
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Assignment 5: References and assignments

ETH Zurich

Hand-out: 16 October 2009
Due: 27 October 2009

Zealous Autoconfig

Copyright Randall Munroe http://xkcd.com

Goals

• Create more objects in Traffic.

• Test your knowledge about assignments.

• Start to work on a more complex application.

1 City building

We have prepared a traffic project that contains a class CITY BUILDING. In this class, you find
four features: explore, add station, add line, and random color. The application is programmed
to call add station when you double click with the left mouse button into the city canvas (the
white area where the map is usually displayed), and feature add line when you double click with
the right mouse button. At the moment, double clicking will result in a message that is displayed
in the Console area of the application, but no station or line is created. In this assignment, you
will complete these features to do what their comments promise.

To do

1. Download http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/assignment 5.zip and
extract it in traffic/example. You should now have a new directory traffic/example/
assignment 5 with assignment 5.ecf directly in it. It is important that the location cor-
responds to the description here!

1

http://se.inf.ethz.ch/teaching/2009-H/eprog-0001/exercises/assignment_5.zip


ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

2. Open and compile this new project. Open class CITY BUILDING and follow the sugges-
tions given below.

3. In feature explore, create a new object of type TRAFFIC CITY. To let the application
know that it has to display this city on the screen, you need to use feature set city of TRAF-
FIC CITY CANVAS. You can get the canvas you need from the feature main window.
Add a station called ”Central station” at coordinate (0, 0) to the city. We have modified
the application to automatically call explore at startup, but you can still call it by clicking
on the ”Run example” button.

4. Implement feature add line to add a new line to the city. Use the creation feature
make with terminal of TRAFFIC LINE. The line should be of tram type and have the
station that you created in step 3 as south and north end.

5. Implement feature add station to add a new station to the city at the position given
through the arguments of add station. The feature should take care of creating a station,
add it to the city (a line that already belongs to a city can only include stations that are
in the city) and extend the line. The name of the new stations added using this feature
should vary according to the order in which they are created: the first additional station
created should be ”Station 1”, the second ”Station 2”, etc. This means that you should
find a way to append consecutive numbers to the fixed string (”Station ”) to create each
new station name.

6. Extend the line you created last with two new stations. Hint: To make sure that there is
a line available you will have to add a call to add line in explore.

7. Since all the created lines have the same default color, it is difficult to distinguish them.
Implement the feature random color and use it to assign a new color to each created line.
To achieve this, you can use a class RANDOM that generates random numbers for you.
The following code illustrates its usage:

local
t : TIME
random: RANDOM
i : INTEGER
s : INTEGER

do
create t.make now −− Create a time object for the seed
s := (t . fine seconds ∗ 1000).rounded
create random.set seed (s) −− Create the random number generator

−− with ‘s’ as seed
random.start −− think to a list : with ‘ start ’ you point

−− to the first valid position
i := random.item \\ 100 −− Access the first random number.

−− is the modulo operator, used to get a
−− number between 0 and 99

random.forth −− Advance the generator to the next number
end

You may have noticed, in the example above, that a seed created from a current time
object was used to initialize the random object. In general, a seed is used to initialize
the algorithm that generates the pseudo-random sequence. Using the same seed means
having the same sequence, that’s why using time makes sense: running the program at
two different moments in time will generate different sequences. Modeling random number

2



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

generation with a class that encapsulates the concept of a random sequence is a beautiful
example of object-oriented design, and can be also found in other programming languages
like Java.

8. In your solution, some entities will probably be local variables, while others are attributes.
Think about the criterion you have followed to choose between a local variable and an
attribute.

To hand in

Submit the class text of CITY BUILDING to your assistant, and explain the criterion you have
followed to choose between local variables and attributes you inserted.

2 Assignments

In this assignment you can test your understanding of assignment instructions. Consider the
following class:

class PERSON
create make
feature −− Initialization

make (s: STRING)
−− Initialize with ‘s ’ as ‘name’.

require
s exists : s /= Void and then not s.is empty

do
name := s

ensure
name set: name = s

end

feature −− Access
name: STRING
loved one : PERSON

feature −− Basic operations
set loved one (p: PERSON)
−− Set ‘loved one’ to ‘p ’.

do
loved one := p

ensure
loved one set : loved one = p

end

invariant
has name: name /= Void and then not name.is empty

end

Below is the code of the feature tryout. It contains a number of declarations and creation
instructions, and it is defined in a class different from PERSON. All features of class PERSON
as shown above are accessible by feature tryout.

tryout
−− Tryout assignments

3



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

local
i , j : INTEGER
a, b, c: PERSON

do
create a.make (”Anna”)
create b.make (”Ben”)
create c.make (”Chloe”)
a. set loved one (b)
b. set loved one (c)
−− Here the code snippets from below are added

end

To do

You will find a number of subtasks. Each contains a code snippet and statements. Assume that
the code snippet is inserted at the location indicated in feature tryout above. If the code snippet
produces, in your opinion, a compiler error, choose option (a). If it doesn’t produce a compiler
error, decide for each statement whether it is correct or incorrect after the code snippet has
been fully executed. This means that you can have more than one correct statement (provided
the compilation went fine!). To make the answers easier to read, we use the short form Anna for
”the object that has the STRING ”Anna” as name attribute”, and accordingly Ben and Chloe
for subtasks 6 – 9.

4



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

1.
j := 3
i := j
2 := i

(a) The compiler reports an error.
(b) i has value 2, j has value 3.
(c) i and j have both value 2.
(d) i and j have both value 3.

2.
i := 7
j := 2
i := i + 3

(a) The compiler reports an error.
(b) i has value 7 and j has value 2.
(c) i has value 5 and j has value 2.
(d) i has value 10 and j has value 2.

3.

i := −7
j := 5
i := j
j := i

(a) The compiler reports an error.
(b) i has value -7 and j has value 5.
(c) i and j have both value -7.
(d) i and j have both value 5.

4.
j := 8
i := 19
j := i

(a) The compiler reports an error.
(b) i and j have both value 19.
(c) j has value 19 and i holds no value any more.
(d) i and j have both value 8.
(e) i has value 8 and j has value 19.

5.
i := 5
j := i + 7
i := 8

(a) The compiler reports an error.
(b) i and j have both value 8.
(c) i has value 8 and j has value 12.
(d) i has value 8 and j has value 15.

6. b := a
a := b

(a) The compiler reports an error.
(b) a and b are both attached to Ben.
(c) a is a void reference and b is attached to Anna.
(d) b is attached to Anna and a to Ben.
(e) a and b are both attached to Anna.

7.
b := a.loved one
b. set loved one (a.loved one)
a. set loved one (c)

(a) The compiler reports an error.
(b) The attribute loved one of Ben references Ben.
(c) b is attached to Chloe.
(d) a is attached to Anna and b to Ben.
(e) b is attached to Anna and a to Chloe.

8. b := c
b. loved one := a.loved one

(a) The compiler reports an error.
(b) b is attached to Chloe and its attribute loved one references
Ben.
(c) The attribute loved one of Chloe references Ben.
(d) b is attached to Ben and c to Chloe.

9. b := b.loved one . loved one
a. set loved one (c)

(a) The compiler reports an error.
(b) b is attached to Chloe.
(c) b is Void and the attribute loved one of a is attached to Chloe.
(d) a is attached to Anna and b to Ben.
(e) The object with name Ben is not reachable any more.

To hand in

Hand in your solution to the questions above.

5



ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

3 Programming a boardgame: Part 1

To do

In this task you will start a small project from scratch. We will proceed in iterations, starting
with a simplified problem and then progressively enriching it. This first part will focus on
choosing the right classes.

Problem Description

The idea is to program a prototype of a board-game 1. It comes with a board, divided into 40
squares, a pair of dice, and can accommodate 2 to 6 players. It works like this: all players start
from the first square. One at the time, players take a turn. This includes rolling the dice and
advance their respective tokens on the board. When all players are done with their turn, it is
called a round. The winner will be the player that first advances beyond the 40th square.

Hints

One of the issues that everyone faces when using an object-oriented language is being able to
pick nice abstractions, that is, classes. While there are not rules carved in stone, and granted
that experience is of the essence, we can still try to come up with something that makes sense.
An advantage of an iterative design process is that we may change our mind later, separate
previously united classes or put together previously separated ones.

To suggest classes, you have to ask yourselves:

• What are the relevant abstractions in the problem domain?

The main source can (like in your case here) be a problem description. A class is identified
by a name, and the description suggests some names, so it is tempting to use those, isn’t it?

Unfortunately the truth is a bit more complicated. The problem is that on the one hand we
can find names in the description that may not deserve to be used as a class name (like ”idea” or
”program”), while on the other hand there may be relevant abstractions that are not expressed
as names in the specific text we are looking at.

Still it is worth looking at the names in the text to have some guidance while preparing a
first candidate list, and then judge case by case.

In general, what is relevant and what is not depends on the problem domain. If we have to
model a door, and its only relevant behavior is that can be open or close, a boolean variable
will happily serve the purpose. If you are programming an application in which there can be
trapdoors, or magic doors that trigger some non-trivial behavior, then you may need a class for
it.

The example above suggests that after having prepared the candidate list, you should go
through it again and ask yourself the following question:

• Can I find meaningful data (attributes) and routines that should be included in the class
definition?

To hand in

Which classes would you pick to model this problem? Provide your candidate list to your
assistant. And please remember that your list is by no means final, so don’t be shy and try to
include what you really think should be there! In fact for the next part of the exercise we will
pick a reasonable list and we will go on, altogether, from there.

1We draw inspiration from a case study in the excellent book by Craig Larman: Applying UML and Patterns:
An Introduction to Object-Oriented Analysis and Design and Iterative Development (3rd Edition)

6


	City building
	Assignments
	Programming a boardgame: Part 1

