
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 3

2

Today

 We will revisit classes, features and objects.

 We will see how program execution starts.

 We will play a game.

3

Static view

 A program consists of a set of classes.

 Features are declared in classes. They define
operations on objects constructed from the class.

 Queries answer questions. They have a result
type.

 Commands execute actions. They do not have a
result type.

 Terms “class” and “type” used interchangeably for now.

4

Dynamic view

 At runtime we have a set of objects (instances)
constructed from the classes.

 An object has a type that is described in a class.

 Objects interact with each other by calling features on
each other.

5

Static view vs. dynamic view

 Queries (attributes and functions) have a return type.
However, when executing the query, you get an object.

 Routines have formal arguments of certain types.
During the execution you pass objects as actual
arguments in a routine call.

 During the execution local variables declared in a
routine are objects. They all have certain types.

6

Declaring the type of an object

 The type of any object you use in your program must be
declared somewhere.

 Where can such declarations appear in a program?

 in feature declarations

• formal argument types

• return type for queries

 in the local clauses of routines

This is where you
declare any objects
that only the routine

needs and knows.

7

Declaring the type of an object

class DEMO

feature

procedure_name (a1: T1; a2, a3: T2)

-- Comment

local

l1: T3

do

…

end

function_name (a1: T1; a2, a3: T2): T3

-- Comment

do

…

end

attribute_name: T3

-- Comment

end

formal argument types

local variable types

return type

return type

8

Exercise: Find the classes / objects

class
game

feature
map_name: string

-- Name of the map to be loaded for the game

last_player: player
-- Last player that moved

players: player_list
-- List of players in this game.

...

9

Exercise: Find the classes / objects

feature
is_occupied (a_location: traffic_place): boolean

-- Check if `a_location' is occupied by some flat hunter.
require

a_location_exists: a_location /= Void
local

old_cursor: cursor
do

Result := False

-- Remember old cursor position.
old_cursor := players.cursor

...

10

Exercise: Find the classes / objects

-- Loop over all players to check if one occupies
-- `a_location'.
from

players.start
-- do not consider estate agent, hence skip the first
-- entry in `players'.
players.forth

until
players.after or Result

loop
if players.item.location = a_location then

Result := True
end
players.forth

end

-- Restore old cursor position.
players.go_to(old_cursor)

end

11

Who are Adam and Eve?

 Who creates the first object? The runtime creates a
so called root object.

 The root object creates other objects, which in turn
create other objects, etc.

 You define the type of the root object in the project
settings.

 You select a creation procedure of the root object as
the first feature to be executed.

12

Acrobat game

 We will play a little game now.

 Everyone will be an object.

 There will be different roles.

13

You are an acrobat

 When you are asked to Clap, you will be given a number.
Clap your hands that many times.

 When you are asked to Twirl, you will be given a
number. Turn completely around that many times.

 When you are asked for Count, announce how many
actions you have performed. This is the sum of the
numbers you have been given to date.

14

You are an ACROBAT

class
ACROBAT

feature
clap (n: INTEGER)

do
-- Clap `n’ times and adjust `count’.

end

twirl (n: INTEGER)
do

-- Twirl `n’ times and adjust `count’.
end

count: INTEGER
end

15

You are an acrobat with a buddy

 You will get someone else as your Buddy.

 When you are asked to Clap, you will be given a number.
Clap your hands that many times. Pass the same
instruction to your Buddy.

 When you are asked to Twirl, you will be given a
number. Turn completely around that many times. Pass
the same instruction to your Buddy.

 If you are asked for Count, ask your Buddy and answer
with the number he tells you.

16

You are an ACROBAT_WITH_BUDDY

class
ACROBAT_WITH_BUDDY

inherit
ACROBAT

redefine
twirl, clap, count

end

create
make

feature
make (p: ACROBAT)

do
-- Remember `p’ being the buddy.

end

clap (n: INTEGER)
do

-- Clap `n’ times and forward to buddy.
end

17

You are an ACROBAT_WITH_BUDDY

twirl (n: INTEGER)
do

-- Twirl `n’ times and forward to buddy.
end

count: INTEGER
do

-- Ask buddy and return his answer.
end

buddy: ACROBAT
end

18

You are an author

 When you are asked to Clap, you will be given a number.
Clap your hands that many times. Say “Thank You.”
Then take a bow (as dramatically as you like).

 When you are asked to Twirl, you will be given a
number. Turn completely around that many times. Say
“Thank You.” Then take a bow (as dramatically as you
like).

 When you are asked for Count, announce how many
actions you have performed. This is the sum of the
numbers you have been given to date.

19

You are an AUTHOR

class
AUTHOR

inherit
ACROBAT

redefine
clap, twirl

end

feature
clap (n: INTEGER)

do
-- Clap `n’ times say thanks and bow.

end

twirl (n: INTEGER)
do

-- Twirl `n’ times say thanks and bow.
end

end

20

You are a curmudgeon

 When given any instruction (Twirl or Clap), ignore it,
stand up and say (as dramatically as you can) “I
REFUSE”.

 If you are asked for Count, always answer with 0.

 Then sit down again if you were originally sitting.

21

You are a CURMUDGEON

class
CURMUDGEON

inherit
ACROBAT

redefine
clap, twirl

end

feature
clap (n: INTEGER)

do
-- Say “I refuse”.

end

twirl (n: INTEGER)
do

-- Say “I refuse”.
end

end

22

I am the root object

 I got created by the runtime.

 I am executing the first feature.

23

I am a DIRECTOR

class
DIRECTOR

create
prepare_and_play

feature
prepare_and_play

do
-- See following slides.

end

24

Let’s play

25

I am the root object

prepare_and_play
local

acrobat1, acrobat2, acrobat3 : ACROBAT
partner1, partner2: ACROBAT_WITH_BUDDY
author1: AUTHOR
curmudgeon1: CURMUDGEON

do
create acrobat1
create acrobat2
create acrobat3
create partner1.make (acrobat1)‏
create partner2.make (partner1)‏
create author1
create curmudgeon1
author1.clap (4)‏
partner1.twirl (2)‏
curmudgeon1.clap (7)‏
acrobat2.clap (curmudgeon1.count)‏
acrobat3.twirl (partner2.count)‏
partner1.buddy.clap (partner1.count)‏
partner2.clap (2)

end

26

Concepts seen

Asking a question to a personQuery Call

Telling person to behave
according to a specification

Classes with Features

E.g. how many times to clapArguments

Telling a person to do somethingCommand Call

Telling different people to do
the same has different
outcomes

Polymorphism

What queries

What commands

Interface

PeopleObjects

GameEiffel

27

Concepts seen

All people were some kind of
ACROBAT

Inheritance

Persons need to be born and
need to be named

Creation

E.g. partner1.buddy.clap (2)Chains of feature calls

Names for the peopleEntities

E.g. count in
ACROBAT_WITH_BUDDY

Return value

GameEiffel

28

Advanced Material

The following slides contain advanced
material and are optional.

29

Outline

 Invariants

 Marriage problems

 Violating the invariant

30

Invariants explained in 60 seconds

Consistency requirements for a class

Established after object creation

Hold, when an object is visible

 Entry of a routine

 Exit of a routine

class
ACCOUNT

feature
balance: INTEGER

invariant
balance >= 0

end

31

Public interface of person (without contracts)

class
PERSON

feature
spouse: PERSON

-- Spouse of Current.

marry (a_other: PERSON)
-- Marry `a_other’.

end

class
MARRIAGE

feature
make

local
alice: PERSON
bob: PERSON

do
create alice
create bob
bob.marry (alice)

end

end

32

Write the contracts

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

??
ensure

??

invariant
??

end

33

A possible solution

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

a_other /= Void
a_other.spouse = Void
spouse = Void

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
spouse /= Void implies spouse.spouse = Current

end

34

Implementing marry

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

a_other /= Void
a_other.spouse = Void
spouse = Void

do
??

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
spouse /= Void implies spouse.spouse = Current

end

35

Implementing marry I

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

a_other /= Void
a_other.spouse = Void
spouse = Void

do
a_other.spouse := Current
spouse := a_other

ensure
spouse = a_other
a_other.spouse = Current

end

invariant
spouse /= Void implies spouse.spouse = Current

end

Compiler Error:

No assigner
command

36

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

a_other /= Void
a_other.spouse = Void
spouse = Void

do
a_other.set_spouse (Current)
spouse := a_other

ensure
spouse = a_other
a_other.spouse = Current

end

set_spouse (a_person: PERSON)
do

spouse := a_person
end

invariant
spouse /= Void implies spouse.spouse = Current

end

Implementing marry II

local

bob, alice: PERSON

do

create bob; create alice

bob.marry (alice)

bob.set_spouse (Void)

-- invariant of alice?

end

37

Implementing marry III

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

a_other /= Void
a_other.spouse = Void
spouse = Void

do
a_other.set_spouse (Current)
spouse := a_other

ensure
spouse = a_other
a_other.spouse = Current

end

feature {PERSON}
set_spouse (a_person: PERSON)

do
spouse := a_person

end

invariant
spouse /= Void implies spouse.spouse = Current

end

Invariant of a_other?

Violated after call to
set_spouse

38

Implementing marry : final version

class PERSON
feature

spouse: PERSON

marry (a_other: PERSON)
require

a_other /= Void
a_other.spouse = Void
spouse = Void

do
spouse := a_other
a_other.set_spouse (Current)

ensure
spouse = a_other
a_other.spouse = Current

end

feature {PERSON}
set_spouse (a_person: PERSON)

do
spouse := a_person

end

invariant
spouse /= Void implies spouse.spouse = Current

end

39

Ending the marriage

class PERSON
feature

spouse: PERSON

divorce
require

spouse /= Void
do

spouse.set_spouse (Void)
spouse := Void

ensure
spouse = Void
(old spouse).spouse = Void

end

invariant
spouse /= Void implies spouse.spouse = Current

end

40

Violating the invariant

See demo

41

What we have seen

Invariant should only depend on Current object

If invariant depends on other objects

 Take care who can change state

 Take care in which order you change state

Invariant can be temporarily violated

 You can still call features on Current object

 Take care calling other objects, they might call back

Although writing invariants is not that easy, they are
necessary to do formal proofs. This is also the case for
loop invariants (which will come later).

