Diploma thesis:
Teaching introductory programming with the Inverted Curriculum approach

Michela Pedroni (pedronim@student.ethz.ch)
Supervising Assistant: Bernd Schoeller
Supervising Professor: Bertrand Meyer

June 6, 2003
Part I
Project Description

1 Overview

The increasing number of computer science students, their wide variety of prerequisites and previous experiences, as well as the goal to prepare them for the realities they will encounter in the industry, makes the design of an introductory course on programming a challenging task. A new approach, known as the Inverted Curriculum, will be used for the introductory programming course held the first time in winter 2003/2004 at the ETH Zurich. The approach - also known as "progressive opening of black boxes" - lets the students step-by-step grow from consumers to producers of a library that is especially developed for this purpose. This is done by designing the exercises in a way that first, the students’ applications solely act as clients to the components of the library (using them as black boxes). Then gradually the students are encouraged to plunge deeper into the library code by requesting modifications and extensions of the library as exercise tasks. This approach shows the benefits of abstraction through reuse by taking full advantage of reusable libraries available in a good object-oriented environment and therefore introduces important concepts and principles of software engineering right from the start.

2 Scope of the work

The diploma thesis is composed of two parts: First, a theoretical review on teaching introductory programming will be written. This includes

- the goals and challenges of designing an introductory programming course
- a survey on selected approaches comprising their advantages, drawbacks and experiences already made
- advantages, drawbacks and experiences with the Inverted Curriculum approach
- thoughts about which programming paradigm (e.g. imperative, functional, object-oriented) should be used to learn programming
- general problems of choosing a programming language for the introductory course
- Eiffel as a “first” programming languages including advantages and possible problems
- a description of my own experience with the introductory programming course
In the second phase of the diploma thesis acting as an active critic to the new
programming curriculum at the ETH forms the main job. This means that on
the basis of the review the overall setup and the progression of the ongoing
course preparation will be revised about its qualities, drawbacks, and problems
that might occur. If possible, solutions to the encountered problems will be
given and implemented. The overall setup includes

- the proposed programming environment (including the installation process
 and the overall usability)
- the availability of online-help/manuals/tutorials
- the library on which the course will be based
- the organization of the course

At every step during the preparation of the course the following points will be
inspected:

- the text book
- the exercises
- the solutions to the exercises

Within the exercises and their solutions the task will be to assist in their design
and production as well as revising them.

The ultimate goal of this diploma project is not to court and butter up the
approach that will be taken at the ETH. On the contrary, by first writing a
review about different approaches with special emphasis on the Inverted Cur-
riculum approach, a general overview of advantages and drawbacks will be given
and therefore the sensibility for possible problems will be strengthened. In the
second phase, the gained knowledge will directly be applied to the introdutory
programming course at ETH and hopefully helps to clear away the deepest
pitfalls for future students.

3 Intended result

3.1 Report

The final report will be a documentation of all the work that was performed
during the thesis. It will be composed of two main parts:

1. Theoretical review
2. Evaluation of the introductory programming course

For more information see 2.
3.2 Practical work

1. Design of appropriate exercises and solutions

2. Elimination of any problems if possible (for example production of a recovery script for the Eiffel environment, if the need arises)

The dimension of the practical work (especially for 2.) highly depends on the evaluation of the course setup and progression and can therefore not be determined at this point of time.

Part II

Background material

4 Reading list

Learning psychology: [EDEL00] and [HEAP].

Inverted Curriculum: [MEY97, LAS97, COH91-2, MEY01].

Teaching languages: [KÖL99-2, KÖL95, KÖL99-3, MCI96, KÖL99-1].

Eiffel: [MEY97, KÖL99-2, KÖL95, NOR92, NOR95, KÖL99-1].

Object-oriented teaching: [MEY97, KÖL99-2, NOR92, WAZ00, MEY02].

And many more...

Part III

Project Management

5 Objectives and priorities

Being a student that had a very frustrating first encounter with programming, my personal objective is to do everything possible to keep future students from having to suffer from the same. In this context it is important to note that the theoretical survey is not what I see as having the highest priority or as being the part that makes my diploma thesis valuable. It is an important part, but can also be seen as a preparation for the practical part, where the achievements will heavily influence the work that will be done.
6 Criteria for success

6.1 Report

The final report should show the overall work that was done during the project period. It will include a theoretical survey that critically looks at different approaches to teaching introductory programming, and a more distinct course-related part that shows the progression and adaptations that take place during the preparation of the introductory programming course at the ETH.

6.2 Practical work

The exercises and solutions should be designed in a way that they clearly represent the knowledge gained from the theoretical review. They should be at the same time interesting, challenging, but still feasible for even a student that attends the course with no prior knowledge about programming.

Part IV

Plan with milestones

7 Project period

Project start: Friday, 05-02-2003 (week 18)

Project end: Monday, 09-01-2003 (week 36)

Total work time: 18 weeks + 2 days = 92 days
8 Tentative schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>Project plan, introductory</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>reading Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical survey</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Theoretical survey</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Presentation theoretical</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>survey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality assurance for course</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Checking overall setup</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Checking course progression</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>Practical work</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>Exercise and Solutions Design</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>Reserve, unexpected events</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>Final presentation</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Final corrections, layout</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

References

