
C# Programming in Depth
Prof. Dr. Bertrand Meyer

March 2007 – May 2007

Chair of Software Engineering

Lecture 2: C# Fundamentals

Lisa (Ling) Liu

C# programming lecture 2: C# fundamentals 2

Overview

Simple example
Comment
Namespace
Class and instance
Common Type System
Boxing and Unboxing
Control Statements

C# programming lecture 2: C# fundamentals 3

Example

//===
// File: HelloWorld.cs
// This program prints a string called "Hello, World!”
//===

using System;

namespace MyApp
{

class HelloWorld
{

static void Main (string[] args)
{

Console.WriteLine(“Hello, World!”);
}

}
}

program specifications
library imports

class and namespace
definitions

C# programming lecture 2: C# fundamentals 4

Enter C#

A hybrid language
incorporating features
from C++ and Java (and
Smalltalk, and…)
Looks a lot like Java,
with keywords from
C/C++
Object oriented
Has a virtual machine,
and garbage collection,
among other Java
parallels

Operating System

CLR (Common
Language Runtime)

Your C# app .NET Framework
Class Libraries

C# programming lecture 2: C# fundamentals 5

Comment

C/C++ comments:
//
/*...*/

//================
// File: HelloWorld.cs
// prints "Hello, World!”
//================

Comments making use of
XML elements
///
/** ...*/

///<summary>
/// File: HelloWorld.cs
/// prints "Hello, World!”
///</summary>

Using C# compiler to genreate document

csc /doc:XmlHello.xml HelloWorld.cs

C# programming lecture 2: C# fundamentals 6

Namespace

A namespace in C# is a collection of associated types.
Make use of existing namespaces (packages, libraries or
APIs)
using System;

Define custom namespaces
namespace MyClasses
{

class MyClass1
{

...
}

}

C# programming lecture 2: C# fundamentals 7

Declare a class

Assume a class “C” is defined in namespace “N”:
unqualified form
using N;
C object_c;

qualified form
N.C object_c;

C# programming lecture 2: C# fundamentals 8

Class and instance

Define Classes
A class is a definition for a user-defined type (UDT)

Create Instances
use “new” keyword

MyClass c = new MyClass();

C# programming lecture 2: C# fundamentals 9

Access modifier

Defines a method whose access is limited to the
current assembly or types derived from the defining
class in the current assembly.

protected internal

Defines a method that is accessible by any type in
the same assembly, but not outside the assembly.

internal

Marks a member as usable by the defining class, as
well as any derived classes. Protected methods,
however, are not accessible from an object variable.

protected

Marks a method as accessible only by the class that
defined the method. In C#, all members are private
by default.

private

Marks a member as accessible from an object
variable as well as any derived classes

public

Meaning in LifeC# Access Modifier

C# programming lecture 2: C# fundamentals 10

Constructors

public default constructor
provided automatically
no arguments
ensure all member data is set to an appropriate
default value (contrast to C++, where uninitialized
state data points to garbage)
once you define a custom constructor , the free
constructor is removed!

C# programming lecture 2: C# fundamentals 11

class MyClass
{

string myMsg;
public MyClass (string msg)
{

myMsg = msg;
}

}

class MyApp
{

MyClass c;
public Main (string[] args)
{

c = new MyClass();
}

}

error 1: No overload for method MyClass takes ‘0’ argument.

C# programming lecture 2: C# fundamentals 12

Is that a Memory Leak?

never destroy a managed object explicitly
.NET garbage collector frees the allocated memory
automatically
C# does not support a delete keyword

C# programming lecture 2: C# fundamentals 13

Constructor definition

named identically to the class under construction
never provide a return value (not even void)
can provide access modifier

class HelloClass
{

HelloClass()
{

Console.WriteLine("Default");
}
...

}

C# programming lecture 2: C# fundamentals 14

private constructor

It is commonly used in classes that contain static
members only.

If a class has one or more private constructors and no
public constructors, then other classes (except nested
classes) are not allowed to create instances of this class.

C# programming lecture 2: C# fundamentals 15

public class Counter
{

private Counter() { }
public static int currentCount;
public static int IncrementCount()
{

return ++currentCount;
}

}

class TestCounter
{

static void Main()
{

Counter.currentCount = 100;
Counter.IncrementCount();
System.Console.WriteLine("New count: {0}",
Counter.currentCount);

}
}

C# programming lecture 2: C# fundamentals 16

Class-leve and Instance-level members

Class-Level Members (Defined using static keyword)
Class Fields
Class Methods
Class Constructors

Instance-Level Members
Instance Fields
Instance Methods
Instance Constructors

static methods can operate only on static class members

C# programming lecture 2: C# fundamentals 17

static members (class-level members)

declaring a field or method with the static key word,
tells the compiler that the field or method is associated
with the class itself, not with instances of the class.

static or "class" fields and methods are global variables
and methods that you can access using the class name.

class TestCounter
{

static void Main()
{

Counter.currentCount = 100;
Counter.IncrementCount();
System.Console.WriteLine("New count: {0}",
Counter.currentCount);

}
}

C# programming lecture 2: C# fundamentals 18

static members ...
There is only one copy of the static fields and methods in
memory, shared by all instances of the class

static fields are useful when you want to store state
related to all instances of a class

static methods are useful when you have behavior that is
global to the class and not specific to an instance of a
class

C# programming lecture 2: C# fundamentals 19

class A
{

public int x;
public void Increase()
{

x = x+1;
}

}

class program
{

static void Main (string[] args)
{

A a1 = new A();
a1.Increase;
A a2 = new A();
a2.Increase;
Console.WriteLine(a1.x);

}
}

C# programming lecture 2: C# fundamentals 20

class program
{

static void Main (string[] args)
{

A a1 = new A();
a1.Increase;
A a2 = new A();
a2.Increase;
Console.WriteLine(A.x);

}
}

class A
{

public static int x;
public void Increase()
{

x = x+1;
}

}

C# programming lecture 2: C# fundamentals 21

How to initialize the values of static fields?

static constructor

class A
{

public static int x;
static A ()
{

x = 0;
}
public void Increase()
{

x = x+1;
}

}

How to use static
constructor?

C# programming lecture 2: C# fundamentals 22

Notes regarding Static Constructor

A given class (or structure) may define only a single
static constructor.
A static constructor executes exactly one time,
regardless of how many objects of the type are created
A static constructor does not take an access modifier
and cannot take any parameters.
The runtime invokes the static constructor when it
creates an instance of the class or before accessing the
first static member invoked by the caller.
The static constructor executes before any instance-
level constructors.

C# programming lecture 2: C# fundamentals 23

Data Types

Object

Stack Allocated Heap Allocated

• Value Types

– Primitives

– Enumerations

– Structures

• Deallocated when
defining blocks exits

• Reference Types

– Classes

– Interfaces

– Arrays

– Delegates

– String

• Garbage collected

C# programming lecture 2: C# fundamentals 24

C# Primitive Types and System Types

No
Yes
Yes
No
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

System.SByte
Sytem.Byte
System.Int16
System.UInt16
System.Int32
System.UInt32
System.Int64
System.UInt64
System.Char
System.Single
System.Double
System.Boolean
System.Decimal
System.String
System.Object

sbyte
byte
short
ushort
int
uint
long
ulong
char
float
double
bool
decimal
string
object

CLS CompliantSystem TypeC# Primitive
Type

C# programming lecture 2: C# fundamentals 25

Default values of variables

Class member variables:
bool: false
Numeric type: 0 or 0.0
string: null
char: ‘\0’
Reference type: null

Local variables:
local variables must be initialized by using them

C# programming lecture 2: C# fundamentals 26

Struct

Structs are defined using the struct keyword
A struct type is a value type that is suitable for representing
lightweight objects such as Point, Rectangle, and Color
Structs can declare constructors, but they must take parameters
Structs can implement an interface but they cannot inherit from
another struct. For that reason, struct members cannot be declared
as protected
Structs can also contain constructors, constants, fields, methods,
properties, indexers, operators, events, and nested types, although
if several such members are required, you should consider making
your type a class instead

C# programming lecture 2: C# fundamentals 27

public struct CoOrds

{

public int x, y;

public CoOrds (int p1, int p2)

{

x = p1;

y = p2;

}

}

class TestCoOrds

{

static void Main()

{

CoOrds coords1 = new CoOrds();

CoOrds coords2 = new CoOrds(10, 10);
CoOrds coords3;

coords3.x = 10;

coords3.y = 20;

}

}

C# programming lecture 2: C# fundamentals 28

Enumerations
// A custom enumeration

enum EmpType

{

Manager, // = 0
Grunt, // = 1
Contractor, // = 2
VP // = 3

}

// Begin numbering at 102.

enum EmpType

{

Manager = 102,
Grunt, // = 103
Contractor, // = 104
VP // = 105

}
// Elements of an enumeration need
// not be sequential

enum EmpType : byte

{

Manager = 10,
Grunt = 1,
Contractor = 100,
VP = 9

}

By default, the storage
type for each item in

an enumeration maps
to System.Int32

C# programming lecture 2: C# fundamentals 29

Enumerations – bit fields

A enumeration type can be treated as a set of bit fields
with attribute FlagsAttribute
Bit fields are generally used for lists of elements that
might occur in combination, whereas enumeration
constants are generally used for lists of mutually
exclusive elements.

enum SingleHue : short
{

Black = 0,
Red = 1,
Green = 2,
Blue = 4

};
// Define an Enum with FlagsAttribute.
[FlagsAttribute]
enum MultiHue : short
{

Black = 0,
Red = 1,
Green = 2,
Blue = 4

};

static void Main()
{

Console.WriteLine(
"\nAll possible combinations of values of an \n" +
"Enum without FlagsAttribute:\n");

// Display all possible combinations of values.
for(int val = 0; val <= 8; val++)

Console.WriteLine("{0,3} - {1}",
val, ((SingleHue)val).ToString());

Console.WriteLine(
"\nAll possible combinations of values of an \n" +
"Enum with FlagsAttribute:\n");

// Display all possible combinations of values.
// Also display an invalid value.
for(int val = 0; val <= 8; val++)

Console.WriteLine("{0,3} - {1}",
val, ((MultiHue)val).ToString());

}

C# programming lecture 2: C# fundamentals 31

System.Enum base class

.NET enumerations are implicitly derived from
System.Enum
A .NET enumeration type is a value type
Selected static members of System.Enum

Format
GetName
GetNames
GetValues
IsDefined
Parse

C# programming lecture 2: C# fundamentals 32

System.Object

All classes in the .NET Framework are derived from
Object, every method defined in the Object class is
available in all objects in the system, including:

Equals - Supports comparisons between objects.
Finalize - Performs cleanup operations before an
object is automatically reclaimed.
GetHashCode - Generates a number corresponding to
the value of the object to support the use of a hash
table.
ToString - Manufactures a human-readable text
string that describes an instance of the class.

Note: if you override Equals () you should also override GetHashCode ()

using System;
// The Point class is derived from System.Object.
class Point
{

public int x, y;
public Point (int x, int y)
{

…
}

public override bool Equals (object obj)
{

// If this and obj do not refer to the same type, then they are not equal.
if (obj.GetType() != this.GetType()) return false;

// Return true if x and y fields match.
Point other = (Point) obj;
return (this.x == other.x) && (this.y == other.y);

}

// Return the XOR of the x and y fields.
public override int GetHashCode()
{

return x ^ y;
}

// Return the point's value as a string.
public override String ToString()
{

return String.Format("({0}, {1})", x, y);
}

}

C# programming lecture 2: C# fundamentals 34

System.String

string: shorthand for System.String

Even though string is a reference type, the equality
operators “==” and “!=” are defined to compare the value
with the string objects

The value of a string cannot be modified once
established. Thus modifying a string in fact return a new
object containing the modification

.NET data types provide the ability to parse a string to
corresponding value

Bool myBool = bool.Parse (“True”);
int myInt = int.Parse (“8”);
char myChar = char.Parse (“w”);

C# programming lecture 2: C# fundamentals 35

Escape characters

Insert a horizontal tab\t

Insert a carriage return\r

Insert a new line\n

Triggers a system alert (beep)\a

Insert a backslash\\

Insert a double quote\”

Insert a single quote\’

MeaningCharacter

C# programming lecture 2: C# fundamentals 36

Verbatim strings

The @-prefixed string is called verbatim string, which is
used to disable the processing of escaped characters in
the string

For example:
Console.WrteLine (@”c:\My Documents\My Videos”);
Console.WriteLine (@”This is a ““value-type”” variable!”);

C# programming lecture 2: C# fundamentals 37

System.Text.StringBuilder

This class represents a string-like object whose value is
a mutable sequence of characters

using System.Text;

…

StringBuilder myBuffer = new StringBuilder (“my string”);

myBuffer = myBuffer.Append (“contains some characters.”);

C# programming lecture 2: C# fundamentals 38

.NET Array types

Arrays are references and derive from the common base
class System.Array
By default, arrays always have a lower bound zero
Elements in an array are automatically set to their
default values unless you indicate otherwise
Declare an array

string[] books = new string[3];
int[] n2= new int[] {20, 22, 23, 0};
int[] n3 = {1, 2, 3, 4, 5};
int[,] matrix = new int[5,5];

int[][] jagArray = new int[5][];
for (int i=0; i<jagArray.Length; i++)

jagArray[i] = new int[i+7];

C# programming lecture 2: C# fundamentals 39

Memory locations for value types

C# programming lecture 2: C# fundamentals 40

Memory locations for reference type

C# programming lecture 2: C# fundamentals 41

Method parameter modifies

The value is initially assigned by the caller, and may be
optionally reassigned by the called method (as the data is
also passed by reference). No compiler error is generated
if the called method fails to assign a ref parameter

ref

This parameter modifier allows you to send in a variable
number of identically typed arguments as a single logical
parameter. A method can have only a single params
modifier, and it must be the final parameter of the method.

params

Output parameters are assigned by the method being
called (and therefore passed by reference). If the called
method fails to assign output parameters, you are issued a
compiler error.

out

If a parameter is not marked with a parameter modifier, it
is assumed to be passed by value, meaning the called
method receives a copy of the original data.

(none)
Meaning in LifeParameter Modifier

C# programming lecture 2: C# fundamentals 42

out Modifier

variables passed as output variables are not required to
be assigned before use.
allows the caller to obtain multiple return values from a
single method invocation.

C# programming lecture 2: C# fundamentals 43

ref Modifier

ref parameters don't pass the values of the variables
used in the function member invocation - they use the
variables themselves

difference between ref and out
out: actual output parameters do not need to be
initialized before they are passed to the method
ref: actual reference parameters must be initialized
before they are passed to the method

Although ref and out are treated differently at run-time,
they are treated the same at compile time

class RefOut_Example

{

// compiler error CS0663: "cannot define overloaded

// methods that differ only on ref and out"

public void SampleMethod (ref int i) { }

public void SampleMethod (out int i) { }

}

C# programming lecture 2: C# fundamentals 45

params Modifier

a parameter that can be passed a set of identically
typed arguments

static int Add (ref int x, int y, out int sum, params int[] a)
{

sum = x+y;
x = -1;
y = -2;
foreach (int i in a)

sum = sum + i;
return sum;

}

static void Main ()
{

int param1, param2, ant;
param1 = 100;
param2 = 200;
Console.WriteLine ("sum = {0}, param1 = {1}, param2={2}", Add(ref

param1, param2, out ant, 1,2,3), param1, param2);
}

C# programming lecture 2: C# fundamentals 47

Assignment Operator

Simple Assignment
value types: copy value
reference types: copy reference

Value Types Containing Reference Types
assignment results in a copy of the references

C# programming lecture 2: C# fundamentals 48

Parameter

By default
value type: passed by value
reference type: passed by reference

Passing Reference Types by Value
may change the values of the object’s state
cannot reassign the object reference

Passing Reference Types by Reference
the callee may change the values of the object’s state
data as well as the object it is referencing.

C# programming lecture 2: C# fundamentals 49

Boxing and Unboxing

Boxing
convert a value type to a reference type

Unboxing
convert the value held in the object reference
back into a corresponding value type

begin by verifying that the receiving data type
is equivalent to the boxed type

int v = 5;
object o = b; //Box v
int i = (int) o; //Unbox o; type must match

C# programming lecture 2: C# fundamentals 50

Practical (Un)Boxing examples

C# compiler automatically boxes variables when
appropriate

Boxing and unboxing types takes some processing time

public class System.Collections.ArrayList :
...
{

...
public virtual int Add (object value);
...

}

staic void Main ()
{

...
ArrayList myInts = new ArrayList ();
myInts.Add (88);
myInts.Add (3.33);
...
int firstItem = (int) myInts[0];

}

C# programming lecture 2: C# fundamentals 51

Control Statements

Decision Costructs
if / else statement
switch statement

Iteration Contructs
for loop
foreach loop
while loop
do/while loop

C# programming lecture 2: C# fundamentals 52

Relational and logic operaors

Relational operators:
==, !=, <, >, <=, >=

Logical operators:
&&, ||, !

C# programming lecture 2: C# fundamentals 53

if / else Statement

string thoughtOfTheDay = “You can study
at any time!”;

if (thoughtOfTheDay.Length() != 0)
{

...
}

else

{

...

} Note: no elsif

C# programming lecture 2: C# fundamentals 54

Switch Statement

string langChoice = Console.ReadLine();

switch (langChoice)

{

case "C#":

Console.WriteLine("Good choice, C# is a fine language.");

break;

case "VB":

Console.WriteLine("VB .NET: OOP, multi-threading and more!");

break;

default:

Console.WriteLine("Well...good luck with that!");

break;

}

// can evaluate string expression

// each case must have a terminal break or goto

C# programming lecture 2: C# fundamentals 55

for Loop

for (int i = 0; i < 10; i++)
{

Console.WriteLine("Number is: {0} ", i);
}
// 'i' is not visible here.

C# programming lecture 2: C# fundamentals 56

foreach Loop

string[] books = {"Complex Algorithms",

"Do you Remember Classic COM?",

"C# and the .NET Platform"};

foreach (string s in books)

{ Console.WriteLine(s); }

C# programming lecture 2: C# fundamentals 57

while Loop

string userIsDone = "no";
while (userIsDone != "yes")
{

Console.Write("Are you done? [yes] [no]: ");
userIsDone = Console.ReadLine();
Console.WriteLine("In while loop");

}

C# programming lecture 2: C# fundamentals 58

do / while Loop

string ans;
do
{

Console.WriteLine("In do/while loop");
Console.Write("Are you done? [yes] [no]: ");
ans = Console.ReadLine();

} while (ans != "yes");

C# programming lecture 2: C# fundamentals 59

Questions?

