
1

Middleware
Till G. Bay, May 18th, 2006

2

Looking back…

• Input- and output streams
• Sockets
• Threads
• Client-Server

3

Distributed Systems

Client

Server

Client

Client Client

Peer Peer

Peer Peer

PeerClient

Server

Client

Client Client

Client

Server

Client

Client Client

Client

Server

Client

Client Client

Peer Peer

Peer Peer

Peer

Peer Peer

Peer Peer

Peer

Peer Peer

Peer Peer

Peer

4

Same needs

Client

Server

Client

Client Client

Peer

Peer
Peer

Peer

Peer

• Communication of data over the network
• Calling methods on remote object

5

Middleware

• Abstraction
– Proxy (stub) for the remote object, mimics it

and redirects invocations to it
– Globally unique object reference/name
– Communication handling (most commonly a

TCP socket)

6

Interaction Scheme

client server

Network channel

stub skeleton

consumer producer

7

Invocation
• Transform messages and send to the «other

side»
– Marshalling

• The «other side»: skeleton
– Serverside counterpart to stub
– Extracts request arguments from message

(unmarshaling) and invokes the server object
– Marshals return value and sends it to the invoker

side, where stub unmarshals it and returns the
result to invoker

8

Stubs and Skeletons in
Perspective

• Client side: Stub
– Offers same interface than

server object: mimics the
server

– Usually bound to a single
server

– Marshals the request into a
stream of bytes

• Method id (e.g., name)
• Arguments

– Additional features:
• Caching of values
• Load balancing
• Statistics
• …

• Server side: Skeleton
– Represents the server objects
– Bound to a single server
– Sometimes several proxies for

a server
– Unmarshals the request and

calls the corresponding Method
on the server object

– Additional features:
• Persistence
• …

9

Distributed Objects in
perspective

• Object has
– Interface (abstract type)
– Implementation (concrete type)
– Local reference, e.g., value of a monotonically

increased counter, memory address

• «Remote» object has
– Interface for remote invocations
– Implementation
– Global reference, e.g., (host id, process id, obj id)

10

Preview: Further Concepts

• Repositories
– Reference Repository

• Find new remote objects (locate objects, i.e.,
bootstrapping)

– Interface Repository
• Discover new remote object types (browse remote types)

• Advanced concepts
– Dynamic invocations
– Threading

11

Java RMI Overview

• Allow distributed Java Objects
to interact
– Through (remote) method invocations
– Invocations are synchronous (even if there is no reply)
– Fully integrated into Java language
– Remote interfaces described though Java interfaces

• Separate compilation
– Generate Stubs and Skeletons according to interfaces
– Compile application

12

Java RMI Architecture

Client Server

Transport
Remote Reference Layer

Stubs Skeletons

Application

RMI
System

13

Stub Skeleton Layer
• Stub

– Has same interface than remote object
– Initializes call to remote object
– Marshals arguments to stream
– Passes stream to remote reference layer
– Unmarshals the return value
– Informs the remote reference layer that call is complete

• Skeleton
– Unmarshals arguments from the stream
– Makes up-call to the remote object implementation
– Marshals the return value or an exception onto the stream

14

Example
1. Write the interfaces of the remote (i.e.,

remotely accessible) objects: coarse grained
2. Write the implementations of the remote

objects
3. Write other classes involved: fine grained
4. Compile the application with javac
5. Generate stubs and skeletons with rmic

15

Example: Declaring a remote
interface

• Objects are remotely accessible through their
remote interface(s) only.

• Methods to be exported are declared in an
interface that extends the java.rmi.Remote
interface

• Remote interfaces
• Must be public
• All methods must declare
java.rmi.RemoteException in throws list:
represent exceptions due to distribution

16

A HelloWorld Remote Interface

import java.rmi.*;

public interface Hello extends
Remote {
public void print() throws
RemoteException;

}

17

Implementing a Remote Interface
• Implement the Remote interface

– Abstract class
java.rmi.server.RemoteObject implements
Remote

• Remote behavior for hashCode(), equals() and
toString()

– Abstract class
java.rmi.server.RemoteServer extends
RemoteObject

• Functions to export remote objects

18

Implementing a Remote Interface

• Concrete class
– java.rmi.server.UnicastRemoteObject

extends RemoteServer
• Non-replicated remote object
• Support for point-to-point active object references

(invocations, parameters, and results) using TCP
• Inheritance: subclass UnicastRemoteObject

• Note
– Own exceptions must not subtype
RemoteException

19

HelloWorld Implementation

import java.rmi.*;
import java.rmi.server.*;

public class HelloImpl extends
UnicastRemoteObject
implements Hello {

public HelloImpl() throws RemoteException
{ super(); }

public void print() throws RemoteException
{ System.out.println("Hello World"); }

}

20

Constructing a Remote Object

• The Constructor
– Calls the no-argument constructor of the
UnicastRemoteObject class (implicitly or explicitly)

– Which exports a UnicastRemoteObject, meaning that it is
available to accept incoming requests by listening to calls
from clients on an anonymous port

– Throws RemoteException, since the constructor of
UnicastRemoteObject might do so, if the object cannot
be exported

• Communication resources are unavailable
• Stub class cannot be found, …

• Alternative: Delegation
– Explicitly export the object
UnicastRemoteObject.exportObject()

21

Starting a Server

public class HelloServer {

public static void main(String[] args) {
…
Hello hello = new HelloImpl();
// Register object (e.g., naming service)
// What’s up doc?
…

}
}

22

Starting a Client
public class HelloClient {

public static void main(String[] args) {
…
// Lookup object (e.g., naming service)
Hello hello = …;
// Invoke the remote object
hello.print();
// That’s all folks…

}
}

23

CORBA Overview
• Object model (with calling convention etc.)
• IDL with generators and compilers
• Object Request Broker (ORB)
• System functions as Object Services
• Application support through Common

Facilities / Application Domains
• Conventions (for interfaces and protocols etc.)

• http://www.omg.org

24

Exercise 1: Mini Discussion

• Discuss the following 2 questions each for 3
minutes with your neighbor:

1. Which features of RMI are Java specific?
2. What should be changed to make RMI

programming language independant?

25

RMI vs. CORBA
• RMI
• Java only
• Platformindependence due to Java
• Easy to use

• Using RMI
1. Define java interfaces for remote

classes
2. Create and compile implementation of

the remote classes
3. Create stub and skeleton classes

using the rmic
4. Create and compile server application
5. Create and compile client to access

remote objects
6. Start RMI registry and server app.
7. Test client

CORBA
• Heterogeneous Systems
• Platformindependence due to

language independance
• More elaborate architecture

Using CORBA
1. Define IDL interfaces of remote

classes
2. Create stub and skeleton classes

using idl∗
3. Create and compile implementation of

the remote classes
4. Create and compile server application
5. Create and compile client to access

remote objects
6. Start server
7. Test client

26

Exercise 2: Mini Discussion
Discuss the following question for

3 minutes with your neighbor

What are the advantages of a technology
independant component model for
distributed applications?

27

Object Model Architecture: OMA

• OMG’s reference architecture:
Object Management Architecture
Application Interfaces Common FacilitiesDomain Interfaces

Object Services

Object Request Broker (ORB)

Provided by Products

28

Application Interfaces Common FacilitiesDomain Interfaces

Object Services

Object Request Broker (ORB)

Provided by Products

OMA
Application Interfaces
Developed for specific
application not part of CORBA infrastructure

Object Services
Domain independent interfaces used by many distributed applications.
Examples: Naming Service, Trading Service

Common Facilities
Commonly used facilities used in end-user applications.
Examples: GUI Library, Internationalization framework

Domain Interfaces
Like Object Services and Common Facilities but targeted to a specific
application domain
Examples: Telecommunication, Medical, Financial

ORB
Infrastructure propagating method calls, relating objects to each other.

29

Object Services
• Base Services as system-wide infrastructure

(not all implemented and not all fully specified)
• COSS (Common Object Services Specification)

(CORBA conforming products must provide these)
• Eventhandling, Persistence,
• Naming, Lifecycle,
• Transactions, Time,
• Security, Licensing,
• Trading, Replication,
• Concurrency, Externalization

Object Services
COSS

30

Client

Communication of Objects

• ORB Core

Object Request Broker (ORB)

request

Server

31

ORB: Object Request Broker

Implementation RepositoryInterface Repository

Static
IDL

Skeletons

Dynamic
Skeleton
Interfaces

Object Adapters

Static
IDL

Stubs

Dynamic
Invocation
Interface

ORB
Interface

ORB
Interface

Client

ORB-Core Client side ORB-Core Server side

Server

N
et

w
or

k

32

NameService

Client

Object Request Broker (ORB)
N

am
e

Se
rv

ic
e

Server

33

Other initial Services

• Collection service
• Concurrency service
• Event service
• Externalization service
• Licensing service
• Life cycle service
• Notification service
• Persistent state service

• Property service
• Query service
• Relationship service
• Security service
• Telecoms log service
• Time service
• Trading object service
• Transaction service

34

Need a Semester or Master
Thesis?

SEmasters: May 30. 2006, IFW E42, 16.00

The Chair of Software Engineering
presents the Thesis topics that are
available

35

Article to read

• TSpaces
http://www.almaden.ibm.com/cs/TSpace
s/papers/ComputerNetworks.pdf

