
C# Programming - Student Project

Assignment 2 – (50 points)

1 Introduction

In this assignment, you are required to extend the results of first assignment to implement a fully
workable chess game, which allows human being (the white player) to play with the computer
(the black player). The goal of this assignment is to exercise your skills in WinForms, event-based
and multithread programming.

You will have to implement the following features of the game:

− Provide a graphical chess board so that each piece can only be moved to a legal
position on the board.

− Implement the computer player component that can give the move of black player at
each step.

− Implement a multithread program.
− Allow players to redo/undo any moves.

2 GUI requirement

The GUI of the chess program looks similar to the following one:

As seen in the above picture, the GUI should include a chess board, an area to show the
captured pieces (blue squares in above picture), a history list and some common commands (for
example, redo, undo and reset).

The item “File” in the menu includes the following subitems:

• New
o This item starts a new chess game and renders the initial positions of the

pieces on the board

C# Programming - Student Project

Assignment 2 – (50 points)

• Load
o Open a position file recorded in the Forsyth notation, calculate the next

move of the black player and render the result on the board.
o Do not consider the moves depending on history (such as En passant,

castling, etc).
• Open

o Open a game file “*.chess”. The format of the game file is introduced in
section 2.1.

o Set the piece positions and the move history.
o Start to play from the current position.

• Save as…
o Save the current game into a game file

• Exit
o Exit the game without saving the state.

The item “Action” in the menu includes the following subitems:

• Redo
o Reverse the latest undo command. This item has an effect if there exists

an undo command to reverse only.
• Undo

o Undo the latest move
• Reset

o Reset the board to the initial state of the game.

The item “Help” in the menu includes the following subitem:

• About
o Show your name and the version of your game application

2.1 Format of a game file

A game file *.chess is composed of two parts: the current position of the pieces recorded in the
Forsyth notation and the history of the moves recorded in the algebraic notation. The format of
the game file is defined as follows:

[position]
position area
[move history]
move area

For example, in the following board, the corresponding game file is listed on the right side.

C# Programming - Student Project

Assignment 2 – (50 points)

[position]
rnbqkbnr;
pppp1ppp;
8;
4p3;
5P2;
8;
PPPPP1PP;
RNBQKBNR
[move history]
1. f2-f4 e7-e5

Notice that except for the last line in the position area, a semicolon separates each description of
the rows. Finally notice that each move in the move area is numbered, and is not followed by any
delimiter.

3 Funct ional Requirements

3.1 AI component

As a minimal requirement for the AI part, the program shall find the optimal move when the white
player can be checkmate in one step:

Optimal move: ... Bh5-f3

Optimal move: ... Rc6-g6

Furthermore, 5 extra points are given if the program returns the optimal next move when the
white player can be defeated in two steps:

C# Programming - Student Project

Assignment 2 – (50 points)

Optimal moves:

1. ... Qh3xh2

2. Kh1xh2 Rf6-h6

Another minimal requirement for the AI is that a king under attack shall escape if possible.

The next move shall be: ... Kg8-h8

The next move shall be: ... Qe3-h6

3.2 Multithreading

The application should be implemented as a multithreading application. The program should still
be responsible when it is performing some lengthy task for the user. The details regarding
implementing a multithreading GUI application will be illustrated in the exercise section on May
17th.

4 Program structure

We would like to suggest you to adopt the Model/View/Controller (MVC) architecture in the design
of your program’s overall structure. This model was first introduced with Smalltalk-80, and

C# Programming - Student Project

Assignment 2 – (50 points)

includes following three parts [1]:

− Model: The domain-specific representation of the information on which the application
operates.

− View: Renders the model into a form suitable for interaction, typically a graphical-
interface element.

− Controller: Event handlers that trigger changes on the model.

Although MVC comes in different flavors, the working behavior looks as follows:

1. The user interacts with the graphical interface in some way (e.g., user presses a button)
2. A controller handles the input event from the graphical interface via a registered handler

or callback.
3. The controller accesses the model possibly updating it in a way appropriate to the user's

action (e.g., controller updates user's shopping cart).
4. A view uses the model to generate an appropriate graphical interface (e.g., view

produces a screen listing the shopping cart contents). The view gets its own data from
the model. The model has no direct knowledge of the view. (However, the observer
pattern can be used to allow the model to indirectly notify interested parties – potentially
including views – of a change.)

5. The user interface waits for further user interactions, which begins the cycle anew.

5 Code Del ivery

Requirements:

1. The delivered code has to comply with the design guidelines [2].

2. The program has to compile with Visual Studio 2005 and the .Net Framework 2.0 under
Windows XP.

3. The program has to run under Windows XP with the .Net Framework 2.0.

4. The application should give the next move in a reasonable amount of time (a few
seconds).

Deadline: June 21st

Implementation tasks and point assignment:

• Graphic chess board (10 points)
o GUI
o File -> Load
o File -> Open
o File -> Save as
o File -> Exit
o Help -> About

• AI component (10 + 5 points, 10 points for minimal requirement, 5 points for extra

requirement specified in AI requirement)

C# Programming - Student Project

Assignment 2 – (50 points)

• Redo/Undo moves (10 points)
• Multithreading (15 points)

Delivered document:

• Source code

References

[1] MVC:
http://en.wikipedia.org/wiki/Model-view-controller

