Software Architecture

ADT solution: BANK_ACCOUNT

Stephan van Staden
1. Balance non-negative

We prove this by induction over the structure of correct bank accounts:

Base case: The bank account is of the form \(\text{new_account}(o) \), and we know \(\text{balance}(\text{new_account}(o)) = 0 \) and that \(0 \geq 0 \).

Step case: The bank account can have one of two forms, where \(a \) is a correct bank account with balance(\(a \)) \(\geq 0 \):

- Form \(\text{deposit}(a,i) \) where \(i \geq 0 \). By axiom A3, we know that \(\text{balance}(\text{deposit}(a,i)) = \text{balance}(a) + i \) which is non-negative because of the induction hypothesis and \(i \geq 0 \).
- Form \(\text{withdraw}(a,i) \) where \(\text{balance}(a) \geq i \geq 0 \). From axiom A4 it follows that \(\text{balance}(\text{withdraw}(a,i)) \geq 0 \).
2. Sufficient completeness (1)

The ADT is not sufficiently complete, since we cannot determine the owner of an account if a deposit or withdrawal was made.

To make it sufficiently complete, we have to add the axioms:

\[
\begin{align*}
A5: \text{owner}(\text{deposit}(a,v)) &= \text{owner}(a) \\
A6: \text{owner}(\text{withdraw}(a,v)) &= \text{owner}(a)
\end{align*}
\]
Let $P(n)$ be the property “for all terms a of type \texttt{BANK_ACCOUNT} with at most n applications of deposit and withdraw, it can be proven 1) whether a is correct or not and 2) whether $\text{balance}(a)$ and $\text{owner}(a)$ are correct or not and if correct, whether they can be reduced to terms not involving \texttt{new_account}, \texttt{owner}, \texttt{balance}, \texttt{deposit} and \texttt{withdraw}”

\textbf{Base case $n=0$:} a is \texttt{new_account}(o), which is correct, and $\text{balance}(a) = 0$ and $\text{owner}(a) = o$. Thus $P(0)$ holds.
2. Sufficient completeness (3)

Step case: We assume the induction hypothesis (IH) $P(n-1)$ and have to prove $P(n)$.

First case: a is deposit(b,i) and the IH applies to terms b and i.

1. Term a is correct iff b and i are correct, which we can determine by IH, and $i > 0$, which we can determine (since we can reduce i to a term not using functions of BANK_ACCOUNT by IH).

2. * balance(a) is correct iff a is correct, which we can determine (see 1). If balance(a) is correct, then balance(a) = balance(b) + i, which can be reduced to a term not using functions of BANK_ACCOUNT by IH. * owner(a) is correct iff a is correct, which we can determine (see 1). If owner(a) is correct, then owner(a) = owner(b), which can be reduced to a term not using functions of BANK_ACCOUNT by IH.
2. Sufficient completeness (4)

Step case (continued)
Second case: \(a \) is withdraw(\(b, i \)) and the IH applies to terms \(b \) and \(i \).

1. Term \(a \) is correct iff \(b \) and \(i \) are correct, which we can determine by IH, and balance(\(b \)) \(\geq i \geq 0 \), which we can determine (since we can reduce balance(\(b \)) and \(i \) to terms not using functions of BANK_ACCOUNT by IH).

2. * balance(\(a \)) is correct iff \(a \) is correct, which we can determine (see 1). If balance(\(a \)) is correct, then balance(\(a \)) = balance(\(b \)) - \(i \), which can be reduced to a term not using functions of BANK_ACCOUNT by IH.

* owner(\(a \)) is correct iff \(a \) is correct, which we can determine (see 1). If owner(\(a \)) is correct, then owner(\(a \)) = owner(\(b \)), which can be reduced to a term not using functions of BANK_ACCOUNT by IH.

QED