
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

Mock exam 1

ETH Zurich

Date: 9./10. November 2009

Name:

Group:

1 Terminology (8 points)

Put checkmarks in the checkboxes corresponding to the correct answers. Multiple correct an-
swers are possible; there is at least one correct answer per question. A correctly set checkmark
is worth 1 point, an incorrectly set checkmark is worth -1 point. If the sum of your points is
negative, you will receive 0 points.

—————————————————————————————————

Example:
Which of the following statements are true?

1.
a. Classes exist only in the software text; objects exist only during the execution of

the software.
�

b. Each object is an instance of its generic class. �
c. An object is deferred if it has at least one deferred feature. �

—————————————————————————————————

Solution

Which of the following statements are true?

1. A command...
a. is a query that is not implemented as an attribute. �
b. may modify an object. �
c. may appear in the precondition and the postcondition of another command but

not in the precondition or the postcondition of a query.
�

d. may appear in the class invariant. �

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

2. A query...
a. may be used as a creation procedure. �
b. may be implemented as a routine. �
c. may appear in the precondition and the postcondition of another query but not

in the precondition or the postcondition of a command.
�

d. may appear in the class invariant. �

3. A class...
a. is the description of a set of possible run-time objects to which the same features

are applicable.
�

b. can only exist at runtime. �
c. cannot be declared as expanded; only objects can be expanded. �
d. may have more than one creation procedure. �

4. Immediately before a successful execution of creation instruction with target x of type C...
a. x = Void must hold. �
b. x /= Void must hold. �
c. postcondition of creation procedure may not hold. �
d. precondition of creation procedure may not hold. �

5. Immediately after a successful execution of creation instruction with target x of type C...
a. x = Void must hold. �
b. postcondition of creation procedure may not hold. �
c. precondition of creation procedure may not hold. �
d. object attached to x satisfies the invariant of C. �

2 Digital root (10 points)

The digital root (Quersumme) of a number is found by adding together the digits that make up
the number. If the resulting number has more than one digit, the process is repeated until a
single digit remains.

Example input and output

Input Digital root
123 6

5720 5
99999999 9

8 8
Your task in this problem is to implement a function that, given a non-negative number,

calculates the digital root and returns it as the result. Fill in the body of function digital root
below. Your implementation should work with INTEGER objects only. You might find the
following two operators of class INTEGER useful: \\ (modulo) and // (integer division).

Solution

digital root (a number: INTEGER): INTEGER
−− Digital root (Quersumme) of ‘a number’

require

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

a number within range: a number >= 0 and a number <= a number.max value
local

number: INTEGER
do

from
Result := a number

invariant
result non negative : Result >= 0

until
Result < 10

loop
from

number := Result
Result := 0

invariant
−− ‘Result’ is a sum of i lower digits of ‘old Result’
−− ‘number’ contains n − i upper digits of ‘old Result’

until
number = 0

loop
Result := Result + (number \\ 10)
number := number // 10

variant
number

end
variant

Result
end

end

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

3 Design by Contract (10 Points)

Class PERSON is part of a software system that models marriage relations between persons.
The following rules do not necessarily have universal value but describe a particular set of rules
for marriage at a particular time and place in the past, e.g. Canton Zürich 1900:

1. A person cannot be married to himself/herself.

2. If a person X is married to a person Y, then Y is married to X.

3. In order for a person X to be able to marry a person Y, neither X nor Y may be already
married.

Your task is to fill in the contracts of the class (preconditions, postconditions and class
invariant) according to the specification given. You are not allowed to change the class interfaces
or any of the already given implementations. Note that the number of dotted lines does not
indicate the number of necessary code lines that you have to provide.

Solution

2
class

4 PERSON

6 create
make

8
feature −− Access

10
name: STRING

12 −−Person’s name

14 spouse: PERSON
−− Spouse if a spouse exists, Void otherwise

16
feature −− Creation

18
make (n: STRING)

20 −− Create a person with a name
require

22 n exists and not empty: n /= Void and then not n.is empty
do

24 −− Create a copy of the argument and assign it to name
name := n.twin

26 ensure
name set: n. is equal (name)

28 not married yet: not is married
end

30
feature −− Status report

32
is married : BOOLEAN

34 −− Is current person married?

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

do
36 Result := (spouse /= Void)

ensure
38 is married : Result = (spouse /= Void)

end
40

feature {PERSON} −− Implementation
42

set spouse (p: PERSON)
44 −− Set spouse to p

require
46 p exists : p /= Void

p not current : p /= Current
48 current not married: not is married

target maybe married: p.spouse = Void or p.spouse = Current
50 do

spouse := p
52 ensure

spouse set : spouse = p
54 is married : is married

end
56

feature −− Basic operations
58

marry (p: PERSON)
60 −− Get married to p

require
62 p exists : p /= Void

p not current : p /= Current
64 current not married: not is married

target not married : not p.is married
66 do

set spouse (p)
68 p. set spouse (Current)

ensure
70 current is married : is married

other is married : p.is married
72 current spouse is p : spouse = p

p spouse is current : p.spouse = Current
74 end

76 invariant
name exists and not empty: name /= Void and then not name.is empty

78 marriage semantics: is married = (spouse /= Void)
marriage not reflexive : spouse /= Current

80 marriage symmetric: is married implies (spouse.spouse = Current)

82 end

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

4 Doubly linked lists (14 points)

In the lecture you have been taught about singly linked lists, which allow to move through
the list in one direction. In this task you have to implement a data structure called a dou-
bly linked list, which should allow moving in both directions through the list. The structure
consists of two classes: INTEGER LIST CELL and INTEGER LIST. An object of type IN-
TEGER LIST CELL holds an INTEGER as the cell content and has a previous and a next
reference to two other objects of type INTEGER LIST CELL. By attaching the previous and
next references correctly, two or more cells can be connected to form a list. The class INTE-
GER LIST offers functionality to access the first and the last cell of a list, to add a new cell at
the end, and to look for a specific value in the list. In Figure 1 you see a drawing of a doubly
linked list.

Void

next

previous

18 3

next

previous

next

previous

12
Void

lastfirst

INTEGER_LIST

INTEGER_LIST_CELL INTEGER_LIST_CELL INTEGER_LIST_CELL

Figure 1: Doubly linked list

Read through the class INTEGER LIST CELL in Listing 2. You will need the features of
this class for the rest of the task.

1. Implement the feature extend of class INTEGER LIST (see Listing 1). This feature takes
an INTEGER as argument, generates a new object of type INTEGER LIST CELL with
the given INTEGER as content and puts the new cell at the end of the list. Make sure
that your implementation satisfies the given postcondition of the feature.

2. Implement the feature has of class INTEGER LIST (see Listing 1). This feature checks
if the value it receives as argument is contained in any cell of the list. In the example of
Figure 1, the first cell contains the value 18, the second cell contains the value 3, and the
third one contains the value 12.

Solution

Listing 1: Solution class INTEGER LIST

1 class
INTEGER LIST

3
create

5 make empty

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

7 feature −− Initialization

9 make empty is
−− Initialize the list to be empty.

11 do
first := void

13 last := void
count := 0

15 end

17 feature −− Access

19 first : INTEGER LIST CELL
−− Head element of the list, Void if the list is empty

21
last : INTEGER LIST CELL

23 −− Tail element of the list , Void if the list is empty

25 feature −− Element change

27 extend (a value : INTEGER) is
−− Append a integer list cell with content ‘a value’ at the end of the list .

29 local
el : INTEGER LIST CELL

31 do
create el. set value (a value)

33 if empty then
first := el

35 else
last . set next (el)

37 el . set previous (last)
end

39 last := el
count := count + 1

41 ensure
one more: count = old count + 1

43 first set : count = 1 implies first .value = a value
last set : last .value = a value

45 end

47 feature −− Measurement

49 count: INTEGER
−− Number of cells in the list

51
feature −− Status report

53
has (a value : INTEGER): BOOLEAN is

55 −− Does the list contain a cell with value ‘a value’?
local

57 cursor: INTEGER LIST CELL
do

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

59 from
cursor := first

61 until
cursor = Void or Result

63 loop
if cursor.value = a value then

65 Result := True
end

67 cursor := cursor.next
end

69 end

71 empty: BOOLEAN is
−− Is the list empty?

73 do
Result := (count = 0)

75 end

77 end

Listing 2: Class INTEGER LIST CELL

1 class INTEGER LIST CELL

3 create
set value

5
feature −− Access

7
value : INTEGER

9 −− Content that is stored in the list cell

11 next: INTEGER LIST CELL
−− Reference to the next integer list cell of a list

13
previous : INTEGER LIST CELL

15 −− Reference to the previous integer list cell of a list

17 feature −− Element change

19 set value (x: INTEGER) is
−− Set ‘value’ to ‘x ’.

21 do
value := x

23 ensure
value set : value = x

25 end

27 set next (el : INTEGER LIST CELL) is
−− Set ‘next’ to ‘ el ’.

29 do
next := el

31 ensure

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to programming – Assignments
Fall 2009

next set : next = el
33 end

35 set previous (el : INTEGER LIST CELL) is
−− Set ‘previous’ to ‘ el ’.

37 do
previous := el

39 ensure
previous set : previous = el

41 end

43 end

9

	Terminology (8 points)
	Digital root (10 points)
	Design by Contract (10 Points)
	Doubly linked lists (14 points)

