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Abstract

In this project a formal semantic definition for a small object-oriented language
is developed, in the context of formal verification of program correctness. From
its inherent modular nature, its ability to support abstraction via information
hiding and subtyping, the object-oriented paradigm seems predestined for effi-
cient reuse of software components. This raises hopes to apply these advantages
also on the topic of verification. Problems arising from this enterprise are dis-
cussed and an overview on the actual situation of research is given. A conclusion
of this discussion is that specifications become the most critical part in modular
verification.
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Chapter 1

Introduction

The aim of this project is to develop a formal semantic definition of a small,
object-oriented programming language. The need for a formal semantics arises
e.g. in the context of automated program verification. The interest in program
correctness is also the actual motive for this project. In order to be automatically
checked, proofs also have to be stated formally. Thus besides a formal definition
of the semantics also an adequate calculus to express proofs has to be available.
However such a calculus is not provided here. The guiding principle in program
correctness can be stated as follows:

”Instead of debugging a program, one should prove that it meets
its specifications, and this proof should be checked by a computer
program. For this to be possible, formal systems are required in
which it is easy to write proofs.”

John McCarthy [4]

In this chapter first programming is introduced as a method for problem solv-
ing. Requirements to a language that supports program verification is discussed
briefly. An overview on object-oriented concepts follows. The modular structure
and the degree of abstraction it permits make the object-oriented paradigm a
promising candidate to achieve the goal of efficient program verification. Mod-
ular verification raises theoretical problems which are primarily related to the
issue of specification. Approaches suggested by various researches to overcome
these problems are sketched. The chapter concludes with an outlook on the rest
of the work.

1.1 Motivation

1.1.1 Programming Languages

In the software construction process, the task of formulating the solution in a
(high-level) programming language is the last one, except validation and docu-
mentation. The preceding tasks have to transform the original specification into
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a form so that the problem can be stated and solved in terms of a programming
language. In reality these stages cannot be strictly separated. Moreover the
process of implementation itself may consist of a sequence of refinement steps,
according to Wirth’s [15] approach of stepwise refinement. The key issue is
that prior writing code one has to have a problem specification adequate to the
chosen programming language.

Ideally the specification on the programming language level can be expressed
in the language itself. The Design by Contract [7] method is an important step
toward programs which not only contain the implementation but also (parts) of
the specification. On one hand this eases reuse, as a client of a foreign program
module can obtain information about the module’s functionality. On the other
hand the built-in specification can be used for automated program verification.

In the end a programming language is nothing else than a formal system,
designed to make automated generation of computer executable code possible.
It is in the nature of a formal system to impose constraints on how to formulate
things. These constraints can roughly be divided into two kinds:

1. Syntactical constraints are related to the form a program has to be written
in. The syntax usually is defined through a grammar, defining the rules
according to which programs have to be composed.

2. Semantical constraints are related to the contents or meaning of a pro-
gram. Syntactical correctness does not imply that a program has a mean-
ing. A typical semantical constraint in strongly typed languages is well-
typedness of programs.

The topic of syntactical correctness will not be pursued further in this project.
For simplicity the term ’program’ always refers to a syntactically correct pro-
gram.

The art of programming lies in using the formalism provided by a language
so that the resulting program corresponds to its abstract specification – stated
simply this means to get the program correct. And correctness is the most
important property of a program. So programming should be concerned with:

”How to write correct programs and know it.”
Harlan D. Mills [10]

Besides correctness the issues reusability and extendability of software are
important. These properties allow to develop software efficiently, since one
can concentrate on new aspects of a problem and does not have to solve the
same problems again and again. Relying on a correct standard solution has an
invaluable impact on reliability. A component which is known to be correct will
stay correct when reused.

Extendability is the property that to an existing system or set of modules
new modules can be added without changing the already existing parts. Hence
in an extendable system a module does not have to know its environment com-
pletely to work correctly. This property is crucial for efficient reuse also. If
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correctness were guaranteed only for fixed environments, reuse of a standard so-
lution would not imply correctness. Rather one had to verify correctness anew
in every new context. How to state correct solutions with a limited knowledge
of the context so that it stays correct in every possible context turns out to be
the major challenge of programming, or better specification in general. A final
answer to this problem is not yet found.

As requirements to a programming language we may state so far that it has to
support a programmer in writing correct programs. Ideally some of the checking
is done automatically, as is done for types in typed languages. Furthermore it
should have facilities which allow efficient reuse and extension. For a detailed
discussion of software quality properties see [6].

1.1.2 Semantics

The main purpose of a programming language is to describe systems or problem
solutions in an abstract way. As this description is stated in a formal way, its
meaning is not self-explanatory. Hence beside the syntactic rules how to form
programs also rules which map programs to a meaning are needed. Stated
differently this means to translate programs into a language which already has
a (natural) meaning.

The rules how the meaning of a programs is determined are stated in the
semantic definition of the language. The semantics of a programming language
is typically defined by mathematical models.

Such a model could e.g. describe an abstract computer where the store is
represented by a set of memory locations. The state then is described by a
function on the store which for each location yields the current value stored. A
program finally could be interpreted as a function which transforms state.

Thus a formal semantic definition of a programming language will first define
a mathematical model. Then for each language construct an interpretation in
terms of the model has to be given. In the end a given program is described
completely by the mathematical model.

Theoretical Limits on Proof Automation

From a theoretical point of view a programming language can be considered a
computational model, as e.g. Turing Machines or Markov Algorithms are. A
language which provides a computational power equivalent to that of a Turing
Machine underlies also its computational limitations. One of the most famous
limitations is the undecidability of the halting problem. According to this the
problem whether a program will ever terminate on a given input cannot be de-
cided algorithmically. Since the problem of program correctness can be reduced
to the halting problem there does not exist a program which can prove or dis-
prove correctness of programs. The best one can do is to verify existing proofs
automatically. Finding proofs is an act of creativity in principle. However proof
assistants can be used to support a human proofer. So at best one can hope for
semi-automated proof strategies.
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1.2 A Glance at Object-Orientation

An exact definition of object-orientation does not seem to exist. We will con-
centrate on concepts which are widely accepted to be indispensable for the
object-oriented paradigm. These are the modular structure, information hiding
and inheritance, although these concepts are not exclusive to the object-oriented
paradigm, neither can it claim to have introduced it. Also the role of objects has
to be clarified, since the name of the paradigm suggests that they are central to
object-orientation. For a more detailed discussion we refer to Meyer’s treatment
in [6], in particular chapter 2.

1.2.1 Classes

The class is the main concept for structuring programs. A class is an au-
tonomous unit or module which defines an abstract data type. An abstract data
type consists of a domain of values together with a set of operations defined on
these values. In connection with object-orientation these operations are often
called the methods of a class. However, following Meyer’s terminology we will
refer to them as features.

In most object-oriented languages a class may provide a full implementation
of the data type, or only a partial implementation or none at all. In the first
case the class is called concrete or effective. In the latter cases it is called
abstract or deferred. Deferred classes are useful to describe a behavior that may
be shared by different types, but which is too abstract as that a reasonable
implementation could be given. An example is the concept of comparability
on ordered domains, e.g. natural numbers. There are many abstractions whose
values can be ordered. But an abstraction whose only property is that the values
can be ordered is hard to find.

To every effective class there exists a set of objects, called instances of the
class. An object is a runtime entity which represents a value of the abstract
data type during program execution. Its behavior is determined by the features
of the corresponding class it belongs to.

An object which is an instance of some class C can represent any value of the
abstract data type defined by the class C. So the state of an instance is the value
it represents. Besides this an object has an identity of its own, independent of
what its current state is. Thus given two objects one has to distinguish whether
they are the same object or just represent the same abstract value.

Features play a similar role as procedures in non-object-oriented imperative
languages. The difference to procedures is that features are always executed
relative to a designated object, called the target of an invocation. In object-
oriented programming computation is based on feature invocations on objects,
rather than procedure calls taking a list of arguments. In the former case one
can consider the target object to be responsible for the effect of the invocation.
While in the latter case the called procedure is responsible to attain the intended
effect. So there is a shift from procedures to objects. In order to accomplish a
task one first has to determine the responsible object and then the appropriate
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feature to be invoked. The term object-oriented denotes this shift which makes
objects the main actors of computation.

1.2.2 Information Hiding

An abstract specification of a class may allow different implementations. To a
client of a class only the specification should be visible and not the concrete
implementations. This prevents a client to take advantage of implementation
decisions which are not directly related to the abstraction the class provides.
The purpose of information hiding is to make clients independent from concrete
implementations. Dependency on the implementation may cause a client’s code
to fail when the implementation is changed. Furthermore exposing the im-
plementation may rather distract from the essence of the abstraction. Hence
information hiding is an import concept to increase reliability of software and
support reuse.

Information hiding implies that the language provides facilities to hide in-
ternal features used for the issue of implementation only. In Java modifiers like
private or public are available. Eiffel allows a class to make features visible
selectively to a designated set of classes. Visibility to any other class or none
are the extremal cases of this so called selective export.

1.2.3 Inheritance

Information hiding separates the abstract specification cleanly from the concrete
implementation. Different implementations of the same specification cannot
be distinguished from outside. So information hiding does not allow to refine
implementations. A refinement makes the behavior more specific and hence
represents a new abstraction. However one that is compatible with the original
abstraction, i.e. the original abstraction is preserved in the refinement. Thus it
should be allowed to apply operations of the original abstraction to the refined
one, too. The refined abstraction then defines a subtype of the more general
data type. In object-orientation such a refinement is called inheritance – the
properties of the general type are inherited by the refined type. One says that
a class that inherits from another class extends this class. In this context the
class which is subject of extension is called the parent, and the extended class
is the child or heir.

On the abstract level inheritance means that the extended type provides
at least the same interface as the parent and behaves accordingly. In object-
oriented languages inheritance implies that the child not only inherits the be-
havior but also the implementations of the parent’s features. But such an in-
cremental extension is not always possible. As the extension may introduce
new consistency constraints, the inherited implementation may not be suited
to ensure these constraints. So it has to be possible to replace the inherited
implementation by a new one.

From an abstract point of view whether an object takes the inherited im-
plementation or provides a new one does not matter. It is the behavior that
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counts. Inheritance can be considered a procedure to copy implementations.
However implementation inheritance is more than just a convenience to avoid
reproduction of code. Information hiding prohibits to copy the implementation
manually, as this information should not be accessible from outside. Implemen-
tation inheritance supports reuse in refinement without violation of information
hiding.

Subtyping introduces a new facet of abstraction into programming. Algo-
rithms or systems can be implemented on the most abstract level possible once
and for all. What the exact nature of the manipulated objects is does not matter.
The only requirement is that it fits the general abstraction. Hence subtyping
allows to abstract from non-relevant details of the manipulated objects. But in
this case the non-relevant details are not implementation aspects but are of an
abstract nature. While information hiding is rather a technicality, subtyping
enables abstraction in its literal sense.

In order to work correctly it has to be assured that for each object the
appropriate implementation is executed. Thus the feature to be executed cannot
be determined by a static program analysis, as this depends dynamically of the
object’s concrete type. The determination of the correct implementation at
runtime is called dynamic binding. Therefore a mapping between the features
of the declared type and the corresponding features of all subtypes has to be
computed by the compiler.

It is quite natural that a refinement combines different abstractions to a new
one. The resulting data type then is a subtype of all involved types. Extending
more than one type is called multiple inheritance. Eiffel is one of the few object-
oriented languages which allow multiple inheritance consequently. While Java
only allow it on the level of interfaces, but not for classes.

1.3 Modular Verification

1.3.1 Modular Soundness

The modular nature of object-orientation suggest to do the verification also in
a modular way, i.e. once and for all for each class. In order to achieve this we
need the following property:

Modular Soundness is the property that the separate verification of
the individual modules of a program suffice to ensure the correctness
of the composite program. [2]

Efficiency of reusability is hampered if modular verification is not possible.
If the correctness of a reused class has to be verified anew in every program also
the concept of information hiding may be violated. A client of a class should
not depend on the implementation of that class. But exactly this is the case
when the correctness of a reused class depends on the specific program context.

In modular proofs only the specifications of the reused classes may be used.
Thus the specification becomes a critical part. It has to be concrete enough to
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express the behavior in all possible contexts – without having the possibility to
foresee all this. This situation is also known as the open world assumption. If a
specification turns out to be inadequate to deduce the properties a client needs
to proof its own correctness, a specification cannot be changed – neither nar-
rowed nor widened. Narrowing could turn a correct implementation incorrect,
as it would introduce new assumptions to the abstraction which may not be met
by a former correct implementation. Widening can be harmful as well, namely
because the original specification has been used for proofs of other classes al-
ready. In both cases the correctness of other classes would be affected. So we
have to concentrate on how abstract specifications can be stated in order to
allow efficient reuse.

1.3.2 Specifications

An abstract specification of a class has to fulfill the following conditions:

1. It has to define the state of an object in an abstract way. This can be
done by introducing so called abstraction variables, introduced by Hoare
[1]. The values of such variables are in an abstract domain.

2. For every feature the effect on the object’s state has to be defined. Also
effects on the environment of the object have to be specified.

3. The former conditions allow to derive changes to the systems state. In an
open world one also needs means to state in full generality which parts of
the state remain unchanged.

Abstract States of Objects

In the object-oriented paradigm an object always represents a value of an ab-
stract domain. We call the abstraction of a class also the model of the class.
The object has an identity of its own and must not be confused with the value
it represents. Thus the state of an object can always be expressed as the state
of the corresponding model. For an abstract type some constraints may have to
be satisfied to be in a consistent state. Such constraints are stated by so called
(class-)invariants.

A correct implementation has to provide a mapping to the abstract model.
As a dynamic data structure cannot be implemented by a single object the
physical state of an object – the current assignment of its attributes – does not
correspond directly to the abstract state. Moreover the correct translation of
the invariants to the implementation may be difficult, since they may depend
on the state of complex object structures.

Pre- and Postconditions

Properties that hold for each state of an object are expressed via invariants.
In contrast to this a feature has a certain effect in execution which in general
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depends on the object’s abstract state. In order to be applicable a feature may
require some conditions to be satisfied. These requirements are usually stated
in the so called precondition. After execution the feature ensures to leave the
system a state characterized by the postcondition, provided that the precondition
was fulfilled prior execution. Furthermore the feature has to guarantee that the
class invariant is re-established.

In a correct program for every feature invocation both the caller and the
callee have obligations. The caller is responsible to meet the feature’s precondi-
tion, while the feature must ensure to satisfy the postcondition and preserve the
class invariant. The pair of pre- and postcondition is often called the contract
[7] of a feature, reflecting the situation of mutual obligations.

In the rest of this section we discuss how well such contracts are suited to
specify the behavior of a class.

1.3.3 The Frame Problem

As pointed out above modular verification is primarily a problem of stating
abstract specification concisely. I.e. complete enough to be reusable in a variety
of contexts, but also in a form to be expressed as clear as possible. The latter
condition addresses complexity of specification. If modular verification has to
be bought with exploding complexity of the specifications, it might be doubted
that efficient reuse is possible.

In general a program in an imperative language is composed of a sequence
of instructions. Correctness proofs rely to an important part on the knowledge
that certain properties are preserved when an instruction is executed. Thus the
specification’s ability to express what is preserved is crucial. This problem was
first addressed by McCarthy and Hayes [5] in relation with artificial intelligence.
The relevance of the frame problem in connection with modular soundness is
also pointed out in the works of Leino [3], Leino and Nelson [2], Müller [11], and
Müller and Poetzsch-Heffter [12].

1.3.4 Dependencies

Leino and Nelson [2] propose an approach to overcome the frame problem in
modular verification and to achieve modular soundness. Besides pre- and post-
conditions they propose further specification constructs as modifies lists, repre-
sentation functions and abstraction dependencies.

The initial idea of the approach is to declare explicitly in a modifies list
which parts of the abstraction may be changed in a feature invocation.

In the abstract specification data is represented by abstract variables which
are not manipulated directly by the program. In the compiled program these
variables do not even exist. They are virtual constructs whose values depend
on other variables, concrete or abstract. Thus an abstract variable is a function
of one or more concrete variables. This function is called the representation of
the abstract variable. The actual representations are defined by the implemen-
tations.
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In a fixed context the modifies list can always be integrated into the pre-
and postcondition of a feature. For every variable which is not modified by
the feature this fact will be stated in the postcondition. As the contexts in
which a feature will be invoked cannot be foreseen, the modifies list is needed
to generate the corresponding assertions. The variables which are not modified
can be regarded as the complement of the variables mentioned in the modifies
list, with respect to all visible variables of the context. Thus modifies lists are
more than ’syntactic sugar’.

Moreover what a feature is allowed to modify also depends on the context of
invocation. An implementation of a feature that changes the state of an object
must be allowed to modify the internal representation of the object, because
the abstract state depends on the internal state. Due to information hiding
the internal representation is not visible in the abstract context and hence the
modifies list cannot mention it. The solution to this problem are abstraction
dependencies. An abstract variable a is said to depend on a variable b (abstract
or concrete), if a modification of b may change the value of a. The license to
modify a variable implies also the license to modify the variables it depends on.
By this the implementation can accomplish its task and modify the variables
on which the abstract state depends on. Leino and Nelson point out that an
explicit declaration of what the modified variables depend on is necessary, since
this information cannot be inferred automatically. The dependencies allow to
complete the modifies list so that all variables which may be modified by a
feature call occur.

Leino and Nelson distinguish two kinds of dependencies, namely static and
dynamic ones. While the former dependency can be determined statically the
latter involves the dynamic state of the system. For static dependencies Leino
and Nelson have proved modular soundness of their approach, while they could
not yet proof this for dynamic dependencies.

1.3.5 An Alternative Approach

Bertrand Meyer [9] provides an alternative approach to class verification. Basic
programming constructs as e.g. sequences of instructions or the famous ’dot’-
operator are defined in terms of operators on mathematical functions. This
implies that every language construct can be interpreted as a mathematical
function, thus one needs a denotational style semantics. Also specifications, in
form of a pair of a pre- and postcondition are to be integrated in this mathemati-
cal approach. Verification of a feature, equipped with a specification becomes to
an evaluation of a boolean function. Only if this evaluation yields the constant
function ’true’ the implementation is correct.

The evaluation of a feature evaluation is based on rules like associativity and
distributivity which hold for operators. Transformation of the program is done
according those laws.

It is to say this approach is rather in an early stage, compared with the
approaches discussed above. Subtyping and side-effects cannot be handled yet.
Moreover there is no concept available how to deal with feature calls in an
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abstract way. So it is to expect that the problem of abstract specifications also
will be encountered in this approach.

1.4 Outlook

This introduction gave a brief overview on program correctness and object-
orientation. The major problems of modular verification were presented. In the
rest of this report we will see an example language inspired by Eiffel, together
with a formal semantics. This language is restricted to some central object-
oriented concepts, presented in the next chapter. The aim of this language was
to provide a language in that is well suited for modular correctness proofs. It
has to be stated clearly that the order in which the results are presented in this
report does not follow the chronology of the project. In the project the start-
ing point was to define the semantic definition of an object-oriented language.
During this process some limitations of the contracts in Eiffel became apparent.
Due to these limitations the focus was led to treatments of the frame problem
and the approaches of Leino, Nelson, Müller and Poetzsch-Heffter. Hence one
may not expect the language presented here to solve any of the problems dis-
cussed in this introduction. The result of this work rather can be considered to
emphasize the importance of these problems with respect to modular program
verification. The last chapter will readopt these considerations.
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Chapter 2

Example Language

The most important property of a program is correctness. Of course correctness
is not an absolute property. A program is not correct or incorrect per se, but
only with respect to a specification. If a program is not correct it cannot have
much other useful properties, as e.g. efficiency. This immediately raises the
question whether a program without specification is of much use? It does not
have to be completely useless. Possibly it was written with a clear idea what
its purpose should be, but unfortunately the program lost this specification
somehow. This is a typical case of poor documentation, making efficient reuse
of existing software impossible, as one has to figure out tediously what the
program’s purpose might be. But in much cases the absence of a specification
is just due to ignorance about the problem to be solved.

In this light specification not only enables one to ensure correctness of a
program, it also may help to get a deeper insight into the problem to be solved.
Thus the labor on a good specification may also have a positive impact on the
final software solution.

A serious problem in programming is the conceptual gap between specifica-
tion and implementation. There are few programming languages which support
means to describe program specifications within the language. So it is often the
case that the meaning of a specification cannot be mapped directly to the level
of the programming language.

One of the aims of this project is to investigate possibilities to bring the spec-
ifications – or at least parts of them – into the program itself. Thus the notion
of correctness could be defined formally using the formal semantic definition.

A good starting for these investigations may be the Eiffel programming
language [8]. It is designed not only for implementing the final solution, but
also to support the whole software construction process. From the design and
specification stage to the final product. An important part of the language
are so called assertions. They comprehend class and loop invariants, pre- and
postconditions and checks which can be placed in the program. These assertions
have two purposes. On one hand they are part of the specification and also
documentation. On the other hand they can be checked at runtime during the
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testing phase. Thus errors can be traced easily to its origin, namely the assertion
which was violated.

The language to be devised here is strongly influenced by Eiffel. Apart
from some details it can be considered a subset of the Eiffel language. The
description follows a top down approach, describing briefly the concepts which
will be supported. The syntax of the language will be described informally. In
some cases we simply refer to Eiffel.

2.1 Classes

The class is the elementary unit from which a program is built. In fact a
program is a finite collection of classes which are interacting. In order to specify
the kinds of interactions the class declaration has to indicate to which types it
is conformant, the functionality it provides to client classes and how instances
of the class can be obtained if the class is effective.

2.1.1 Types

Every class defines a type in the system. In order to determine the type hierarchy
a class has to indicate its relative place in the type system, i.e. it has to declare
from which classes it does inherit directly. This information is exposed in the
inheritance clause of the class declaration.

Inheritance obligates the class to implement the inherited features appro-
priately. Furthermore the compiler has to be able to determine the feature to
be called in relation with dynamic binding. For our purposes it suffices that a
mechanism exist to determine correspondence between the features of some type
to its subtypes. For the inheritance clause we borrow the mechanism provided
by the Eiffel language [8].

2.1.2 Creation

A class is effective if it can have instances at runtime. In order to represent a
consistent abstraction an object has to be initialized accordingly. We require this
initialization to be explicitly declared. The creation-clause lists the commands
that can be used for initialization of an object. The precondition of a creation
feature must not rely on any property of the object to be initialized. Since
deferred classes cannot have instances they must not have a creation clause.

2.1.3 Feature List

In the features section of a class declaration all (publicly available) features have
to be listed. Furthermore for implementation issues some helper features may
be introduced which are not visible to clients. The public part of the feature list
can be regarded to be the interface of the class. The public part of the feature
list is indicated by ’ANY’, the private part by ’NONE’.
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Eiffel allows to export features selectively, i.e. a set of types may be declared
to which a certain feature is visible. We do not allow such graduations of
visibility, as this implies that a class may represent different abstractions to
different clients. The arising complexity should be avoided here.

2.1.4 Invariant

The invariant clause is part of the specification of the class. It communicates
properties a client always can rely on. Therefore a correct implementation of
a class has to ensure that the invariant is re-established after every feature
invocation.

2.1.5 Informal Syntax

class Name
inherits

InheritsDeclaration
creation

CreationList
feature {ANY}

FeatureList
feature {NONE}

FeatureList
invariant

InvariantDeclaration
end

2.2 Boolean and Integer Objects

Up to now we considered only objects which are able to represents any object
of the abstraction domain. For some abstraction domains, like boolean values
or the integers, this approach does not seem suitable. It does not make much
sense to speak from different copies of the value ’True’ or the number 0. To
represent these values as ordinary objects which can be allocated is rather an
abstraction of a memory cell than of the value. So when two objects represent
the value ’True’ then we want these objects to be equal.

There are two approaches to face this problem. One can introduce a category
of value types which are not considered objects. This approach is taken in Java
where boolean values and numbers are so called base types. The consequence
is that they have to be used differently than objects. Therefore these types are
modeled as classes all the same in order to use them in the role of objects.

The second approach does not treat these types apparently different than
normal classes. But the instances of the class rather are the objects of the ab-
straction domain than representatives. Thus these objects have to be stateless.
Moreover they do exist without prior creation, as any abstract object does.
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Therefore we call them also ’a priori’ objects. Since these objects cannot be
created they have to be accessible by name.

In our language we follow the latter approach. The predefined types we
support are:

• B = {True, False}

• INTEGER = {. . . ,−1, 0, 1, . . .}

• NONE = {Void}

2.3 Feature Declaration

The feature declaration first describes its abstract behavior. Optionally, if the
class should be effective, it also may provide an implementation. The abstract
behavior is described by the pre- and postcondition of a feature.

Features may be of one of two kinds: Either a query returning a result or a
command resulting in a state change. The purpose of a query is to compute a
value or to query properties of the current state. Ideally a query has no side-
effects, i.e. a query invocation should not change the state. However one can
interpret the state in different ways. For a client side-effect freeness is already
achieved if the state of its abstract view of the system is not changed. On the
lower level of the system state the query may have a side-effect. An implemen-
tation of a date structure may e.g. adapts its internal structure according to the
frequency of certain queries. This restructuring may increase the performance
of the data structure, but it does not change the abstract state. Thus to forbid
side-effects completely for queries may be to restrictive. Moreover the proof of
side-effect freeness may be non-trivial.

Queries can be implemented in two ways. Either as attributes or routines.
An attribute is a reference to an object. Thus the query result is stored rather
than computed. Obviously an attribute does not take arguments. Attributes
may be changed during execution, so the internal state of an object is determined
by the values the attributes refer to.

The decision whether a query is implemented as an attribute should not be
visible to the clients. This principle is called uniform access. Eiffel enforces
this principle, and we also do. Opposite to this in Java the distinction between
attributes (there called fields) and routines (methods) is visible in every call.
Furthermore a visible field can be modified by a client. This may violate the
consistency of the object. Therefore it is reasonable to allow only the owning
object to modify its attributes.

An effective class has to provide an implementation for each feature. We dis-
tinguish feature declaration and implementation as different constructs which
will have different semantics. The set of feature declarations in a class is denoted
by ’Features’, while ’FeatureImpl’ contains all implementations. The declara-
tion represents a client’s view on a feature, i.e. its abstract specification. With
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dynamic binding a feature invocation may be redirected to another implementa-
tion than that of the class declared. In the case of deferred classes the invocation
always has to be redirected.

In a feature implementation local variables can be declared. A local variable
is a reference to an object. Variables are not visible from outside, and hence are
not subject of side-effects.

Attribute

Name : Type

Query Routine

Name Arguments : Type is
require Precondition
local Variables
do

RoutineBody
ensure Postcondition

end

Command Routine

Name Arguments is
require Precondition
local Variables
do

RoutineBody
ensure Postcondition

end

2.4 Routine Body

The syntactic constructs presented so far are rather concerned with structuring
the environment. They declare which types and features are available and how
the type hierarchy is constructed. But they do not directly describe how the
state of the system is manipulated. Opposite to this the constructs used to
implement a routine primarily describe state transformations.

2.4.1 Instruction

Instructions are the basic construct to change the state of a system. They are
the elementary unit to build complex blocks of functionality.

Instruction ::= Assignment | Conditional | Loop | Command | Creation
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Instruction Sequence

Instructions can be executed in sequence. The sequencing operator is denoted
by a semicolon ’;’. The body of a routine implementation in general is an
instruction sequence. In the trivial case an instruction sequence consists of one
instruction only.

InstrSeq ::= Instruction [; InstrSeq ]

Assignment

With an assignment one can change the value of local variable or of an attribute
of the current object.

Assignment ::= Local := Expression | Attribute := Expression

For the definition of the attribute see section 2.4.2.

Local and Attribute

The production Local describes a query on a local variable which is declared in
the routine. It is the compiler’s obligation to ensure that only declared variables
can be used. A local variable is dereferenced by simply writing its name into
the program code.

Local ::= Name

The production Attribute describes an attribute of the current object.

Attribute ::= Name

Conditional

A conditional instruction allows to choose between two alternative instruction
sequences, depending on a condition. If evaluation of the condition yields ’True’
the instruction sequence in the then-part is chosen, otherwise the sequence in
the else-part.

Conditional ::= if BoolExp then InstrSeq else InstrSeq end

Loop

Using a loop some instruction sequence can be executed several times, until
some termination condition is satisfied. Before the loop body is executed the
first time an initialization part is executed and the termination condition is
evaluated for the first time.

Loop ::= from InstrSeq until BoolExp loop InstrSeq end
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Command

A command is either the invocation of a command feature on the result of an
expression or on the current object.

Command ::= Expression.CommandInvocation | CommandInvocation

CommandInvocation

A command invocation simply denotes the invocation of a command feature.

CommandInvocation ::= FeatureInvocation

Creation

A creation instruction allocates a new object which is initialized by the indicated
creation feature. Then the newly allocated object is assigned to the local variable
or attribute indicated.

Creation ::= create Local .CommandInvocation
| create Attribute.CommandInvocation

2.4.2 Expression

In contrast to an instruction an expression returns an object. Its main purpose
is to perform computations or to query the state. Expressions may have side-
effects in general.

Expression ::= Local
| Expression.Query
| Query
| (EqTest)
| Current

Dot-Operator

Given a reference to an object a feature of this object is accessed via the so called
dot-operator. So it is possible to invoke a query on the result of an expression
and build chains of query invocations.

Query

A query is an invocation of a query feature.

Query ::= FeatureInvocation
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Equality Test

An equality test is an expression which returns a boolean value, depending on
whether the compared objects are the same or not.

EqTest ::= Expression = Expression | Expression 6= Expression

Current

The keyword ’Current’ is used in a routine body to refer to the target relative
to which the feature is executed. A reference to the current object is needed
e.g. when it has to be passed as argument to a feature invocation.

Boolean Expressions

A boolean expression is an expressions with the constraint that it returns a
boolean object.

BoolExp ::= Expression

2.4.3 Other Constructs

FeatureInvocation

A feature is invoked by indicating its name. If the feature takes arguments these
are passed using a tuple.

FeatureInvocation ::= Name | Name Tuple

Tuple

A tuple is a finite list of expressions enclosed in parentheses. Empty tuples are
not allowed.

Tuple ::= (Expression {,Expression})

22



Chapter 3

Operational Semantics

In this chapter an operational semantics is provided for the language sketched in
chapter 2. The semantic definition has to describe the effect of each syntactical
construct to the abstract state of the system. The main reason for choosing an
operational style semantics is that the definition of recursive structures like loops
and functions can be done straight forward, without using fixed point theory.
Furthermore an operational semantics may server as the basis to develop a
denotational or axiomatic semantics.

3.1 Static Environment

The static environment consists of mathematical objects which are independent
of a concrete program. They belong to the part of the mathematical model
which cannot be influenced by a programmer. These objects form the basis on
which the whole semantical model is built on.

3.1.1 Objects

In an execution of a program objects – in the object-oriented sense – are ma-
nipulated. These objects all belong to the domain ’Objects’. The number of
objects that can be allocated during program execution is not bounded. There-
fore an infinite reservoir of objects is needed. However during computation not
all elements of ’Objects’ will be allocated. In fact in every state only a finite
number of objects is allocated. So one can say that ’Objects’ represent rather
the set of potential objects than the set of objects actually used.

The set ’Objects’ also contain the predefined objects of types boolean and
integer. In section 2.2 we decided that they are stateless and their identity coin-
cides with the value they represent. These objects cannot be allocated because
they are always accessible by name. So these objects have to be distinguish-
able from other objects. This distinction is done by the type system. As will
be explained below (section 3.3) every effective class has its own reservoir of
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instances. The predefined types are considered to be effective, and hence their
instances are separated from instances of other types.

3.1.2 Names

In a program classes, features and local variables can be declared. In order to
refer to these declared entities names have to be given to them. The set ’Names’
consists of all valid identifiers which can be used as a name.

How names are formed is not of interest in the semantic definition. It is
the compiler’s obligation to ensure that all names in a program are valid – this
includes especially non-ambiguity.

The ’a priori’-objects are addressed by name, so there are some names re-
served for these objects. The most prominent are ’True’, ’False’ and ’Void’.

In query-routines the name ’Result’ is reserved for the local variable which
will store the result to be returned by the query. Thus a programmer is not
allowed to declare a local variable with the same name in a query-routine.

3.2 State

3.2.1 Abstract or Explicit?

In much semantic definitions the state of the system is treated as a black box
from which information can be extracted. I.e. one abstracts from the represen-
tation of the state. At first sight this approach promises to be easily extendable.
Introducing new aspects of the state is done by defining appropriate extraction
functions. However this abstract approach does not provide this freedom at all.
There are two kinds of state transformations to distinguish. The first kind are
those which can be defined completely in terms of other transformations. In
this case it does not matter what the state is. Thus the explicit and abstract
approach are equivalent in this case. The second kind are transformations which
only can be defined by constituting constraints on the result state. Adding a
new aspect to a state usually also means to refine such constraints for the new
aspect appropriately. Thus incremental extendability is not gained with the
abstract approach.

In the end the aspects introduced to the state define a view on the state
which is not different to an explicit definition. There may be some hidden
structures in the state not present in this view. Thus a view on an abstract
state in fact is an equivalence relation on the set of states. But when we do not
have any knowledge about those structures, why should we care about them?
Therefore the state definition in the following treatise is explicit.

3.2.2 State Components

What parts of the system should belong to the state? In the beginning it is
tempting to model the state in analogy to an existing computer environment,
although in an abstract way. This approach may be suited when one aims to
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build a compiler. However for a semantics that operates primarily on the source
code of a single routine a concept as the execution stack is not of interest. The
same holds for the current object – within a routine the current object does not
change.

We define the state to consist of three parts: The assignment of the local
variables, the assignment of the attributes of each object and a relation on
’Objects’ which defines the set of allocated objects.

Locals := Names ↪→ Objects (3.1)

Attributes := Objects → Names ↪→ Objects (3.2)
Allocated := Objects → B (3.3)

The functions are indicated to be partial because the number of local variables
and attributes is always finite. Hence the assignments cannot be total.

The state is defined as the Cartesian product of these three function sets.

States := Locals×Attributes×Allocated (3.4)

The components of a state are obtained by extraction functions:

locals : States → Locals (3.5)

attributes : States → Attributes (3.6)
allocated : States → Allocated (3.7)

3.2.3 Constraints

The ’allocated’ component does not rightly fit the chosen abstraction level. As a
programmer does not care for the execution stack, he is not interested in the non-
allocated objects. Every object reachable from an allocated object is expected
to be an allocated object of the state as well. A property which unfortunately
is not guaranteed by every element of ’States’.

The reason why the ’allocated’-component is needed is object creation. There
it has to be guaranteed that a certain feature is invoked relative to an object
which is not in use already. This is also the only case, where the ’allocated’
component of the pre- and poststate differ.

A state σ is called consistent if it has the following properties:

∀n ∈ Names ∀u ∈ Objects (locals σ n = u ⇒ allocated u)
∀n ∈ Names ∀w, u ∈ Objects (attributes σ w n = u ⇒ allocated u) (3.8)

This constraint imposes the obligation to proof that all transformations preserve
state consistency. What a transformation does to inconsistent states is not of
interest.

To model the set of allocated objects in this way prohibits to reason about
automatic memory reclamation (garbage collection). Whether an object may
ever be reachable in the future computation cannot be decided when the execu-
tion stack of all feature invocations which have not yet terminated is not known.
Therefore allocation of new objects is done in a conservative way, assuming that
the reservoir of potential objects is infinite.
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3.2.4 Semantic Functions

A semantic definition has to define a state transition function for each construct
which may change the state – this semantics is called the transformation seman-
tics. Additionally some constructs have a result value. The state, as it is defined
above, does not allow to contain a result value as part of the state. Therefore
every construct is also supposed to have a query semantics, defining the result
value.

For a given syntactic construct s the corresponding query and transformation
semantics are denoted by [[s]]Q and [[s]]S respectively. The final result of the for-
mer is an object, while the latter yields a state. The notation [[s]] := ([[s]]Q, [[s]]S)
stands for the overall semantics of s.

In combination with invariants and pre- and postconditions the query seman-
tics enables one to formulate what it means for a program to fulfill its contract.
An assertion is satisfied if its query semantics yields the ’True’-object.

Side-Effect-Freeness of Assertions

Any kind of assertion intends to introduce information in the program code
which is related to program correctness, and is part of the specification. If a
program meets its specification, the effect on the state ideally should be the same
as if the assertions were not present. This implies that checking of assertions
is supposed to leave the state the same if the check evaluates to true. If only
provably correct programs are allowed to be executed, the question of what to do
if an assertion is violated is not raised. Therefore assertions are supposed to have
no effect on the state. However this side-effect-freeness cannot be guaranteed
by the compiler. So we leave it to the responsibility of the programmer not to
write assertions with side-effects.

3.3 Classes

3.3.1 Relationship to ’Objects’

A program consists of a set of class declarations, denoted by ’Classes’. A class
defines a set of instances which are members of ’Objects’. Thus a class C can
be considered a subset of ’Objects’.

C ⊂ Objects (3.9)

Every class also defines a type. Since subtyping is possible, a type can
comprehend the instances of different classes. But an object can only be an
instance of a single class. On the other hand any object is supposed to be an
instance of some class. Thus the classes establish a partition on the set ’Objects’.

If an object u is an instance of class C, we say that the actual type of u is
C. The actual type is most specific in the sense that u belongs not to a proper
subtype of its actual type. One can show that the most specific type of an object
is unique – i.e. the most specific type of an object is always the actual type.

26



The partition property of ’Objects’ enables us to define a function ’instance’
that determines the actual type of an object.

instance : Objects → Classes
instance u = C :⇔ u ∈ C

(3.10)

3.3.2 Features and Dynamic Binding

In a class each feature defines a semantic function. The signatures of these func-
tions depend on the number of arguments the feature takes. How the semantics
of a feature implementation is obtained from the program code is described in
section 3.4.

Features of a class may be exported for use by instances of other classes,
or they may be private, i.e. only to be invoked from the current object. As
subtyping is allowed, an invocation of some exported feature f on an object of
static type t is redirected to the corresponding feature f ′ of the objects actual
type t′. Since the class structure of an application is fixed, this redirecting
mechanism can be defined in advance and so does not depend on the state.
The redirecting is known as dynamic binding. The corresponding function to
determine the target of the binding is denoted by ’bind’.

bind : Classes → Classes ↪→ FeatureImpl (3.11)

Where ’FeatureImpl’ consists of all feature implementations.
From the programmer’s point of view a feature is not bound on some specific

implementation. So we distinguish between the abstract feature and its imple-
mentations. The abstract feature comprehends all possible implementations in
the subtypes. Therefore the semantics of a feature is primarily concerned with
dynamic binding.

The set ’Features’ contains all abstract features, while ’FeatureImpl’ contains
the concrete feature implementations, which are the target of dynamic binding.
The signatures of the semantic functions for a feature and its implementations
are the same.

Let f be a feature and u an object.

[[f ]]Q u := [[(bind C (instance u))]]Q
[[f ]]S u := [[(bind C (instance u))]]S

(3.12)

The consistency property (3.8) on states is satisfied if the targets of the
binding do satisfy it.

3.4 Feature Implementations

In section 3.3.2 the abstract semantics of a feature was defined. The abstract
semantics comprehends the semantics of all features to which the invocation
may be redirected.
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3.4.1 General Remarks

The semantic functions of a feature implementation f may have one of the
following forms:

1. If the feature does not take arguments:

[[f ]]Q : Objects → Objects → States → Objects
[[f ]]S : Objects → Objects → States → States

2. If the feature takes n > 0 arguments:

[[f ]]Q : Objectsn → Objects → Objects → States → Objects
[[f ]]S : Objectsn → Objects → Objects → States → States

The semantics of a feature implementation depends on the passed arguments
(provided the feature takes arguments), the object in whose context the feature
is invoked, the target object of the invocation and the state. The object of the
context of invocation is used when feature invocations are composed to chains by
the dot-operator. Since arguments in such chains are always evaluated relative
to this context, it has to be passed to subsequent invocations (see also section
3.5.9).

3.4.2 Attributes

Attributes of a class have a rather simple semantics. An invocation has no side-
effects. The result of an invocation is the value assigned to this attribute with
respect to the current object.

Let a be an attribute of the current class. The query- and transformation-
semantics are defined as follows:

[[a]]Q : Objects → Objects → States → Objects
[[a]]Q u v σ := attribute σ v
[[a]]S : Objects → Objects → States → States
[[a]]S u v σ := σ

(3.13)

Since an attribute invocation does not have any effect on the state, consis-
tency according to (3.8) is preserved.

3.4.3 Routines

In contrast to an attribute a routine has an implementation which cannot be
changed during computation. The semantic effect of a routine is defined by the
routine body. Execution of a routine cannot start in an arbitrary state. A valid
state σ has to fulfill the following three conditions:

1. For every declared local variable v of type t the function application

locals σ v
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must yield the default value of the corresponding type t. In the case of an
anonymous type, the default value is ’Void’, while for an ’a priori’-type
the default value is specified in the type definition for t.

2. For every formal argument p (if any) of type t the function application

locals σ p

yields the object passed by the caller.

3. For any name n which denotes neither a local variable nor a formal pa-
rameter the function application

locals σ n

is not defined.

When assertion checking is active additional steps are executed (see 3.6).
There are no constraints on the ’attribute’ component of the state σ. This

part is taken as is from the caller. For every routine a designated initialization
function – denoted by ’init’ – defines the initial state, depending on passed
arguments and state. The following property states that the object-structure is
not changed by ’init’:

attributes (init σ) = attributes σ (3.14)

Furthermore after execution of the body the formerly passed ’locals’ com-
ponent must be restored, since function invocations should not change the local
variables of the caller. The corresponding function is denoted by ’restore’. It
takes two states and returns a state consisting of the local-component of the
first argument and the ’attributes’ and ’allocated’ component of the second one.
Thus the effects on the object structure become visible to the caller.

restore : States → States → States
restore σ σ′ := (locals σ, attributes σ′, allocated σ′) (3.15)

Routines without Arguments

Let r be a routine without arguments. The corresponding semantic functions
have the following signatures:

[[r]]Q : Objects → Objects → States → Objects
[[r]]S : Objects → Objects → States → States (3.16)

The initialization function transforms a passed state σ to a state σ′ for
which locals σ′ satisfies the above constraints. The ’attributes’ component is
not changed by this transformation – i.e. the invoked function manipulates the
object structure passed by the caller.

Let s be the body of routine r. Syntactically the body is an instruction
sequence (see section 3.5.3). Query-routines return a result value, stored in the
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local variable ’Result’, while commands have no result. Therefore we have to
distinguish queries from commands for the query semantics. For a query r the
semantic functions are defined as follows:

[[r]]Q u v σ := locals ([[s]]Q v (init σ)) Result
[[r]]S u v σ := restore σ ([[s]]S v (init σ)) (3.17)

If r is a command, the definitions are:

[[r]]Q u v σ := undefined
[[r]]S u v σ := restore σ ([[s]]S v (init σ)) (3.18)

Routines with Arguments

Let r be a routine with n arguments. The signatures of the corresponding
semantic functions are as follows:

[[r]]Q : Objectsn → Objects → Objects → States → Objects
[[r]]S : Objectsn → Objects → Objects → States → States (3.19)

The initialization function depends on both, the passed arguments and the
passed state. Again, only the ’locals’ component of the state is changed, ac-
cording to the constraints stated above. Let s be the body of routine r. The
semantic functions of a query r are defined as follows:

[[r]]Q p u v σ := locals ([[s]]Q v (init p σ)) Result
[[r]]S p u v σ := restore σ ([[s]]S v (init p σ)) (3.20)

While for a command r the definitions are:

[[r]]Q p u v σ := undefined
[[r]]S p u v σ := restore σ ([[s]]S v (init p σ)) (3.21)

3.4.4 Local Variables

The local variables declared in a feature define semantic functions available in
the routine’s body. A query on a local variable has no side effects at all. The
value is completely defined by the ’locals’ component of the state. Let v be a
local variable.

[[v]]Q : Objects → States → Objects
[[v]]Q u σ := locals σ v
[[v]]S : Objects → States → States
[[v]]S u σ := σ

(3.22)

As one may notice, the parameter u of type Objects is not used in the definitions
of the semantic functions. It is present all the same, because it may have to be
passed to a subsequent feature invocation of an invocation chain (see 3.5.9).
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3.5 Routine Body

The routine body contains the concrete implementation of a routine. In such an
implementation constructs like local variables, attributes and features are used
to achieve the intended effect on the state. The syntactic constructs discussed
primarily have the purpose to combine the constructs treated in the previous
sections to more complex structures.

3.5.1 Instruction

The instruction is the most elementary syntactic construct in a routine body.
Its effect dependent on an object and a state. An instruction only causes a state
transition but does not return a value. Here we only declare the signature of
the semantic functions. The effect for each type of instruction is defined below.
Let i be an instruction:

[[i]]Q : Objects → States → Objects
[[i]]S : Objects → States → States (3.23)

3.5.2 Expression

An expression is used to compute a value. This value depends on a target
object and a state. It returns a result and also may change the state. Let e be
an expression:

[[e]]Q : Objects → States → Objects
[[e]]S : Objects → States → States (3.24)

3.5.3 Instruction Sequences

To write instructions in sequence is the most important mechanism to build
programs from elementary pieces. The characteristics of subsequent execution
are:

1. Every instruction of the sequence is executed relative to the same object,
namely the current object.

2. Every instruction operates on the result state of its direct predecessor, if
present. The first instruction of a sequence starts with the initial state.

3. The semantics of an instruction in a sequence is independent of the query-
semantics of its predecessors.

4. The semantics of an instruction sequence has the same signature as the
semantics of an instruction.
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The following definition reflects these properties for given instructions s and t.

[[s; t]]Q : Objects → States → Objects
[[s; t]]Q u σ := [[t]]Q u ([[s]]S u σ)
[[s; t]]S : Objects → States → States
[[s; t]]S u σ := [[t]]S u ([[s]]S u σ)

(3.25)

3.5.4 Assignment

By an assignment the value of a local variable or an attribute of the current
object is changed. Since local variables and attributes are represented differently
in the state, the effect is different for these two kinds of assignment.

Assignment to Local Variable

Let v be a local variable and q be an expression. An assignment v := q causes
a state transformation to a state where the variable v has the value of q in the
prestate. An assignment is an instruction and therefore has no query semantics.

[[v := q]]Q : Objects → States → Objects
[[v := q]]S = undefined (3.26)

[[v := q]]S : Objects → States → States
[[v := q]]S u σ = σ′, where

locals σ′ x =
{

[[q]]Q u σ, if x = v
locals σ x, otherwise

attributes σ′ = attribute ([[q]]S u σ)
allocated σ′ = allocated ([[q]]S u σ)

(3.27)

Assignment to Attribute

Let a be an attribute and q be an expression. An assignment to a does not
change the ’local’ component of a state. After the assignment a has the value
of q in the prestate.

[[a := q]]Q : Objects → States → Objects
[[a := q]]Q = undefined (3.28)

[[a := q]]S : Objects → States → States
[[a := q]]S u σ = σ′, where
locals σ′ = local σ

attributes σ′ w n =
{

[[q]]Q u σ, if n = a ∧ w = u
attributes ([[q]]S u σ) w n, otherwise

allocated σ′ = allocated ([[q]]S u σ)

(3.29)

32



3.5.5 Creation

A creation instruction assigns to a local variable or an attribute a new instance
of the declared type. In order to guarantee that the object will be in a consistent
state a designated creation feature is invoked. So creation involves three steps:

1. Allocate an instance of the correct type. By this the state, namely the
’allocated’ component, is changed to contain the newly allocated object.

2. Invoke the creation feature relative to the new instance.

3. Assign the created object to the variable or attribute to which the creation
instruction is related.

From the programmer’s point of view all non-allocated objects of a class
are equivalent. So which of them is actually allocated should not influence the
intended effect of a program. Therefore we do not define a concrete alloca-
tion strategy, but rather assume that an allocation function is defined in the
environment which allocates objects correctly.

Object Allocation

In analogy to the semantics functions allocation is defined by a pair of functions
allocQ and allocS . The former returns the allocated object while the latter
describes the transformation to the state.

allocQ : Classes → States → Objects
allocS : Classes → States → States (3.30)

The next property states that the new instance is not allocated in the state
relative to which the allocation is invoked.

allocQ c σ = u ⇒ (instance u = c) ∧ (¬allocated σ u) (3.31)

In the poststate the new object will be allocated, but nothing else should be
changed.

allocS c σ = σ′, where
locals σ′ = locals σ
attributes σ′ = attributes σ
allocated σ′ v = ((allocQ c σ = v) ∨ allocated σ v)

(3.32)

Semantics of the Creation Instruction

Let x be a local variable or attribute of declared type c, and let m be a command
invocation (i.e. a feature). Then the effect of the creation instruction is defined
as follows:

[[create x.m]]Q : Objects → States → Objects
[[create x.m]]Q = undefined
[[create x.m]]S : Objects → States → States
[[create x.m]]S u σ = [[x := m]]S u ([[m]]S u (allocQ c σ) (allocS c σ))

(3.33)
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Note: m denotes the creation feature after argument passing. See section 3.5.11
for how arguments are passed to a feature.

3.5.6 Conditional

A conditional instruction splits the path of execution in two branches, depending
on the result of evaluating a boolean expression. To shorten the notation the
following function ’cond’ is defined.

f : Objects → States → B
g, h : Objects → States → States

cond(f, g, h) u σ :=
{

g u σ, if f u σ
h u σ, otherwise

(3.34)

Let b be a boolean expression and let s and t be instruction sequences.

[[if b then s else t end]]Q : Objects → States → Objects
[[if b then s else t end]]Q := undefined
[[if b then s else t end]]S : Objects → States → States
[[if b then s else t end]]S := cond([[b]]Q, [[b; s]]S , [[b; t]]S)

(3.35)

3.5.7 Loop

A loop starts with an initialization part. Afterward the loop body is executed
as long as the termination condition does not evaluate to true.

We define the semantics of the general loop in terms of the special case
without initialization part. Let b be a boolean expression and let i and s be
instruction sequences.

[[from i until b loop s end]] = [[i;until b loop s end]] (3.36)

Let loop := until b loop s end. The semantic functions of the special loop are
defined as follows:

[[loop]]Q : Objects → States → Objects
[[loop]]Q := undefined
[[loop]]S : Objects → States → States

[[loop]]S :=
{

[[b]]S u σ, if [[b]]Q u σ = True
[[s; loop]]S u ([[b]]S u σ), otherwise

(3.37)

3.5.8 Current

The ’Current’ keyword just returns the object passed as target and does not
modify the state.

[[Current]]Q : Objects → States → Objects
[[Current]]Q u σ = u
[[Current]]S : Objects → States → States
[[Current]]S u σ = σ

(3.38)
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According to the syntax definition in chapter 2 a feature invocation relative to
the current object is considered an instruction or a expression. However the
signatures of the semantic functions of a feature are not compatible to that of
an instruction or expression. Therefore we expect the compiler to always put a
preceding ’Current.’ to every feature invocation which is done directly on the
current object.

3.5.9 The Dot-Operator

The dot-operator allows to invoke a feature g on the result object of an expres-
sion f . The feature g may be a query or a command. In the former case the
result is again an expression, in the latter case the result is a command, and
thus an instruction.

[[f.g]]Q : Objects → States → Objects
[[f.g]]Q u σ := [[g]]Q u ([[f ]]Q u σ) ([[f ]]S u σ)
[[f.g]]S : Objects → States → States
[[f.g]]S u σ := [[g]]S u ([[f ]]Q u σ) ([[f ]]S u σ)

(3.39)

Note: g is the semantic function after argument passing. How arguments are
passed to a feature is described in section 3.5.11.

3.5.10 Tuples

We need tuples to pass arguments to a feature. A tuple consists of a list of
expressions which all are evaluated relative to the same object. The evaluation
order is from left to right. Let ai : i = 1 . . . n be expressions.

[[(a1, . . . , an)]]Q : Objects → States → Objectsn

[[(a1, . . . , an)]]S : Objects → States → States (3.40)

Define the semantics by induction on n ≥ 1.

[[(a1)]]Q u σ := ([[a1]]Q u σ)
[[(a1)]]S u σ := [[a1]]S u σ

(3.41)

Given the semantics for n-tuples the semantics for (n + 1)-tuples is defined as
follows (⊕ denotes concatenation of tuples):

[[(a1, . . . , an, an+1)]]Q :=
([[(a1, . . . , an)]]Q u σ)⊕ ([[(an+1)]]Q u ([[(a1, . . . , an)]]S u σ)

[[(a1, . . . , an, an+1)]]S := [[(an)]]S u ([[(a1, . . . , an)]]S u σ)

(3.42)

3.5.11 Argument Passing

Passing arguments to a feature is quite simple. The first argument to the seman-
tic functions of a feature with arguments is a tuple of appropriate dimension.
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The signature of the result is that of a feature without arguments. Let f be a
feature that takes n arguments.

[[f(p)]]Q : Objects → Objects → States → Objects
[[f(p)]]Q u v σ := [[f ]]Q ([[(p)]]Q u σ) v ([[(p)]]S u σ)
[[f(p)]]S : Objects → Objects → States → States
[[f(p)]]Q u v σ := [[f ]]S ([[(p)]]Q u σ) v ([[(p)]]S u σ)

(3.43)

3.5.12 Equality Tests

A special sort of boolean expressions are equality tests. An equality test returns
’True’ if both expressions evaluate to the same object. Since expressions may
have side-effects the evaluation not both expressions are evaluated relative to
the same state in general. We define that first the left hand side and then the
right hand side is evaluated. The inequality test is just the negation of the
equality test.

Equality

Let q1 and q2 be expressions.

[[q1 = q2]]Q : Objects → States → Objects
[[q1 = q2]]Q u σ := ([[q1]]Q u σ) = ([[q2]]Q u ([[q1]]S u σ))
[[q1 = q2]]S : Objects → States → States
[[q1 = q2]]S uσ := [[q2]]S u ([[q1]]S u σ)

(3.44)

Inequality

Let q1 and q2 be expressions.

[[q1 6= q2]]Q : Objects → States → Objects
[[q1 6= q2]]Q u σ := ([[q1]]Q u σ) 6= ([[q2]]Q u ([[q1]]S u σ))
[[q1 6= q2]]S : Objects → States → States
[[q1 6= q2]]S uσ := [[q2]]S u ([[q1]]S u σ)

(3.45)

3.6 Assertions

The semantic definition described so far does not take into account assertions.
Whether assertions should have a runtime effect or not can be disputed. From
a pure proof-oriented point of view assertions serve for specification only. A
program that does not meet its specification should not be executed at all. So
assertions do not have to have a runtime semantics.

A programmer on the other hand may want the assertions to be checked
at runtime in the testing phase. An assertion violation can give important
hints to detect errors. Without checked assertions an error may manifests quite
anywhere in the execution, but usually not at the origin. Thus checked assertions
allow to detect violations early and trace back to the origin efficiently.
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As pointed out above a correct program does not need to test assertions at
runtime anymore. Hence it should be possible to compile a program so that
assertion checking is switched off. In this section we complete the semantic
definition for the case when assertion checking is active.

In our language we have three kinds of assertions: Preconditions, postcon-
ditions and checks. The signature of the semantic evaluation for assertions is as
follows. Let a be an assertion.

[[a]]Q : Objects → States → Objects
[[a]]S : Objects → States → States (3.46)

The query semantics of an assertions returns a boolean value which is ’true’
if the assertion is satisfied and ’false’ otherwise. In the case an assertion fails
the program should stop and indicate a failure. This is done by a special failure
state Fail ∈ State.

[[a]]Q u σ = false ⇒ [[a]]S u σ = Fail (3.47)

3.6.1 Precondition

A precondition is a simple boolean expression. In a feature invocation first the
state is initialized as described in section 3.4.3. Then the precondition is evalu-
ated. Before execution of the body starts the postcondition has to be inspected
for expressions which refer to the prestate, marked with the ’old’ keyword. For
each such expression a special local variable is allocated and the value of the
expression is evaluated and assigned to this variable. The order of evaluation
is the order of occurrence in the postcondition. Expressions which appear more
than once are evaluated repeatedly and also stored in different variables. If
side-effect-freeness of all expressions in assertions can be guaranteed, the order
of evaluation does not matter. As already stated earlier we will only consider
programs with side-effect-free assertions.

3.6.2 Postcondition

A postcondition is a boolean expression where expressions with the modifier ’old’
may occur. This indicates that the value of the expression before execution of
the feature has to be replaced there. As described above the old values are
stored in designated local variables. The postcondition is evaluated right after
the execution of the body, before the caller’s context is restored.

Additionally to the postcondition also the invariants have to be checked to
guarantee that the object is in a consistent state.

3.6.3 Checks

A check consists of a boolean expression. Syntactically a check is an instruction.
A check can e.g. be used to emulate a loop invariant, which is not supported
directly by a designated construct.
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Chapter 4

Applications

The semantic definition presented in the last chapter is kept rather short in or-
der to focus on the essential. This approach is admissible, because the concepts
supported are not new inventions but rather classical constructs. Their general
purpose often is explained in a few words. The aim of a formal semantic defi-
nition is to translate the natural meaning into a formal system. Much aspects
of the intuitive understanding of program turn out to leave freedom for inter-
pretation. Thus an important contribution of a formal definition is to appoint
a unique meaning to a program. However by now we gave less justification that
our definition represents the natural meaning well.

A formal semantics allows to reason whether a program has a certain prop-
erty or not. The semantics is called sound if for every program p and every
property P at most one of the following statements can be proved using the
formal semantics:

1. p has the property P

2. p does not have the property P .

Obviously a semantic definition which allows to derive contradicting statements
is of no use. Anything can be proved or disproved with such a semantics. Hence
soundness is essential for a semantic definition.

In this chapter we want to validate the semantic definition by an example
application. Though this does certainly not prove soundness it may increase the
confidence in the semantic definition. Furthermore it may uncover weaknesses
of the language’s expressiveness with respect to program verification.

As an example application we choose an implementation of a stack using
a linked list. In fact linked lists and stacks are favored data structures in the
literature. See e.g. [6] or [9]. Their implementations are simple enough to keep
the example small, yet not trivial as their structures evolves dynamically during
execution.
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4.1 Class LINKABLE

The abstraction of a linked list is a finite sequence of elements of some type G.
In order to implement such a list one need additional objects which store the
information about the linking. Thus a linkable object consists of two references.
One to the item it stores, and another one to the next linkable object in the
sequence. If there is no subsequent linkable object the second reference is void.

In the following implementation the features ’item’, ’set item’, ’next’ and
’set next’ have the obvious meaning.

4.1.1 Implementation

class LINKABLE
creation make
feature {ANY}

next : LINKABLE

set next(n : LINKABLE) is
do

next := n
ensure

next = old n
end

item : G

set item(i : G) is
do

item = i
ensure

item = old i
end

make is
do

next := Void;
item := Void

ensure
(next = Void).and(item = Void)

end
end
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4.1.2 Correctness

Before we start to prove correctness we have to be aware what correctness means.

A class is called correct if none of its feature cause a runtime error
due to a violation of an assertion or a feature invocation on the
object ’Void’.

In order to guarantee this we have the following proof obligations:

1. Every feature fulfills its postcondition and the class invariant, provided
the precondition is satisfied.

2. For every feature invocation the target object is not ’Void’.

3. For every feature invocation the precondition of the called feature is ful-
filled.

We restricted ourselves to programs for which the evaluation of assertions do
not have side-effects. Therefore we also have to ensure that our examples meet
this restriction.

’item’ and ’next’

The features ’item’ and ’next’ are attributes. Hence they do not have contracts,
and we have nothing to show. We note that invocations of attributes are side-
effect free, according to (3.13). Hence they can be used in assertions.

’set next’

First we convince ourselves that all assertions are side-effect free. As mentioned
above ’next’ is an attribute. ’n’ is a formal argument, which is represented by a
local variable according to section 3.4.3. Thus all expressions in the assertions
are side-effect free.

We have to show that for an arbitrary state σ and every object
u ∈ LINKABLE which is allocated in state σ the following hold:

[[next = old n]]Q u ([[next := n]]S u σ) = true. (4.1)

In order to do this we need some facts. In section (3.6.2) it is stated that an
expression preceded by ’old’ is evaluated prior execution of the body. The result
is stored in a special local variable, not accessible by the programmer. Hence
the value of this variable is preserved during computation, and we can conclude:

[[old n]]Q u ([[next := n]]S u σ) = [[n]]Q u σ. (4.2)

We also want to compute the value of ’next’ after the body is executed.

[[next]]Q u ([[next := n]]S u σ)
= attributes ([[next := n]]S u σ) u next by (3.13)
= [[n]]Q u σ by (3.29)

(4.3)
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By combining the last two equations we get:

[[next]]Q u ([[next := n]]S u σ) = [[old n]]Q u ([[next := n]]S u σ). (4.4)

For abbreviation we define:

σ1 := [[next := n]]S u σ. (4.5)

With the definition of an equality test (3.44) and side-effect-freeness we can
deduce:

[[next = old n]]Q u σ1 by (3.44)
= ([[next]]Q u σ1 = [[old n]]Q u σ1) by (4.4)
= true.

(4.6)

Hence the postcondition is satisfied. The proof for the feature ’set item’ is
analogous.

Correctness of ’make’

Again we make sure that the expressions in the postcondition are side-effect
free. This allows us to proof the two equations in the conjunction separately,
since we also know that the logic operations have no side-effects.

We make the same assumption as above. Let σ be a state and
u ∈ LINKABLE an allocated object in σ. First let us prove

[[next = Void]]Q u ([[next := Void; item := Void]]S u σ) = true. (4.7)

Using (3.25) we define:

σ1 := [[next := Void]]S u σ
σ2 := [[item := Void]]S u σ1.

(4.8)

By (3.29) and the fact that the evaluation of ’Void’ is side-effect-free we can
conclude:

[[next]]Q u σ1 = Void and
[[next]]Q u σ2 = Void (4.9)

Hence by (3.44) we have:

[[next = Void]]Q u σ2 = true (4.10)

which we wanted to prove.
We still have to prove

[[item = Void]]Q u ([[next := Void; item := Void]]S u σ) = true. (4.11)

Again we use (3.29):

[[item]]Q u σ2 = Void (4.12)

Using (3.44) we get:

[[item = Void]]Q u σ2 (4.13)

and we are done. Thus all features of class LINKABLE satisfy their contracts.
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4.2 Class STACK

A stack is a so called first in first out data structure. There are operations
which allow to put elements on the stack, to get the last element put and to
remove the last element put. In general the order in which elements are put on
the stack is the reverse order in which they are removed. The top of the stack
is the element most recently put.

empty: Returns ’True’ if the stack is empty and ’False’ otherwise.

put: Inserts an item of type G on top of the stack.

item: Returns the element on top of the stack.

remove: Removes the element on top of the stack

4.2.1 Implementation

class STACK
creation make
feature {ANY}

empty : BOOLEAN is
do

Result := first = Void
end

item : G is
require

empty.not
do

Result := first.item
end

put(x : G) is
local new : LINKABLE
do

create new.make;
new.set item(x);
new.set next(first);
first := new

ensure
top = old x

end

42



remove is
require

empty.not
do

first = first.next
end

make is
do

first := Void
ensure

empty
end

feature {NONE}
first : LINKABLE

end

4.2.2 Correctness

’empty’

The feature ’empty’ does not have a contract, thus it fulfills it trivially. But the
feature is used in contracts of other features. Therefore we have to prove that
’empty’ is side-effect free. Let σ be some state and u ∈ STACK an object which
is allocated in state σ.

In order to prove that some feature f is side-effect free, one has to show that
for σ′ := [[f ]]S u σ the following hold:

attributes σ′ = attributes σ. (4.14)

To be precise one also should show that no new objects were allocated. However
in ’empty’ no creation instruction occurs.

Let us denote the state after execution of the body by σ′:

σ′ := [[Result := first = Void]]S u σ. (4.15)

Then by (3.27) we have to show:

attributes σ′ = attributes ([[first = Void]]S u σ). (4.16)

It suffices to show that

[[first = Void]]S u σ = σ (4.17)

We know that the expressions on both sides of the equality sign are side-effect
free (Note: ’first’ is an attribute). Thus by (3.44) we can write:

[[first = Void]]S u σ
= [[Void]]S u ([[first]]S u σ)
= [[Void]]S u σ
= σ.

(4.18)

43



Hence ’empty’ is side-effect free with respect to the object structure.

’item’

The feature ’item’ does not have a postcondition. What we have to prove is
that the feature call ’first.item’ does not fail. Again σ is an arbitrary state and
u ∈ STACK is an object which is allocated in σ. We have to show:

[[empty.not]]Q u σ = true ⇒ [[first]]Q u σ 6= Void. (4.19)

Since ’empty’ is a feature of the same class we are allowed to look at the im-
plementation of ’empty’ without violating information hiding. We will execute
’empty’ and try to deduce the property (4.19). Side-effect-freeness of ’first’ and
’Void’ will be used without further reference.

[[empty]]Q u σ
= locals ([[Result := first = Void]]S u (init σ)) Result by (3.17)
= [[first = Void]]Q u (init σ) by (3.27)
= ([[first]]Q u (init σ) = [[Void]]Q u (init σ)) by (3.44)
= (attributes (init σ) u first = Void) by (3.13)
= (attributes σ u first = Void) by (3.14)
= ([[first]]Q u σ = Void) by (3.13)

(4.20)

Hence ’empty’ returns true if and only if ’first’ is a void reference. This statement
is even stronger than the one we wanted to prove.

With this result we get the correctness proofs for ’remove’ and ’make’ for
free. Feature ’remove’ can be treated the same as feature ’item’. And in feature
’make’ we see at once that ’first’ is assigned to a void reference, implying that
the postcondition will be satisfied.

’push’

To do the tracing for ’push’ by hand becomes already very complicated. We
will try it all the same as it exhibits weaknesses of our assertions for the issue
of specification.

We have to show for any state σ and object u ∈ STACK which is allocated
in σ, that the postcondition is satisfied. First let us abbreviate the intermediate
states of execution using (3.25):

σ1 := [[create new.make]]S u σ
σ2 := [[new.set item(x)]]S u σ1

σ3 := [[new.set next(first)]]S u σ2

σ4 := [[first := new]]S u σ3.

(4.21)

Then the proof obligation can be stated as follows:

[[top = old x]]Q u σ4 = True (4.22)
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The old value of ’x’ can be represented as follows:

[[old x]]Q u σ4 = [[x]]Q u σ. (4.23)

Now we try to evaluate ’top’ in the postcondition:

[[top]]Q u σ4

{by (3.17)}
= locals ([[Result := first.item]]S u (init σ4)) Result
{by (3.27)}

= [[first.item]]Q u (init σ4)
{by (3.39) and side-effect-freeness of ’first’}

= [[item]]Q u ([[first]]Q u (init σ4)) (init σ4)
{’init’ does not change the ’attributes’ component
and ’item’ and ’first’ are attributes}

= [[item]]Q u ([[first]]Q u σ4) σ4

{postcondition of ’set next’}
= [[item]]Q u ([[new]]Q u σ3) σ4

{the assignment does not change ’item’}
= [[item]]Q u ([[new]]Q u σ3) σ3

{’new’ is a local variable and hence not changed by ’set next’}
= [[item]]Q u ([[new]]Q u σ2) σ3

{assume that ’set next’ does not change ’item’}
= [[item]]Q u ([[new]]Q u σ2) σ2

{postcondition of ’set item’}
= [[x]]Q u σ1

{’x’ is not changed by the creation of ’new’}
= [[x]]Q u σ

(4.24)

As we can see both sides of the equation evaluate to the same object, therefore
the precondition is fulfilled. However we had to make the assumption that the
feature invocation of ’set next’ does not change the value of ’item’ in the same
object. The postcondition of ’set next’ should be extended to ensure this. Thus
proofs may be helpful to detect incomplete specifications. On the other hand
this example demonstrates how important it is to state assertions carefully.

4.3 Conclusions

On one hand the proof examples show that the semantics can be used to derive
some correctness properties from a program. However this does not imply that
the semantics is sound. On the other hand also weaknesses of the semantics,
and also the language become apparent. They are discussed in the remainder
of this section.

4.3.1 Proof Automation

We used the formal definitions extensively in the proofs. However major parts
of the proofs are done by reasoning in natural language. In order to support
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automated proof verification this proofs have to be stated in a formal calcu-
lus. At the current stage it is not clear whether a translation of the semantic
definition in a purely formal system is possible. A subsequent step may be to
choose a proving environment and try to translate the semantic definition to
this environment.

4.3.2 Side-effect in Assertions

We always had to ensure that the expressions used in the assertions are side-
effect free. In the example of the ’empty’-feature this was a tedious work. We
only accomplished it because we knew the one and only implementation. In a
more general setting a query used in an assertion could have several implementa-
tions. Either we have to give up information hiding to prove side-effect-freeness
or state this property in the contract of a feature.

4.3.3 Expressiveness of Assertions

The contracts used to specify class ’STACK’ are not sufficient to describe the
behavior of a stack completely. E.g. the feature ’remove’ does not even provide
a postcondition. What can a client expect after an invocation of ’remove’?
According to this specification it is not forbidden to remove all elements at
once. To indicate what a feature does not change is completely out of scope in
an open world. In a closed world it might force the programmer to extend the
contracts from time to time.

46



Chapter 5

Summary

In the chapters 2 and 3 we defined an object-oriented example language. Most
of its features of this language are borrowed from Eiffel, as it is one of the few
languages which allows to state parts of the specifications in the program code.

We already pointed out how important good specifications are. On one hand
they allow to validate implementations according to clearly stated criteria. On
the other hand they are an indispensable means for modular verification. When
in a program a feature of some foreign class is invoked, information hiding
prohibits to consult the features implementation. The specification is the only
source of information about the effect of a feature invocation. So we have to
discuss whether the contract approach suffices for specification.

5.1 Analysis

The aim of chapter 4 was to exploit the limitations of the expressiveness of
assertions. We accomplished to prove that the given stack implementation does
fulfill its contracts, though these contracts are far from specifying the stack fully.
Moreover some features could be easily proved to be correct simply because they
do not have any postcondition at all. This may be good news to the person which
has to prove correctness of such a feature. But such correctness proofs do not
turn out to be very valuable for reuse. A poor specification make it very difficult
to prove correctness of a client which has to rely on such a specification.

Another serious problem are potential side-effects of assertion. Although we
restricted ourselves only to allow side-effect-free assertions this cannot be the
final solution. As we have seen to check side-effect-freeness may not be trivial.

Some of the proofs became quite complex, although the complexity of the
implementations was rather small. So it may be doubted that the provided
semantics is suited to verify more complex programs.

The main points to be discussed here are:

1. How can assertions be made more expressive, so that data types can be
specified adequately?
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2. How can one enforce assertions not to have side-effects?

3. How can the semantic definition be improved to support automated proof
verification?

5.2 Models

In the application of chapter 4 the limitations to specify a data structure com-
pletely became apparent. In the assertions we only allow expressions to occur.
Thus everything which can be evaluated in an assertions must be implemented
as a feature of some class. In order to specify a stack we would need a feature
which returns a representation of the entire stack. This is not possible with the
interface of the stack which only allows to access the top element. It also would
contradict the stack abstraction. For a client it should not be allowed to access
arbitrary elements on the stack.

What we need is some kind of abstraction variable, as proposed by Hoare
[1], which represents the state of a stack in an abstract way. In addition the
stack has to provide a feature which returns the stack’s abstract state.

Meyer [9], and subsequently Schoeller [14], propose to use models to represent
data types in an abstract way. One of the main advantages is that models can be
implemented as ordinary classes and does not have to introduce new language
constructs.

Using Eiffel’s selective export mechanism the feature which maps the con-
crete representation to the corresponding abstract model can be made accessible
exclusively to the model.

5.3 Side-Effects in Assertions

The model approach sketched above does not solve the problem with side-effects
of assertions. Though the model objects are supposed to be immutable, i.e. their
state cannot be changed by feature invocations. However it is not guaranteed
that such an invocation is side-effect free. Furthermore the query to obtain the
model object from the implementation should not have side-effects, except for
the creation of the returned model object. Again this property cannot be en-
forced and thus quite much responsibility is burdened to the programmer. The
point of side-effects is also objected against executable contracts by Poetzsch-
Heffter [13]. Schoeller [14] argues that the disadvantages can be avoided with
appropriate constraints on expressions in contracts. Moreover the possibility to
use language constructs instead of first-order predicate logic to state specifica-
tion eliminates the conceptual gap between specification language and imple-
mentation language.
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5.4 Conclusion and Outlook

The motivation for this project was to explore the possibilities of program ver-
ification in the object-oriented paradigm. As explained in the introduction due
to its high degree of modularity and abstraction object-orientation seems pre-
destined for efficient program verification.

The first step of such an investigation consists in defining a formal semantics
of an object-oriented language. It turned out that the ambitious goal of modular
verification cannot be achieved just by providing a clever semantics. In contrast
it became clear that the frame problem is one of the main obstacles for modular
proofs in an open environment.

In a future work the semantics defined in this project should be translated
to a formal proof environment. Furthermore it should be considered whether
it may serve as a basis to define an axiomatic semantics, which may be better
suited for program verification. All the more because contracts also are stated
in an axiomatic style.

And last but not least one should consider if the results of Müller, Poetzsch-
Heffter and Leino could be adapted for the design by contract method.
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