layout Engine

The layout engine for widgets which is used by EiffelVision is strongly inspired
by GTK+. It promotes the automatic management of size and position of child
widgets through their parents. The different widget containers have different
constraints3 to do this and we will look at one example in the following section.

2When talking about Cocoa in this chapter we usually mean our wrapped Cocoa classes.
We do not use any Objective-C code in this layer and the reader should be familiar with the
underlying differences by now.

3An example of a constraint is the minimum width needed to display a widget

Cocoa EiffelVision Implementation - Coordinate Systems 23

Cocoa offers only a very simple interface for positioning widgets. The exact
size of a widget and its coordinates relative to those of the parent widget (also
called superview) need to be specified. Our EiffelVision implementation needs
to calculate and update those positions when required while makeing sure the
constraints hold.

We took many parts of the layout engine from the Windows implementation
of EiffelVision.

5.3.1 Vertical box

The vertical box (EV_VERTICAL_BOX) is one of the most used containers. It can
contain any number of widgets and displays those widgets in a single column. In
its simplest configuration it devides the space along the y axis equally between
all the widgets it contains. Equations 5.1 and 5.2 show the applicable constraints
in this situation.

box.min height = |box.C| · max
c∈box.C

{c.min height} (5.1)

box.min width = max
c∈box.C

{c.min width} (5.2)

where box.C is the set of children of box.

5.4 Coordinate Systems

Cocoa is based on the Quartz rendering library which uses a standard carte-
sian coordinate system and places the origin in the bottom-left corner of the
screen with the y-axis pointing upwards. Most other graphic toolkits (includ-
ing EiffelVision) place the origin in the top-left corner with the y-axis pointing
downwards. A coordinate transformation is needed and it is important that this
transformation is handled transparently with respect to the rest of the imple-
mentation.

The following equations can be used for this transformation:

view.xcocoa = view.xvision (5.3)
view.ycocoa = view.superview.height − view.height − view.yvision(5.4)

We wrote a class called EV_NS_VIEW which exports the feature cocoa_set_size

that takes care of those transformations and internally uses NS_VIEW’s set_frame.
All our widget classes inherit from EV_NS_VIEW to access this functionality.

The other major components where coordinate transformations are needed
are EV_DRAWABLE_IMP and its descendants. These classes handle the drawing of
primitives such as lines, strings and images.

Cocoa EiffelVision Implementation - Other Platform Differences24

Figure 5.2: The coordinate system of Cocoa (left) and EiffelVision (right)

5.5 Other Platform Differences

There are some parts of EiffelVision for which we either have no Cocoa imple-
mentation or for which we only have a unsatisfactory solution. Some of these
gaps are due to fundamental differences between the platforms. For these gaps
it will be necessary to change the interface of EiffelVision. These differences
include:

• On Mac OS X there is an application icon but no window icons.

• There is only one menu bar at the top of the screen (not one per window)

• Keyboard shortcuts include the command key which is only found on Mac
keyboards.

• Many drawing modes used by EiffelVision (e.g. XOR) have no equivalent
in Quartz

• Colors can’t always be converted to RGB since they can be patterns

• Some dialogs (called panels in Cocoa) cannot be run modally and are of
a one-per-application kind

Chapter 6

Conculsions

6.1 How well does it work?

In this section we give a high-level overview of what applications and features
are working with our EiffelVision implementation and what does not work yet.
A more detailed account by widget is given in appendix ??.

Many simple example applications that are distributed with EiffelVision
work well. The same is true for the applications we wrote. Here are a few
examples:

widgets A demo application that displays (almost) all EiffelVision widgets and lets
the user manipulate them.

edraw A simple drawing application written using EiffelStudio.

estudio The graphical starter for EiffelStudio

wizard We wrote a new applications wizard for creating an native Mac OS X
application. This wizard can be selected when creating a new project
with EiffelStudio on Mac OS X.

In EiffelStudio some basic use cases work. A project can be opened, compiled
and run. A new project can be created. But there are issues with editing text,
some of the widgets are not resized correctly.

Our libraries are fully void-safe[7] and have been tested using 32bit mode on
Mac OS X 10.5 and 64bit mode on Mac OS X 10.6.

6.2 Summary

We have written an implementation of EiffelVision using the Cocoa framework
which works well for many applications we tested. The architecture of our
solution is based on three layers: An Eiffel/Objective-C bridge, a Cocoa wrapper

25

Conculsions - Summary 26

library, and the EiffelVision implementation. Each layer provides fundamental
abstractions that make it easier to build the next one. We are convinced that
this architecture makes understanding parts of the system easier and that it
provides the necessary abstractions for further development.

We have shown how Objective-C can be integrated into Eiffel by creating
Eiffel wrapper classes based on Objective-C classes. We have explained how
identifiers, types, protocols, categories and other constructs can be mapped
from Objective-C to Eiffel. Problems with memory management that arise
when using wrapper classes have been identified and solved. We have shown
and implemented solutions for calling Objective-C messages from Eiffel features
and vice versa. And finally, we have shown how we can use inheritance in our
Eiffel wrapper classes to redefine Objective-C messages.

We have written a tool to facilitate the creation of Eiffel wrapper classes
based on Objective-C header files and documentation. Using this tool, we have
created Eiffel wrapper classes for most of the functionality provided by Cocoa
and the Foundation framework on Mac OS X.

While our EiffelVision implementation it is not yet fully functional we have
implemented many important parts.

Chapter 7

Future Work

7.1 EiffelStudio

Although it was our goal to make EiffelStudio run using our EiffelVision imple-
mentation, much work remains to be done in this area. More work is needed to
adapt the Smart Docking library, which depends on EiffelVision, but also uses
some platform dependent code.

7.2 Objective-C Wrapper Generator

The Objective-C wrapper generator is very handy when wrapping new Objective-
C classes, but it is missing some cases such as the proper handling of typedefs
and it has problems when structs are returned from a function on the stack.
Also it is currently written in Python which makes it hard to interoperate with
Eiffel directly, for example to get type information. Converting it to Eiffel and
using the Eiffel Wrapper Generator should be investigated. It would certainly
pay off to improve the wrapper generator, in case there is a need to wrap more
Objective-C libraries.

7.3 Eiffel-Cocoa Wrapper

Although we designed our Cocoa wrapper as a separate library, so that it would
be easy to create native OS X GUI applications, not much work has gone into
exploring this scenario. We created a wizard application for EiffelStudio that
creates a very basic Cocoa GUI application. However, at the moment we do not
support the loading of user interface descriptions used for Cocoa development.
Support for loading those files and integration of Apple’s Interface Builder could
make EiffelStudio a serious alternative to Apple’s developer tools.

27

Future Work - iPhone Library 28

7.4 iPhone Library

Our work on the Eiffel/Objective-C language bridge inspired the development of
an Eiffel library for iPhone development1. Some basic example applications with
simple drawing and touch response can be run on the iPhone or on the iPhone
simulator on Mac OS X. The iPhone library is, however, far from complete:
Most functionality of the underlying UIKit framework is not wrapped at the
moment and a better integration of the platform specific tools into EiffelStudio
would be desirable as well.

1More information is on http://dev.eiffel.com/IPhone Development

http://dev.eiffel.com/IPhone_Development

Appendix A

Development

A.1 Layout Inspector

The Layout Inspector (Figure A.1) is a graphical debugger for the GUI struc-
tures of EiffelVision2. It allows browsing through the tree of widgets and con-
tainers and displays relevant information for the selected widget, such as its
position, size, and some layout attributes. On Mac OS X it also highlights the
selected widget visually as can be see in in the screenshot below. Moreover it
can be used to inspect a widget in the EiffelStudio debugger with the click of a
button.

A.2 Tests

When we started with our project there were no test for EiffelVision. Several
reasons made us think it was a good idea to add tests as our implementation
progressed:

• There is no exact specification of the behavior of EiffelVision, in the form
of a software requirements specification or any other form of extensive
documentation. Contracts are a good way to make the specification of a
feature clearer, but in many cases the exact semantics remained somewhat
unclear. Unit tests serve as simple, minimal use cases, which can be
compared across platforms and implementations.

• Tests help us detect regressions during development.

• Unit tests will lead to a more stable EiffelVision across platforms in the
long term.

Testing a GUI is not easy, as it often involves the simulation of GUI events that
are hard to describe exactly and even harder to keep in sync with changes in
the framework. Furthermore, detecting the success of an operation on a high
level can be equivalently hard. We focused our attention on simple unit tests

29

Development - Developer’s Guide 30

Figure A.1: The Layout Inspector on Mac OS X

that in most cases work directly with the API of a component and do not need
any user input.

We used the Eiffel testing framework and suggested some changes that were
promptly made part of its API. Our tests can be found in the test directory of
the EiffelVision project (and also EiffelCocoa).

A.3 Developer’s Guide

A.3.1 Index

All our code can be found in the subversion repository of EiffelSoftware under
https://svn.origo.ethz.ch/eiffelstudio/trunk/Src/experimental. These
are the subdirectories where the most important components can be found:

https://svn.origo.ethz.ch/eiffelstudio/trunk/Src/experimental

Development - Developer’s Guide 31

Component Directory

Eiffel/Objective-C bridge objc base

Eiffel/Objective-C bridge tests objc base/tests

Cocoa wrapper cocoa

Cocoa wrapper tests cocoa/tests

Wrapper generator cocoa/development

EiffelVision implementation vision2/implementation/cocoa

EiffelVision tests vision2/tests

Layout inspector vision2/implementation/cocoa/testing

A.3.2 Setup

This section describes how to compile EiffelStudio or your own application using
EiffelVision. An updated guide can be found online at http://dev.eiffel.
com/EiffelVision Cocoa.

1. Get the latest EiffelStudio for the Mac. If you have MacPorts installed
you can do this by typing

port install eiffelstudio65

2. Check out the latest source code from the trunk:

svn co https :// svn.origo.ethz.ch/eiffelstudio/trunk

3. Set your EIFFEL_SRC and ISE_LIBRARY like this:

export ISE_LIBRARY =/ path_to_your_checkout/trunk/Src

export EIFFEL_SRC =/ path_to_your_checkout/trunk/Src

4. Compile the C-parts of the library

cd $ISE_LIBRARY/experimental/library/objc_base/Clib

finish_freezing -library

cd $ISE_LIBRARY/experimental/library/cocoa/Clib

finish_freezing -library

5. Now open the .ecf file of your project and add the following line to your
target:

<variable name="vision_implementation" value="cocoa"/>

alternatively you can add another target which will allow you to easily
compile both, a GTK+ and a Cocoa version of your application:

http://dev.eiffel.com/EiffelVision_Cocoa
http://dev.eiffel.com/EiffelVision_Cocoa

Development - Developer’s Guide 32

<target name="cocoa" extends="classic">

<variable name="vision_implementation" value="

cocoa"/>

</target >

If you want to compile Eiffel Studio you can use the provided target
”bench cocoa”.

Make sure that you use ec -experiment (or estudio -experiment) to
compile.

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 33	

Appendix	
 B:	
 Status	
 of	
 our	
 EiffelVision	
 implementation	

This	
 chapter	
 describes	
 the	
 status	
 of	
 the	
 Cocoa	
 based	
 EiffelVision.	
 	

Contents	

Windows	
 34	

Dialogs	
 34	

Containers	
 35	

Boxes	
 35	

Frame	
 and	
 Cell	
 35	

Fixed	
 36	

Split	
 Area	
 36	

Table	
 36	

Scrolling	
 Area	
 37	

Tabs	
 37	

Primitives	
 37	

Buttons	
 37	

Combo	
 Box	
 38	

Lists	
 39	

Grid	
 39	

Menu	
 40	

Tree	
 41	

Tool	
 Bar	
 41	

Progress	
 Bar	
 42	

Range	
 42	

Scroll	
 Bar	
 43	

Spin	
 Button	
 43	

Text	
 Field,	
 Password	
 Field	
 and	
 Text	
 Area	
 43	

Rich	
 Text	
 44	

Separator	
 44	

Label	
 44	

Pixmap	
 and	
 Drawing	
 Area	
 44	

Properties	
 45	

Other	
 45	

Application	
 45	

Docking	
 46	

Uncategorized	
 46	

	

The	
 list	
 may	
 miss	
 some	
 important	
 functionality,	
 which	
 is	
 part	
 of	
 the	
 implementation	
 but	
 not	

directly	
 exposed	
 through	
 features	
 (e.g.	
 the	
 resizing	
 behavior	
 of	
 the	
 widgets).	

General	

-­‐	
 Pick&drop	
 is	
 not	
 supported.	

References	

Apple	
 Human	
 Interface	
 Guidelines	
 (HIG),	
 2008-­‐06-­‐09	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 34	

Windows	

EV_WINDOW
EV_POPUP_WINDOW
EV_TITLED_WINDOW

NSWindow	
 (style	
 (titled,	
 resizable),	
 visibility,	
 title,	
 border,	
 shadow,	
 toolbar	
 button,	
 show	
 in	
 window	
 list)	

Supported	

1. Title	

(title, set_title, remove_title)	

2. Menubar	

[See	
 Menus	
 for	
 the	
 issue	
 with	
 Application	
 Menus/Windows]	

(menu_bar,	
 set_menu_bar, remove_menu_bar)	

3. Window	
 styles	

(disable_border, enable_border, is_border_enabled)	
 (enable_user_resize, disable_user_resize,
user_can_resize)	

4. Arranging	
 windows	

[Slightly	
 different	
 semantics	
 than	
 on	
 other	
 platforms]	

(is_minimized, is_maximized, raise, lower, minimize, maximize, restore)	

5. Actions
show_actions, hide_actions, move_actions
	

Not	
 supported	

1. Maximum	
 size	
 constraints	
 (set_maximum_width, set_maximum_height, set_maximum_size,
maximum_width, maximum_height)	

2. Accelerators	
 (accelerators)	

3. Window	
 icon	
 (-­‐>	
 Dock	
 icon)	
 (icon_name, icon_pixmap, set_icon_name, remove_icon_name,

set_icon_pixmap)	

4. show_relative_to_window
5. close_request_actions

Dialogs	

EV_DIALOG
EV_STANDARD_DIALOG
EV_FILE_DIALOG
EV_FILE_OPEN_DIALOG
EV_FILE_SAVE_DIALOG
EV_COLOR_DIALOG
EV_DIRECTORY_DIALOG
EV_FONT_DIALOG
EV_PRINT_DIALOG

NSPanel	

NSOpenPanel	
 (canChooseFiles,	
 canChooseDirectories)	

NSSavePanel
NSColorPanel

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 35	

NSFontPanel
NSPrintPanel

Supported	

1. Running	
 modally	

(show_modal_to_window, is_modal, blocking_window)	

2. Actions	

(ok_actions, cancel_actions)

3. Accessing	
 files	

(file_name, file_title, file_path, valid_file_name, valid_file_title)	

4. Start	
 directory	

(start_directory, set_start_directory)	

5. Multiple	
 file	
 selection	

(multiple_selection_enabled, enable_multiple_selection, disable_multiple_selection)	

Not	
 supported	

1. Changing	
 closable	
 status	
 (is_closable,	
 disable_closable,	
 enable_closable)	

2. File	
 filters	
 (filter, filters, selected_filter_index)	

3. Color	
 dialog	
 (all	
 features)	

[On	
 OS	
 X	
 a	
 floating	
 color	
 panel	
 per	
 Application	
 is	
 usually	
 used]	

4. Font	
 dialog	

5. Print	
 dialog	

Containers	

EV_CONTAINER

Supported	

1. Basic	
 operations	
 (count, has, item, extend, replace)	

2. new_item_actions	

3. connect_radio_group, unconnect_radio_group	

Boxes	

EV_BOX
EV_HORIZONTAL_BOX
EV_VERTICAL_BOX

Supported	

1. All	
 features	
 are	
 available	

(is_homogenious, set_homogenious, border_width, set_border_width, padding, set_padding,
is_item_expanded, set_child_expandable, pointer_offset)	

Frame	
 and	
 Cell	

EV_FRAME
EV_CELL

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 36	

Supported	

	
 1.	
 Basic	
 operations,	
 background	
 color	

Not	
 supported	

1. Title	
 alignment	
 (EV_TEXT_ALIGNABLE)	

[Not	
 supported	
 by	
 the	
 underlying	
 Cocoa	
 control]	

2. Title	
 font	
 (EV_FONTABLE)	

Note	

a. (Frame)	
 styles	
 are	
 somewhat	
 different	
 from	
 other	
 platforms	

Fixed
EV_FIXED

Supported	

1. Positioning	
 and	
 sizing	
 items	
 (set_item_position_and_size, set_item_x_position,
set_item_y_position, set_item_position, set_item_width, set_item_height, set_item_size)	

Split	
 Area	

EV_SPLIT_AREA
EV_HORIZONTAL_SPLIT_AREA
EV_VERTICAL_SPLIT_AREA

Supported	

1. Setting	
 items	
 (set_first, set_second)	

2. Splitter	
 position	
 (set_split_position, split_position)	

Not	
 supported	

1. Size	
 constraints	
 (minimum_split_position, set_minimum_split_position,
maximum_split_position, set_maximum_split_position)	

2. Setting	
 expanded-­‐status	
 (enable_item_expand, disable_item_expand, set_split_position,
prune)	

Note	

a. Resizing	
 is	
 buggy	
 (doesn’t	
 resize	
 the	
 children	
 correctly)	

Table	

EV_TABLE

Supported	

1. Mostly	
 implemented	
 but	
 not	
 well	
 tested.	

(row_spacing, set_row_spacing, column_spacing, set_column_spacing, border_width,
set_border_width, item_column_position, item_column_span, item_row_position, item_row_span)	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 37	

Scrolling	
 Area	

EV_VIEWPORT -> NSClipView

EV_SCROLLABLE_AREA -> NSScrollView (setDocument)	

Supported	

1. All	
 viewport	
 features	

(x_offset, y_offset, set_x_offset, set_y_offset, set_offset, set_item_width, set_item_height,
set_item_size)	

2. Scrollbar	
 hiding	

(is_horizontal_scroll_bar_visible, show_horizontal_scroll_bar, hide_horizontal_scroll_bar,
is_vertical_scroll_bar_visible, show_vertical_scroll_bar, hide_vertical_scroll_bar)	

Not	
 supported	

1. Accessing	
 step	
 size	

(horizontal_step, set_horizontal_step, vertical_step, set_vertical_step)	

Tabs	

EV_NOTEBOOK
EV_NOTEBOOK_TAB

NSTabView (add,	
 select,	
 orientation)
NSTabViewItem

Supported	

1. Basic	
 features	

(extend, remove, item_text, item_tab, select_item, set_item_text)	

Not	
 supported	

1. Bugs	
 in	
 the	
 layouting	
 and	
 displaying	
 of	
 child	
 containers	

2. Positioning	
 tabs	

(tab_position, pointed_tab_index, set_tab_position)	

3. Detecting	
 selection	
 	

(selection_actions, selected_item, selected_item_index)	

4. Tab	
 pixmaps	

[Not	
 straight	
 forward	
 to	
 implement	
 on	
 OS	
 X]	

Primitives	

EV_PRIMITIVE

Buttons	

EV_BUTTON
EV_CHECK_BUTTON
EV_TOGGLE_BUTTON
EV_RADIO_BUTTON

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 38	

EV_RADIO_PEER

NSButton	
 (type	
 (normal,	
 switch,	
 toggle,	
 radio),	
 style,	
 title,	
 image,	
 key)	

NSButtonCell	

1. Buttons	
 are	
 represented	
 using	
 one	
 class	
 in	
 Cocoa.	
 Get	
 different	
 styles	
 by	
 configuring	

a	
 button	
 through	
 function	
 calls.	

Supported	

1. Actions	

(select_actions)	

2. Default	
 button	

(is_default_push_button, enable_default_push_button, disable_default_push_button,
enable_can_default)	

3. Alignment	

(text_alignment, align_text_center, align_text_left, align_text_right)	

4. Selection	

(is_selected, enable_select, disable_select, toggle)	

5. Radio	
 button	
 grouping	

(is_selected, peers, selected_peer)	

[Other	
 classes	
 inheriting	
 from	
 EV_RADIO_PEER	
 should	
 work	
 as	
 well]	

Not	
 supported	

1. Limited	
 support	
 for	
 setting	
 pixmaps	

[Mac	
 OS	
 X	
 does	
 not	
 support	
 pixmaps	
 on	
 the	
 default	
 button	
 type]	

2. Setting	
 the	
 font	

[Goes	
 against	
 Apple’s	
 HIG]	

Combo	
 Box	

EV_COMBO_BOX
EV_COMBO_BOX_ACTION_SEQUENCES
EV_LIST_ITEM,	
 EV_LIST_ITEM_LIST,	
 EV_LIST_ITEM_LIST_ACTION_SEQUENCES	

NSComboBox	
 (insertItem)	

Supported	

1. (selected_item,	
 select_item,	
 deselect_item,	
 clear_selection)	

2. 	

Not	
 Supported	

1. (drop_down_actions, list_hidden_actions)	

2. is_list_shown	

3. Pixmaps	
 for	
 items	

Note	

a. Both	
 implementations	
 inherit	
 from	
 their	
 respective	
 Text	
 Field.	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 39	

Lists	

EV_LIST
EV_LIST_ITEM
EV_LIST_ITEM_LIST
EV_CHECKABLE_LIST
EV_MULTI_COLUMN_LIST
EV_MULTI_COLUMN_LIST_ROW

NSTableView	

NSTableHeaderView	

NSTableDataSource	

NSTableColumn	

Supported	

1. Basic	
 operations	

(extend, remove, selected_item)	

2. Selection	
 and	
 multiple	
 selection	

(select_actions, multiple_selection_enabled, enable_multiple_selection,
disable_multiple_selection)	

3. Item	
 pixmaps	

Not	
 supported	

1. Checkable	
 lists	

2. ensure_item_visible, select_item, deselect_item, clear_selection, selected_items,

deselect_actions
3. Item	
 tooltips	

4. Multi-­‐column	
 list	
 specific	

(Column_count, row_height, title_shown, column_title, set_column_title, set_column_titles,
column_width, set_column_width, resize_column_to_content, set_column_widths, show_title_row,
hide_title_row, expand_column_count_to, update_column_width, set_text_on_position,
set_row_pixmap, remove_row_pixmap, column_title_changed, column_width_changed,
column_alignment_changed)
[column_title_changed, column_width_changed:	
 Why	
 are	
 these	
 functions	
 not	
 implemented	

as	
 action	
 sequences?]	

column_title_click_actions, column_resized_actions

5. Text	
 alignment	

(align_text_left, align_text_center, align_text_right, column_alignment, set_column_alignments)	

Notes	

a. Unclear	
 how	
 the	
 checkable	
 can	
 be	
 implemented	

Grid	

EV_GRID
EV_GRID_ROW
EV_GRID_ITEM
EV_GRID_CHECKABLE_LABEL_ITEM
EV_GRID_LOCKED_COLUMN
EV_GRID_ARRAYED_LIST

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 40	

EV_GRID_DRAWABLE_ITEM
EV_GRID_LABEL_ITEM
EV_GRID_COLUMN
EV_GRID_LOCKED_ROW
EV_GRID_LOCKED
EV_GRID_DRAWER

EV_HEADER
EV_HEADER_ITEM

Not	
 supported	

The	
 grid	
 is	
 almost	
 fully	
 implemented	
 in	
 a	
 platform	
 independent	
 way	
 and	
 it	
 is	
 probably	
 the	

single	
 most	
 complex	
 widget.	
 Because	
 of	
 those	
 two	
 reasons	
 many	
 things	
 don’t	
 work	
 yet.	
 	

Menu	

EV_MENU
EV_MENU_BAR
EV_MENU_ITEM
EV_MENU_SEPARATOR
EV_RADIO_MENU_ITEM
EV_CHECK_MENU_ITEM
EV_MENU_ITEM_LIST

NSMenu	

NSMenuItem	
 (title,	
 key,	
 hidden,	
 enables,	
 image,	
 submenu,	
 separatorItem,	
 key,	
 state(on/off))	

NSMenuView	
 (display)	

NSApplication	
 (mainMenu,	
 windowsMenu)	

Supported	

1. Basic	
 operations	

(set_text, parent, select_actions)	

2. Check	
 and	
 radio	
 items	

(is_selected, enable_select, disable_select)	

Not	
 supported	

1. Positioning	

(width, height, screen_x, screen_y, x_position, y_position, minimum_width, minimum_height)	

2. Custom	
 showing	

(show, show_at)	

3. Icons	

(pixmap, set_pixmap)	

4. (item_select_actions)	

Notes	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 41	

a. A	
 menu	
 bar	
 is	
 usually	
 associated	
 with	
 an	
 application	
 instead	
 of	
 a	
 window	
 in	
 Cocoa.	

This	
 can	
 be	
 overcome	
 by	
 manually	
 setting	
 the	
 right	
 menu	
 when	
 a	
 window	
 receives	

focus.	

b. In	
 EV	
 several	
 classes	
 for	
 menu	
 items	
 exist:	
 simple,	
 a	
 separator,	
 a	
 radio	
 or	
 a	
 check	

item.	
 One	
 class	
 in	
 Cocoa	
 handles	
 all	
 these	
 and	
 the	
 difference	
 is	
 achieved	
 through	

setting	
 some	
 properties.	

Menu	
 items	
 can	
 be	
 made	
 checkable	
 by	
 toggling	
 their	
 ‘state’	
 in	
 Cocoa.	
 Radio	
 buttons	

do	
 not	
 exist	
 in	
 the	
 menus	
 but	
 can	
 be	
 created	
 by	
 manually	
 setting	
 the	
 on/off	
 pictures	

for	
 the	
 state	
 and	
 a	
 bit	
 of	
 logic.	
 	

Tree	

EV_TREE
EV_TREE_ITEM
EV_TREE_NODE
EV_TREE_NODE_LIST
EV_CHECKABLE_TREE

NSOutlineView	

NSOutlineViewDataSource	
 (collapse,	
 expand)	

Supported	

1. Basic	
 operations	

(extend, remove)	

2. Selection	

(select_actions, selected, selected_item)	

Not	
 supported	

1. Checkable	
 tree	

2. Actions	

(deselect_actions, expand_actions, collapse_actions)	

3. Item	
 tooltips	

(EV_TOOLTIPABLE)	

4. Item	
 icons	

(EV_ITEM)	

5. (ensure_item_visible, is_selected, is_expanded, set_expand)

Notes	

a. Data	
 is	
 loaded	
 “on	
 demand”	
 via	
 a	
 delegate	
 (the	
 data	
 source)	
 in	
 Carbon.	

Tool	
 Bar	

EV_TOOL_BAR
EV_TOOL_BAR_SEPARATOR
EV_TOOL_BAR_BUTTON
EV_TOOL_BAR_TOGGLE_BUTTON
EV_TOOL_BAR_RADIO_BUTTON
EV_TOOL_BAR_DROP_DOWN_BUTTON

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 42	

Supported	

1. Basic	
 Toolbar	
 functionality	

(inserting	
 buttons	
 and	
 separators)	

2. Basic	
 Toolbar	
 Button	
 functionality	

(has_text, text, set_text, has_pixmap, pixmap, set_pixmap, select_actions)	

Not	
 Supported	

1. Vertical	
 Toolbar	

(enable_vertical, disable_vertical, is_vertical)	

2. Vertical	
 button	
 style	

(has_vertical_button_style, enable_vetrtical_button_style, disable_vertical_button_style)	

3. (drop_down_actions)	

Note	

a. Toolbars	
 on	
 Mac	
 OS	
 X	
 are	
 somewhat	
 different	

b. Not	
 sure	
 what	
 EV_TOOL_BAR_DROP_DOWN_BUTTON	
 should	
 do.	
 It	
 has	
 no	

immediate	
 features.	

Progress	
 Bar	

EV_PROGRESS_BAR
EV_HORIZONTAL_PROGRESS_BAR
EV_VERTICAL_PROGRESS_BAR

EV_GAUGE

NSProgressIndicator (min,	
 max,	
 value,	
 style)	

Supported	

1. Full	
 supporta	

(value, set_value, step, set_step, leap, set_leap, step_forward, step_backward, leap_forward,
leap_backward, change_actions)	

2. (is_segmented, enable_segmentation, disable_segmentation)	

Notes	

a. Only	
 vertical	
 Progress	
 Bars	
 are	
 supported	
 by	
 Cocoa.	
 	

It	
 is	
 unclear	
 how	
 a	
 horizontal	
 Progress	
 Bar	
 could	
 be	
 implemented.	

Range	

EV_RANGE
EV_HORIZONTAL_RANGE
EV_VERTICAL_RANGE

NSSlider (orientation,	
 min,	
 max,	
 tickMarks)	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 43	

Full	
 support	

(value, set_value, step, set_step, leap, set_leap, step_forward, step_backward, leap_forward,
leap_backward, change_actions)	

Scroll	
 Bar	

EV_SCROLL_BAR
EV_HORIZONTAL_SCROLL_BAR
EV_VERTICAL_SCROLL_BAR

NSScroller	

Full	
 support	

(value, set_value, step, set_step, leap, set_leap, step_forward, step_backward, leap_forward,
leap_backward, change_actions)	

Note	

a. The	
 scroll-­‐knob	
 does	
 not	
 have	
 the	
 correct	
 size	

Spin	
 Button	

EV_SPIN_BUTTON -> NSStepper (min, max, increment)

Full	
 supporta	

(value, set_value, step, set_step, leap, set_leap, step_forward, step_backward, leap_forward,
leap_backward, change_actions)	

Note	

b. Needs	
 more	
 testing	

Text	
 Field,	
 Password	
 Field	
 and	
 Text	
 Area	

EV_TEXT_FIELD
EV_PASSWORD_FIELD
EV_TEXT
EV_TEXT_COMPONENT

NSTextView, NSText, NSTextStorage, NSTextContainer
NSTextField	
 (editable,	
 selectable,	
 color,	
 background	
 color,	
 style,	
 border)	

Supported	

1. Basic	
 functionality	

(set_text, append_text, prepend_text)	

2. (is_editable, set_editable)	

Not	
 supported	

1. Actions	

(change_actions, return_actions)	

2. (capacity, set_capacity, insert_text, insert_text_at_position)	

3. Text	
 alignment	

(text_alignment, align_text_left, align_text_center, align_text_right)	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 44	

4. Cursor	
 position	
 and	
 text	
 selection	

(caret_position, set_caret_position, has_selection, selection_start, selection_end, select_region,
select_from_start_pos, deselect_all, delete_selection)	

5. Clipboard	
 interaction	

(cut_selection, copy_selection, paste)	

6. Font	
 settings	

(EV_FONTABLE)	

Rich	
 Text	

EV_RICH_TEXT
EV_RICH_TEXT_CONSTANTS
EV_RICH_TEXT_BUFFERING_STRUCTURES

RTF_FORMAT
EV_PARAGRAPH_FORMAT
EV_CHARACTER_FORMAT

Not	
 Supported	

Separator	

EV_SEPARATOR
EV_VERTICAL_SEPARATOR
EV_HORIZONTAL_SEPARATOR

Full	
 Support	

Label	

EV_LABEL

Supported	

1. Most	
 functionality	

(text, set_text, font, set_font, set_background_color)	

Not	
 Supported	

1. Text	
 alignment	

(text_alignment, align_text_left, align_text_center, align_text_right)	

Pixmap	
 and	
 Drawing	
 Area	

EV_DRAWING_AREA
EV_PIXMAP
EV_PIXEL_BUFFER

EV_BITMAP

Supported	

1. Drawing	

(draw_point, draw_text, draw_rotated_text, draw_text_top_left, draw_ellipsed_text,
draw_ellipsed_text_top_left, draw_segment, draw_straight_line, draw_pixmap, draw_sub_pixmap,

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 45	

draw_sub_pixel_buffer, draw_arc, draw_rectangle, draw_ellipse, draw_polyline, draw_pie_slice,
fill_rectangle, fill_ellipse, fill_polygon, fill_pie_slice)	

2. Drawing	
 styles	

(line_width, set_line_width, dashed_line_style, enable_dashed_line_style,
disable_dashed_line_style)	

3. Draw	
 actions	

(expose_actions, redraw, redraw_rectangle, clear_and_redraw, clear_and_redraw_rectangle,
flush, clear_rectangle)	

4. Font	
 setting	

(EV_FONTABLE)	

5. Color	
 setting	

(EV_COLORIZABLE)

Not	
 Supported	

1. Clipping	

(clip_area, set_clip_area, set_clip_region, remove_clipping)	

2. Drawing	
 styles	

(drawing_mode, set_drawing_mode, tile, set_tile, remove_tile)	

Properties	

EV_PICK_AND_DROPABLE
EV_PIXMAPABLE
EV_POSITIONABLE
EV_SELECTABLE
EV_SENSITIVE
EV_COLORIZABLE
EV_DESELECTABLE
EV_DRAWABLE
EV_FONTABLE
EV_TEXTABLE
EV_TOOLTIPABLE
EV_POSITIONED
EV_TEXT_ALIGNABLE
EV_TAB_CONTROLABLE

Other	

Application	

EV_ANY

EV_APPLICATION

Supported	

1. Basic	
 Actions	

(post_launch_actions, idle_actions, destroy_actions, uncaught_exception_actions)	

2. Basic	
 runloop	

(process_underlying_toolkit_event_queue)	

Status	
 of	
 our	
 EiffelVision	
 implementation	

	
 46	

3. Actions	

(pointer_motion_actions, pointer_button_press_actions, pointer_double_press_actions,
key_press_actions, key_press_string_actions, key_release_actions, focus_in_actions,
focus_out_actions)	

4. (windows)	

	

Not	
 supported	

1. Actions	

(pick_actions, drop_actions, cancel_actions, pnd_motion_actions, file_drop_actions,
system_color_change_actions)	

2. Other	

(pick_and_drop_source, ctrl_pressed, shift_pressed, alt_pressed, caps_lock_on,
is_display_remote, process_graphical_events, sleep, lock, try_lock, unlock, tooltip_delay)	

EV_ENVIRONMENT

Docking	

EV_DOCKABLE_SOURCE
EV_DOCKABLE_TARGET

Not	
 supported	

Uncategorized	

EV_DYNAMIC_LIST
EV_ITEM_LIST
EV_WIDGET_LIST

EV_TIMEOUT
Full	
 support	

EV_ACCELERATOR

EV_BEEP

EV_CLIPBOARD

EV_COLOR
Full	
 support	

EV_FONT
Full	
 support	

EV_HELP_CONTEXTABLE	

EV_ITEM

EV_SIMPLE_ITEM

Bibliography

[1] The D/Objective-C Bridge. http://michelf.com/weblog/2007/
d-objc-bridge/, 2007.

[2] Eiffel software mailing list. mailto:eiffel software@yahoogroups.com,
2009.

[3] Monoobjc: A .NET/Objective-C Bridge. http://monoobjc.net, 2009.

[4] Inc. Apple. Objective-C 2.0 Runtime Reference. http://developer.apple.
com/mac/library/documentation/Cocoa/Reference/ObjCRuntimeRef/
Reference/reference.html, 2007.

[5] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[6] Bertrand Meyer. Eiffel: The language, third edition. ongoing work.

[7] Bertrand Meyer, Alexander Kogtenkov, and Emmanuel Stapf. Avoid a Void:
The eradication of null dereferencing. 2009.

47

http://michelf.com/weblog/2007/d-objc-bridge/
http://michelf.com/weblog/2007/d-objc-bridge/
mailto:eiffel_software@yahoogroups.com
http://monoobjc.net
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html
http://developer.apple.com/mac/library/documentation/Cocoa/Reference/ObjCRuntimeRef/Reference/reference.html

	1 Introduction
	1.1 Goal
	1.2 Outline
	1.3 Related Work
	1.3.1 Vision4Mac
	1.3.2 MacEiffel
	1.3.3 Other Objective-C/Cocoa Bridges

	2 Architecture
	2.1 Overview

	3 The Eiffel/Objective-C Bridge
	3.1 Duality of Classes (and Objects)
	3.2 Foundation Framework
	3.3 Short Comparison of Objective-C and Eiffel
	3.4 Calling an Objective-C Function from Eiffel
	3.5 Names
	3.6 Types
	3.7 Other Language Constructs
	3.7.1 Protocols
	3.7.2 Categories
	3.7.3 Contracts

	3.8 Memory Management
	3.8.1 Reverse lookup: Finding the dual Eiffel object

	3.9 Callbacks and Inheritance
	3.9.1 The Problem when Inheriting from an Objective-C Class
	3.9.2 Calling an Eiffel Feature from Objective-C
	3.9.3 Our Solution

	4 Application Kit Wrapper
	4.1 Wrapper Generator
	4.2 Inheritance for Wrapped Classes
	4.3 The Target-Action Mechanism
	4.4 The Delegation Pattern

	5 Cocoa EiffelVision Implementation
	5.1 A Quick Introduction to EiffelVision
	5.2 Event Handling
	5.3 The Layout Engine
	5.3.1 Vertical box

	5.4 Coordinate Systems
	5.5 Other Platform Differences

	6 Conculsions
	6.1 How well does it work?
	6.2 Summary

	7 Future Work
	7.1 EiffelStudio
	7.2 Objective-C Wrapper Generator
	7.3 Eiffel-Cocoa Wrapper
	7.4 iPhone Library

	A Development
	A.1 Layout Inspector
	A.2 Tests
	A.3 Developer's Guide
	A.3.1 Index
	A.3.2 Setup

	B Status of our EiffelVision implementation
	Bibliography

