This is the proof as done with the help of the class, on-the-spot. It was spur-of-the-moment and hasn’t been checked in any deep way. For a systematic treatment see "Object-Oriented Software Construction, second edition", pages 156-159.

Example of a stack expression:

\[e = \text{put} (\text{put} (\text{put} (\text{remove} (\text{put} (\text{new}, x), y)...)) \]

Property to prove:

For any well-formed stack expression \(e \), the axioms are powerful enough to yield the value of: \(\text{empty} (e) \)

Proof:

Induction on \(n \): number of parenthesis pairs in a well-formed stack expression.

1) Base step:

Prove induction hypothesis for \(n = 0 \).

\[e = \text{new} \]
\[\text{empty} (e) = \text{True} \]

PROVED!

2) Induction step:

Assume, for \(n > 0 \), that for any expression \(f \) of size \(< n \), we can compute:

\[\text{empty} (f) \]

We must prove that for any expression \(e \) of size \(n \), we can compute:

\[\text{empty} (e) \] if this is a well-formed expression.

Let \(e \) be an expression of size \(n > 0 \)
We are interested in \(\text{empty} (e) \)

\(e \) is of one of the forms

\[\text{item} (f) \quad \text{-- empty} (e) \text{ is not well-formed} \]
\[\text{empty} (f) \quad \text{-- empty} (e) \text{ is not well-formed} \]
\[\text{put} (f, x) \]
\[\text{remove} (f) \]

where \(f \) is an expression of size \(n - 1 \)

Case 1: \(e = \text{put} (f, x) \)
Then axiom 4 says \(\text{empty} (\text{put} (f, x)) = \text{false} \) OK!
Case 2: $e = \text{remove}(f)$

Then the number of parenthesis pairs of e is $m + 1$

where m = the number of parenthesis pairs of f

LEMMA:

In a correct expression (well-formed of course),

$\#\text{remove} \leq \#\text{put}$

END OF LEMMA

From the lemma, we know there is at least one "put" in f

Consider an outermost such "put"

It is enclosed in a "remove"

So e has a subexpression of the form $\text{remove}(\text{put}(g, x))$

(which can be e itself, or a proper subexpression)

OK, so we can replace that subexpression by g

without changing the value of e

Let e' be the result of that change

We know that $e = e'$ from axiom 2

e' has $m-1 = n-2$ parenthesis pairs

For which the result holds thanks to the induction hypothesis.

End.