
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Assignment 4: Object creation

ETH Zurich

Hand-out: 9 October 2009
Due: 20 October 2009

Copyright Randall Munroe http://xkcd.com

Goals

• Create objects in Traffic.

• Repeat the difference between strict and semi-strict boolean operators.

1 Creating objects in Traffic

Up to now you have always worked with existing, predefined objects of Paris. In this assignment
you will create new objects and add them to Paris. To build new city objects in Traffic such as
passengers, trams, places, lines, or roads you can follow a general scheme:

1. Declare an attribute or local variable of the according type. This step is needed,
so that the software knows that the identifier you will be using in the code is valid and
what type of object it can denote. If you forget this step, the Eiffel compiler will produce
an error saying that you are using an ”Unknown identifier”.
At line 22 in Listing 1 an attribute is declared. An attribute declaration is composed of
the identifier (name for the new object), a colon, and the identifier type. In our example
the identifier is station and the type is TRAFFIC STATION. A local variable exists only
within a feature body, and so is declared at the beginning of the feature body itself, in

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

a section called, surprisingly, local. This goes before the do. The syntax of declaring a
local variable is the same as described before for an attribute. If you need an example,
look in class APPLICATION, feature prepare.

2. Create the object using one of the creation procedures declared in the ac-
cording class. If you forget this step, the declared identifier will be void, meaning that
there is not an object attached to it. Calling features on it will result in a program crash
displaying the message ”Feature call on Void target”. This will not happen if the type
of the identifier you have declared is ”expanded”. In this case the object will be auto-
matically created for you, so you don’t have to worry. Example of expanded types are
INTEGER, BOOLEAN and DOUBLE. This distinction between reference and expanded
types is there mainly for efficiency reasons. In other programming languages like Java the
types just mentioned are not even objects (they are called ”primitive types”). For a more
detailed explanation on why it is important to have types that can be void, see paragraphs
6.2 and 6.3 of Touch of Class.
To find all the available creation procedures, look at the class TRAFFIC STATION. They
are listed in the creation clause of the class header (see lines 17 and 18 of Listing 2). In our
example a TRAFFIC STATION can be created using either make, make with location, or
make with point as a creation procedure. make with location requires three arguments: a
STRING object and two INTEGER objects.
Note that for STRINGs there is a fast track to object creation: Just put the text you
want in the STRING object between double quotation marks such as in ”My new string
object”. For INTEGERs and DOUBLEs this fast track is done by writing the number at
the appropriate position such as in 16 and in 12.76. For objects of type BOOLEAN you
may use False or True.
There might be cases, where you have to create other objects first because they are
needed as arguments to the creation feature. The creation procedure make with point,
for example, takes a TRAFFIC POINT object as second argument. To use this creation
procedure you would need to first create a TRAFFIC POINT object, that is passed to
make with point as a second argument. If you fail to create the TRAFFIC POINT object,
you should not be surprised to get, at runtime, a ”Feature call on Void target” message
when trying to use the object.

3. Add the object to the city by adding it to the according container. If you forget
this step, there will be no compiler error and no program crash, but you won’t see the
object on the displayed map. These are rather tricky errors to detect and fix, because
neither the compiler nor the runtime system can help you.
The class TRAFFIC CITY provides several containers for the various types of city objects
and for each there is a command that allows you to put a new object into the container.
To make things easier, we list them here and show you, for most of the city item types,
how they should be put into the right container:

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Adding objects to containers
Object declaration Adding the object to the map
v: TRAFFIC VILLA Paris.put building (v)
a: TRAFFIC APARTMENT BUILDING Paris.put building (a)
s: TRAFFIC SKYSCRAPER Paris.put building (s)
b: TRAFFIC BUS Paris.put bus (b)
f: TRAFFIC FREE MOVING Paris.put free moving (f)
l: TRAFFIC LANDMARK Paris.put landmark (l)
li: TRAFFIC LINE Paris.put line (li)
p: TRAFFIC PASSENGER Paris.put passenger (p)
r: TRAFFIC ROAD Paris.put road (r)
ro: TRAFFIC ROUTE Paris.put route (ro)
st: TRAFFIC STATION Paris.put station (st)
t: TRAFFIC TAXI Paris.put taxi (t)
to: TRAFFIC TAXI OFFICE Paris.put taxi office (to)
tr: TRAFFIC TRAM Paris.put tram (tr)

Listing 1: Creating a new TRAFFIC STATION object
1 class

CREATION EXAMPLE
3

inherit
5

TOURISM
7

feature −− Explore Paris
9

explore is
11 −− Create a new station.

do
13 Paris.display

15 −− Step 2: Creation of the new object
create station.make with location (”Home”, 600, 700)

17
−− Step 3: Adding new object to the map

19 Paris. put station (station)
end

21
station : TRAFFIC STATION

23 −− Step 1: Declaration of attribute
−− New station

25
end

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Listing 2: Class TRAFFIC STATION (shortened and slightly adapted)
class

2 TRAFFIC STATION

4 inherit
HASHABLE

6 redefine
out

8 end

10 TRAFFIC CITY ITEM
undefine

12 out,
add to map,

14 remove from map
end

16
create

18 make, make with location, make with point

20 feature {NONE} −− Initialize

22 make (a name: STRING) is
−− Initialize ‘Current’.

24 require
a name exists: a name /= Void

26 a name not empty: not a name.is empty
ensure

28 name set: equal (a name, name)
location exists : location /= Void

30 end

32 make with location (a name: STRING; a x, a y: INTEGER) is
−− Initialize ‘Current’ with name ‘a name’ and location ‘a x’, ‘a y ’.

34 require
a name exists: a name /= Void

36 a name not empty: not a name.is empty
ensure

38 name set: equal (a name, name)
location exists : location /= Void

40 location set : location .x = a x and location.y = a y
end

42
make with point (a name: STRING; a point: TRAFFIC POINT) is

44 −− Initialize ‘Current’ with name ‘a name’ and location ‘a point’.
require

46 a name exists: a name /= Void
a name not empty: not a name.is empty

48 a point exists : a point /= Void
ensure

50 name set: equal (a name, name)
location exists : location /= Void

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

52 location set : location .x = a point.x and location.y = a point.y
end

54
feature −− Access

56
...

58
end

To do

1. Download http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/assignment 4.zip and
extract it in traffic/example. You should now have a new directory traffic/example/
assignment 4 with assignment 4.ecf directly in it. It is important that the location cor-
responds to the description here!

2. Open and compile this new project. Open class OBJECT CREATION and solve the tasks
below.

3. Declare an attribute of type TRAFFIC PASSENGER in class OBJECT CREATION
(step 1). Then create an object of type TRAFFIC PASSENGER. Make it walk along
Route3 (step 2) by calling feature go on it. As a final step add it to Paris (step 3). If you
want the passenger to walk back and forth on his route you can call feature set reiterate
(True) on the passenger. Run your program. Note: The code that you just produced is
very similar to the one found in feature animate of TRAFFIC ROUTE.

4. Create an object of type TRAFFIC TRAM, so that it will follow Line1. To make it start
moving, call feature start on the created tram and add it to Paris.

5. Create a new landmark for the Gare de Lyon railway station. The creation procedure
expects as first argument the coordinate of the landmark center, as a second argument
a name for the landmark, and as third argument a path to an image file. To obtain
the coordinate of the landmark center for the first argument, create a TRAFFIC POINT
object having the same x and y values as the station. To get these values, use query
location of the TRAFFIC STATION object you obtain by calling Station Gare de Lyon
from TOURISM. For the third argument (the image path) use ”train station.png” since
the image file should be located in the root directory traffic/example/assignment 4.
Add the landmark to Paris.

6. As a next step, you will create an object of type TRAFFIC FREE MOVING. To do this,
you first need to create an object of type TRAFFIC POINT RANDOMIZER. A point
randomizer object can generate a list of points within city bounds. Such a list of points is
needed as an argument to the creation procedure of TRAFFIC FREE MOVING. That is
why you have to create a point randomizer object before creating the free moving object.
The creation procedure of TRAFFIC POINT RANDOMIZER expects the city center and
the city radius of Paris as arguments. Have a look at TRAFFIC CITY and you will find
the needed features. You do not need to add the point randomizer object to Paris, since it
is only a temporary helper object. To generate a new point list, use generate point array
(n) (where n stands for the number of points in the list). The generated list is accessible
through the feature last array.
After you have created the point randomizer and generated a new list of points, you create
a free moving object that travels along this list of generated points. Again, you will need
to call feature start on it and add it to Paris.

5

http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/assignment_4.zip

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Create an object of type TRAFFIC TAXI associating it to a newly generated point list
using the point randomizer, start it and add it to Paris.

7. Create a new line of type TRAFFIC LINE. Make sure to use the creation procedure
make with terminal, otherwise you will get a precondition violation when using the fea-
ture extend on it. The creation procedure has three arguments: the first one is the
name of the new line, that should be ”Tourist line”; the second is the type of line, in
our case a bus line, so use an object of type TRAFFIC TYPE BUS as second argu-
ment; the third argument defines the starting place of the line, which in our case is
Station Gare de Lyon. Use the feature extend to add Station St Michel Notre Dame,
Station Champs de Mars Tour Eiffel Bir Hakeim, Station Charles de Gaulle Etoile, Sta-
tion Palais Royal Musee du Louvre as stops to the tourist line. To make the display of
the tourist bus line more eye-catching, associate an object of type TRAFFIC COLOR to
the line (e.g. with RGB-values 255, 160, 0).

8. Create a new object of type TRAFFIC BUS that moves along the tourist bus line. To
make the bus drive back and forth infinitely, call feature set reiterate (True) on the bus.
We may sound repetitive, but don’t forget to add it to Paris!

To hand in

Submit the class text of OBJECT CREATION to your assistant.

2 It’s Logic!

Read Touch of class, paragraph 5.3. Here are some examples:

• if (x >= 0)and (x <= 10)then ... end

• if (x >= 0)and then (x.square root >= 5)then ... end

• if (x < 0) or (x > 10) then ... end

• if (x < 0) or else (x. square root < 5) then ... end

To do

1. Describe the difference between semi-strict and strict boolean operators.

2. Explain when you would prefer semi-strict operators over strict operators and when you
would prefer strict operators over semi-strict operators.

3. Give other examples, also involving boolean conditions, that illustrate the following:

• and

• and then

• or

• or else

To hand in

Hand in your solution to the questions above.

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

3 Temperature application

In this task you will write an application which converts temperatures between Celsius and
Kelvin units. The application should consist of two classes: TEMPERATURE and TEMPER-
ATURE APPLICATION. The latter is the root class.

Things you need to know

• To print something in the console window, use io.put string, io.put integer, io.put boolean
and so on, depending on the type of the argument. To go to a new line, use io.put new line.
To read user input, use io.read Use io.last ... to retrieve the value that was last read.
As an example, reading an INTEGER from the console and then displaying it on the
screen, looks as follows:

read and display int is
−− Read integer and display it.

local
i : INTEGER

do
io . read integer
i := io . last integer
io . put integer (i)
io .put new line

end

• The formula for conversion we are interested in has been simplified:

TCelsius = TKelvin − 273

• A function is a query that computes a result and returns it to the caller (e.g. kelvin value in
TEMPERATURE is a function). The mechanism to define the return value of a function
is based on the special entity Result. The object that Result refers to at the end
of a function execution, is the return value of the function. As an example, in class
TRAFFIC LINE you find a feature count that returns the number of stations of a line. It
calculates it based on the list of stops that the line stores.

count: INTEGER is
−− Number of stations in this line

do
Result := stops.count

end

To do

• Launch EiffelStudio. Create a new project of type “Basic application (no graphics library
included)”, using the settings shown in figure 1.

• Download the skeleton classes for TEMPERATURE and TEMPERATURE APPLICATION
from http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/temperature application.e
and http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/temperature.e and put them
into your project.

• Fill in the missing pieces of classes TEMPERATURE and TEMPERATURE APPLICATION
according to the comments.

7

http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/temperature.e
http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/temperature_application.e

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Figure 1: New project

• Do not forget to add contracts.

• Feature make in class TEMPERATURE APPLICATION should use the TEMPERA-
TURE class to do the following:

1. Ask the user to enter a temperature in Celsius.

2. Create a temperature object with the input value.

3. Output the Kelvin value of it.

4. Repeat points 1–3 for a temperature in Kelvin.

5. Add the second temperature to the first one and output the resulting Celsius and
Kelvin values.

• A final piece of advice: use the debugging features of EiffelStudio. They will help you to
understand what’s going on.

A sample execution of your application could yield the result shown in figure 2.

To hand in

Submit the class files for TEMPERATURE and TEMPERATURE APPLICATION.

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Figure 2: Console

9

	Creating objects in Traffic
	It's Logic!
	Temperature application

