Concurrent Object-Oriented Programming

Arnaud Baily, Bertrand Meyer and Volkan Arslan

Formal Logics

- Have a syntax defining (legal) terms.
- Allow reasoning by providing:
 - Axioms defining equality on terms, and/or
 - A semantics defining the meaning of terms accompanied by a semantic equivalence.
- Soundness/Completeness properties may relate the two approaches.
Example: Integer Calculus

- Syntax in (Enhanced) Backus-Naur Form.
- Digit ::= 0 | 1 | ... | 9
- Integer ::= <Digit> | <Integer> <Digit>
- Term ::= <Term> + <Integer>
 | <Term> - <Integer>
 | <Term> * <Integer>
- Equality is symmetric, transitive, reflexive.
- Operators can be associative, commutative, distributive.
- Allows axiomatic reasoning, by tautology.
- How to define "reasonable" equality?

Formalisms are Useful for...

- Understanding (precise definitions).
- Documentation.
- Static analysis:
 - protocol verification,
 - code optimization (e.g. partial evaluation),
 - code validation.
- Code generation.
- Test case generation.
- Execution monitoring.

Functions and Functional Programming

- Mathematical function:
 - taking (positional) parameters \(x_1, x_2, \ldots, x_n \),
 - potentially calling other functions,
 - returning a result.
- The result depends only on \(x_1, x_2, \ldots, x_n \).
- Calls with same parameters yield same result.
- A function defines an input-output relation.
- Functional programming:
 - Functions are 1^{st}-class entities,
 - Extensional equivalence with termination.
 - Programs are more concrete than functions!
Lambda-Calculus [Church 1934]

- Calculus of (sequential) functional programs.

\[t ::= x \mid \lambda x.t \mid tt \]

- Two constructions (operators):
 - lambda-abstraction,
 - function application.

- Infinite but enumerable set of variables.
- Lambda acts as a binding operator.
- The scope of a lambda abstraction extends as far to the right as possible.

Syntactical Aspects (1)

- Occurrences of a variable under a lambda are **bound**.
- Other occurrences are **free**.

\[
\begin{align*}
 f_v(x) & \triangleq [x] & b_v(x) & \triangleq \emptyset \\
 f_v(u) & \triangleq f_v(t) \cup f_v(u) & b_v(t) & \triangleq b_v(t) \cup b_v(u) \\
 f_v(\lambda x.t) & \triangleq f_v(t) \setminus \{x\} & b_v(\lambda x.t) & \triangleq b_v(t) \cup \{x\}
\end{align*}
\]

Syntactical Aspects (2)

- The substitution of \(x \) by \(y \) in \(t \) is noted \(t[y/x] \):

\[
\begin{align*}
 x[t/x] & \triangleq t \\
 z[t/x] & \triangleq z \text{ if } z \neq x \\
 (u \cdot v)[t/x] & \triangleq u[t/x] \cdot v[t/x] \\
 (\lambda y.u)[t/x] & \triangleq \lambda y.u[t/x]
\end{align*}
\]

- Alpha-conversion (renaming) is defined as:

\[\lambda x.t \equiv_y \lambda y.t[y/x] \quad y \notin f_v(t) \]

- We shall assume from now that all terms are considered **modulo alpha-conversion**.
Operational Semantics

- Given as a set of rewriting rules.
- Only 1 rule, Beta-reduction:
 \[(\lambda x.t) u \rightarrow t[u/x]\]
- Defines a transition relation.
- Repeatedly convert and reduce a term to have its semantics, given by transitive closure.
- A reducible part of a term is called a redex.
- Functional application associates to the left.
- Values are non-reducible terms (terminated computations).

Encoding Booleans (1)

\[
\begin{align*}
\text{true} & \triangleq \lambda t. \lambda f. t \\
\text{false} & \triangleq \lambda t. \lambda f. f \\
\text{true} v w & \equiv (\lambda t. \lambda f. t) v w \\
& \rightarrow (\lambda f. v) w \\
& \rightarrow v \\
\text{false} v w & \equiv (\lambda t. \lambda f. f) v w \\
& \rightarrow (\lambda f. f) w \\
& \rightarrow w
\end{align*}
\]

Encoding Booleans (2)

\[
\begin{align*}
\text{not} & \triangleq \lambda b. b \text{ false true} \\
\text{and} & \triangleq \lambda b. \lambda c. b \ c \text{ false} \\
\text{or} & \triangleq \lambda b. \lambda c. b \text{ true c} \\
\text{if} & \triangleq \lambda b. \lambda t. \lambda f. b \ t \ f
\end{align*}
\]
Encoding Pairs (or lists, records...)

- A pair encloses two items \(f \) and \(s \).
- There exist two projection functions \(\pi_1 \) and \(\pi_2 \).
- \(\pi_1: \text{pair } f \rightarrow s \) and \(\pi_2: \text{pair } f \rightarrow s \).
- \(\text{pair}(\pi_1 \ p, \ \pi_2 \ p) \rightarrow p \) where \(p \equiv \text{pair } f \ s \)

\[
\begin{align*}
pair & \triangleq \lambda f. \lambda s. \lambda b. f \ s \\
\pi_1 & \triangleq \lambda p. \ p \ \text{true} \\
\pi_2 & \triangleq \lambda p. \ p \ \text{false}
\end{align*}
\]

Encoding Naturals (1)

A natural \(n \) just applies \(n \) times a given function \(s \) to an argument \(z \)

\[
\begin{align*}
0 & \equiv \lambda s. \lambda z. z \\
1 & \equiv \lambda s. \lambda z. s \ z \\
2 & \equiv \lambda s. \lambda z. s \ (s \ z) \\
3 & \equiv \lambda s. \lambda z. s \ (s \ (s \ z)) \\
& \ : \\
& \end{align*}
\]

Encoding Naturals (2)

Successor: \(\text{succ} \triangleq \lambda s. \lambda z. \lambda n. \ s \ (n \ s \ z) \)

Addition: \(\text{add} \triangleq \lambda m. \lambda n. \lambda s. \lambda z. m \ s \ (n \ s \ z) \)

Multiplication: \(\text{mult} \triangleq \lambda m. \lambda n. m \ (\text{add } n) \ 0 \)

Zero test: \(\text{is}_\text{zero} \triangleq \lambda n. \lambda t. \lambda f. n \ (\lambda x. f) \ t \)
What Can You Do?

- Reason exactly about naturals.
- Encode objects! (almost with what we have seen)
- Write any sequential program (Church-Turing)
 - Haskell, ML, Lisp, Scheme, etc.
- Prove properties?

Imperative Programming

- Problem: encoding a state.
- Similar to semantic function \rightarrow for lambda terms.
- Operational semantics:
 - give a function from states to states.
 - Repeat it as long as possible.
- Computation finished when:
 - semantic function not applicable, or
 - Function yields always the same state (fixpoint).
- The result is contained in variable Result.
- In practice: $\lambda x.t$ becomes $\lambda x.\lambda s.t'$ where s associates variables to values.

Example of State Encoding

```c
function fact(int n) is
int result = 1;
while n > 1 do
    result = result * n;
    n := n - 1;
end;
return result;
end;

function fact_rec(int n, int result) is
    if n > 1 then return fact_rec(n-1, n * result);
    else return result;
end
```
Modeling Concurrency

```
x := 1
y := 1
```

```
Cbegin
  x := y + 1
  y := x + 1
Cend
```

- The `choice` operator can be used for expansion:

 \[(x := y + 1 \parallel y := x + 1) = (x := y + 1; y := x + 1) + (y := x + 1; x := y + 1) + (z := y + 1; y := x + 1; x := z)\]

Non-Determinism in Lambda

```
\[
\begin{align*}
\mu & \quad t \rightarrow t' \\
\nu & \quad t u \rightarrow t' u \\
\xi & \quad \lambda x.t \rightarrow \lambda x.t' \\
\end{align*}
\]
```

Encoding Non-Determinism?

- **It does not work!**
- Because of one property named either diamond, Church-Rosser, or confluence.
- In short: the order of reductions does not matter.
Example

- Although a lambda-term can have more than one redex:

\[
\text{add}(3, \text{mult}(2, 6))
\]

\[
3 + \text{mult}(2, 6) \quad \text{add}(3, 12)
\]

\[
15
\]

- One can hardly say this models concurrency!

Calculi for Concurrency

- Have (internal) non-deterministic operators:
 - CCS,
 - CSP,
 - Pi-Calculus,
 - Ambients...
- Next Time!