
A Rewrite Stack Machine forROC!
Georgiana Caltais Eugen-Ioan Goriac Dorel Lucanu GheorgheGrigoraş

Faculty of Computer Science
Alexandru Ioan Cuza University

Iaşi, Romania
{gcaltais,egoriac,dlucanu,grigoras}@info.uaic.ro

Abstract—ROC! is a deterministic rewrite strategy language
which includes the rewrite rules as basic operators, and the
deterministic choice and the repetition as high-level strategy
operators. In this paper we present a method which, for a given
term rewriting system (TRS) R, constructs a new TRSR such
that R-rewriting is equivalent (sound and complete) with R-
rewriting constrained by ROC! . SinceR uses a stack, it is called
a rewrite stack machine.

I. I NTRODUCTION

Rewriting strategies are expressions built over a strategy
language used for controlling the rewrite rule application.
Roughly speaking, a strategy expression describes which com-
putations (rewrite sequences), among all the possible ones, are
appropriate for a given purpose. A rewriting strategy language
consists of expressions built using rewrite rules and strategy
operators. Various approaches have been followed, yielding
slightly different strategy languages such asELAN [1], [2],
Stratego [3], TOM [4], or Maude [5]. All these provide flexible
and expressive strategy languages where high-level operators
are defined by combining low level primitives, and they all
share the concern to provide abstract ways to express control
of rule applications. For instance, forELAN or Stratego,
strategies such as bottom-up, top-down or leftmost-innermost
are higher-order features that describe how rewrite rules should
be applied.

In this paper we consider a simple strategy language, called
ROC! , where the primitives are given by the rewrite rules
applied at top, and the high-level strategy operators are the
deterministic choice, the sequential composition and the repeti-
tion. In spite of its simplicity, this language is powerful enough
and very efficient for metalanguage applications built using the
patterns presented in [6]. A particular application of thiskind
which usesROC! is CIRC [7]. The strategy languageROC! is
parametric in the term rewriting system (TRS) over which it is
defined; letROC! (R) denote the particular language built over
R, i.e., the primitives are given by the rewrite rules inR. The
idea of implementing a rewriting strategy language is different
from the classical ones. A pair(R,ROC! (R)) is “compiled”
into a new TRSR, such thatR-rewriting is equivalent withR-
rewriting constrained byROC! (R). The equivalence is showed
by proving thatR is sound and complete with respect to the
semantics of(R,ROC! (R)).

This work is partially supported by the PNII grant IDEI 393.

The organization of the paper is as follows. Section II
presents a situation where using a strategy language is suited.
Section III defines the concept ofrewriting stack machine.
ROC! strategy language is introduced in Section IV. Section V
presents the specification of a stack machine that evolves
according to the strategy language semantics. The soundness
and completeness of the machine are proved in Section VI.
Appendix A includes an example showing how the stack ma-
chine evolves according to a term rewriting system computing
the Collatz’s function.

II. M OTIVATING EXAMPLE

CIRC [7] is a Maude metalanguage application which
implements the circular coinduction algorithm in order to
prove properties (goals expressed as equations) for a given
equational behavioral specification. CIRC is built using the
patterns described in [6]. The procedure for proving a property
uses a set ofrewrite rules that can be applied according to
someproof strategy. Three of the rules implemented for the
CIRC prover are:

• [comm] processes a goal expressing the commutativity
of an operator by adding a special operator and some
equations in their frozen form to the specification. The
rule fails when the current property to be proved is not
a commutativity goal.

• [eqRed] removes an equational goal whenever it can be
proved using ordinary equational reduction. The rule fails
when the left hand side of an equation is different from
the right hand side.

• [ccstep] implements the circularity principle: an equa-
tion’s frozen normalized form is added to the specification
and its derivatives are added to the set of goals. This rule
fails whenever it finds a visible goal which cannot be
proved using ordinary equational reduction.

The following steps describe a possible strategy for the
prover:

1) Try to apply [comm]. If it fails, leave the system state
unchanged.

2) Check whether the first goal is proved using[eqRed]. If
the check fails try to apply[ccstep].

3) Repeat step 2 for as many times as possible.

The first problem is how to specify this kind of strategies.
There are many ways to define rewriting strategies [4], [2], [8],

[1], [3]. A previous version ofCIRC uses regular strategies [9].
However, the union, concatenation and iteration operatorsof
the regular expressions language are not proper for specifying
a behavior like “apply a rule for as many times as possible”
or “apply a rule only if some other rule fails”.

The solution is to use strategy operators appropriate for
specifying these kinds of behavior. We prefer to call the
elements of this strategy languageactions. A basic action is
a rewrite rule. Generally, actions are combined by means of
several operators:⊲ (orelse),◦ (composition) and ! (repeat)
resulting in other actions. For the given example, the action
described by the steps 1 - 3 is:

([comm] ⊲ [id]) ◦ ([eqRed] ⊲ [ccstep])!

where
• [id] leaves the list of goals unchanged. This rule never

fails.
• ⊲ has the semantics of anorelse-like operator. The

system tries to apply[comm] in the first place, and only if
the action does not succeed should it apply[id]. The same
strategy is followed for the rules[eqRed] and [ccstep].

• ◦ has the semantics of a sequential composition operator.
For the example above, the full action is successfully
applied if both([comm] ⊲ [id]) and([eqRed] ⊲ [ccstep])!
are evaluated exactly in this order with success.

• ! imposes that an action is applied for as many times
as possible. In our case, the system stops following the
strategy only when both[eqRed] and [ccstep] fail.

It is obvious that once the set of rules is chosen and
the semantics of the strategy operators is provided, complex
proof strategies can easily be specified in the same manner
previously described.

The second problem is how to implement a system able
to execute a strategy specified using the new language. A
solution like the one described in [8] is not suitable because
applications likeCIRC are metalanguage applications and the
tool described in [8] is used at object level.

In this paper we propose a solution which uses a rewriting
stack machine to supply an executable operational semantics
of the language.

III. R EWRITING STACK MACHINES

In this section we introduce a new way to implement
strategy languages. The general idea is as follows: given a
TRS R and a languageL of strategies over the rules from
R, a new TRSR is defined. The purpose ofR is to apply
the rewrite rules R according to the semantics of the strategy
languageL. SinceR is defined using a stack, it is called a
rewriting stack machine.

We assume that the stack data type is specified by the sorts
Stack for stacks andElt for stack elements, a constantempty

for the stack with zero elements and an operation_;_ : Elt

Stack -> Stack, which is associative and has the identity
empty. The stack behavior is a list of transitionss

∗

−→ s′, each
transition being accomplished using thepush andpop basic
operators. The operationspush andpop are implemented by

rewrite rules:push(E) : S -> E S andpop : E S -> S.
These operations will be embedded in the definition of the
rewriting stack machine.

Let R be a TRS. Consider a sortState for the system
states, so that ifr : u → v if c ∈ R then u and v are
of sort State. Also let L be a strategy language likeROC!
whose elements are calledactions. We follow the line from
[10] and we specify the semantics of an actiona by the relation
(t0..n, r1..n) |= a, meaning that the rewritingt0

r1−→ t1
r2−→

. . .
rn−→ tn is accomplished according to actiona.

For a given term t0 and an actiona, the property
(6∃ t1..j , r1..j) (j ≥ 1) ∧ (t0..j , r1..j) |= a will be abbreviated
under the formt0 ↑ 6|= a. In plain English, this means that
there no rewriting sequence starting fromt0 can be applied
according to actiona.

A rewriting stack machinefor (R,L) is a TRSR with
rewriting rules of the formλ : (t, s) → (t′, s′) if c, wheret,
t′ are of sortState ands, s′ are of sortStack.

For each actiona ∈ L, there are defined an initial term
init(a) of sort Stackinit and a predicate which is used to
identify stacks representing final states (of sortStackfinal).
A pair (t, s) with s of sort Stackfinal cannot be rewritten
according toR. Both Stackinit andStackfinal are subsorts
of Stack.

The relationship between(R,L) andR is expressed by the
following properties:

1) soundness: if (t0, init(a)) −→ . . . −→ (tn, s) with s of
sort Stackfinal then (t0..n, r1..n) |= a

2) completeness: if (t0..n, r1..n) |= a then there is a stack
s′ : Stackfinal so that(t0, init(a))

∗

−→ (tn, s
′)

IV. T HE LANGUAGE ROC!

We present the formal description of the strategy language
used in the current implementation ofCIRC, calledROC!. The
basic actions areRewriting rules and the strategy operators
areOrelse,Composition and !.

The grammar giving the syntax of theROC! language is
expressed as follows:

act ::= r | act ⊲ act | act ◦ act | act !

wherer is the label of a rule from the initial TRSR.
The semantics ofROC! is given by the next definitions:

1) semr : (t0..n, r1..n) |= r
def
⇔

n = 1 ∧ r1 = r ∧ t0
r1−→ t1

2) sem⊲ : (t0..n, r1..n) |= a1 ⊲ a2
def
⇔

(t0..n, r1..n) |= a1∨
(t0↑ 6|= a1 ∧ (t0..n, r1..n) |= a2)

3) sem◦ : (t0..i..n, r1..i..n) |= a1 ◦ a2
def
⇔

(t0..i, r1..i) |= a1 ∧
(ti..n, ri+1..n) |= a2

4) semind
! : (t0..i..n, r1..i..n) |= a!

def
⇔

(t0..i, r1..i) |= a ∧
(ti..n, ri+1..n) |= a!

5) sembase
! : (t, φ) |= a!

def
⇔ t↑ 6|= a

whereφ from the last definition denotes an empty list.

The following propositions are used for proving properties
in Section VI.

Proposition 1: t0↑ 6|= a iff t0↑ 6|= a!
Proof:

We use the proof by contradiction method for both impli-
cations:

1) “⇒” Assume thatt0↑ 6|= a. If (t0..n, r1..n) |= a! then
there is ani so that(1 ≤ i ≤ n) and (t0..i, r1..i) |= a
according tosemind

! , which contradicts the hypothesis.
2) “⇐” Assume thatt0 ↑ 6|= a!. If (∃i ≥ 1) so that

(t0..i, r1..i) |= a, then there must be ann ≥ i so
that (ti..n, ri+1..n) |= a! holds. Hence the statement
(∃n ≥ 1)(t0..n, r1..n) |= a! holds according tosemind

! ,
which contradicts the hypothesis.

Proposition 2: (t0..n, r1..n) |= a! iff (t0..n, r1..n) |= a!!
Proof:

If n = 0 the proof is trivial:
(t0, φ) |= a! iff (t0↑ 6|= a) iff (t0↑ 6|= a!) iff (t0, φ) |= a!!

If n ≥ 0:
1) “⇒” Assume that(t0..n, r1..n) |= a!

It follows from the hypothesis thattn↑ 6|= a. Proposi-
tion 1 implies thattn↑ 6|= a!, hence(tn, φ) |= a!!. It fol-
lows from the definitionsemind

! that(t0..n, r1..n) |= a!!.
2) “⇐” Assume that(t0..n, r1..n) |= a!!

There is ani so that(1 ≤ i ≤ n) and (t0..i, r1..i) |= a!.
It follows thatti↑ 6|= a, which impliesti↑ 6|= a!. Because
tn↑ 6|= a! (from the hypothesis), we obtaini = n, i.e.
(t0..n, r1..n) |= a!.

V. A STACK MACHINE FOR ROC!

The syntactical tree for an action can be specified by a list of
equations. For example, the action exemplified in Section II,
a = ([comm] ⊲ [id]) ◦ ([eqRed] ⊲ [ccstep])!, is specified as
follows:

a = a1 ◦ a2
a1 = comm ⊲ id
a2 = a3!
a3 = eqRed ⊲ ccstep

Let def denote the operator defined as follows: given an
action a, def(a) returns the right hand side of the equation
which definesa. For example,def(a) = a1 ◦ a2, def(a1) =
[comm] ◦ [id], and so on.

We use a stack whose elements are quadruples of the form
〈term, action, remainder, trail〉, where:

• term is either the special termnull or the term of the
system before starting the execution of the action;

• action is the label of the action being processed;
• remainder is the part of the action that remains to be

processed orε when there is nothing left to be processed;
• trail is the list of rules that have successfully been

applied so far from the current action (the empty list is
represented by the symbolφ).

A stack is of sortStackinit if it has only one element
which has the forminit(a)=〈null, a, def(a), φ〉 and of sort

Stackfinal if it has only one element which can be represented
as〈null, a, ε, trl〉. From a final stack we are able to conclude
if the actiona has been successfully executed based on the
valuetrl. As trl is the list of rules that have been successfully
applied according toa, if trl is empty (φ) then the action has
not been executed, and if it is not empty then the action has
been successfully executed.

The behavior of the rewriting stack machine forROC! is
given by two classes of rules. The first class contains rules
compiled from the initial TRSR. Given a ruler : u →
v if c ∈ R, we denote a conditioncko which is semantically
equivalent to the negation ofc. For the uniformity of the
notation,c will be referred to ascok. The next two rules belong
to R:

1) rok : (u, [〈τ, a, r, φ〉;ST]) →
(v, [〈τ, a, ε, r〉;ST]) if cok

2) rko : (u, [〈τ, a, r, φ〉;ST]) →
(v, [〈τ, a, ε, φ〉;ST]) if cko

The second class of rules fromR give the behavior of
the stack machine according to the action currently being
executed. For the uniformity of the notation, the rules from
this class will be overlined:

1) the start of anorelseaction
rlstart⊲ :

(t, [〈τ, a, a1 ⊲ a2, trl〉;ST]) →
(t, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1 ⊲ a2, trl〉;ST])

2) success for the first choice of anorelseaction
rlok⊲ :

(t, [〈τ, a1, ε, trl
′〉; 〈τ, a, a1 ⊲ a2, trl〉;ST]) →

(t, [〈τ, a, ε, trl trl′〉;ST])

3) failure for the first choice starts the second choice
rlko⊲ :

(t, [〈τ, a1, ε, φ〉; 〈τ, a, a1 ⊲ a2, trl〉;ST]) →
(t, [〈τ, a2, def(a2), φ〉; 〈τ, a, ε, trl〉;ST])

4) the end of the second choice (success or failure)
rlmerge

⊲ :
(t, [〈τ, a′, ε, trl′〉; 〈τ, a, ε, trl〉;ST]) →
(t, [〈τ, a, ε, trl trl′〉;ST])

5) the start of asequential compositionaction
rlstart

◦
:

(t, [〈τ, a, a1 ◦ a2, trl〉;ST]) →
(t, [〈t, a1, def(a1), φ〉; 〈τ, a, a1 ◦ a2, trl〉;ST])

6) success for the first part of asequential composition
rlok1

◦ :
(t′, [〈τ ′, a1, ε, trl

′〉; 〈τ, a, a1 ◦ a2, trl〉;ST]) →
(t′, [〈τ ′, a2, def(a2), φ〉; 〈τ, a, a1 ◦ a2, trl trl′〉;ST])

7) failure for the first part of asequential composition
rlko1◦ :

(t′, [〈τ ′, a1, ε, φ〉; 〈τ, a, a1 ◦ a2, trl〉;ST]) →
(τ ′, [〈τ, a, ε, trl〉;ST])

8) success for the second part of asequential composition
rlok2

◦ :

(t′, [〈τ ′, a2, ε, trl
′〉; 〈τ, a, a1 ◦ a2, trl〉;ST]) →

(t′, [τ, a, ε, trl trl′〉;ST]); j ≥ 1

9) failure for the second part of asequential composition
rlko2◦ :

(t′, [〈τ ′, a2, ε, φ〉; 〈τ, a, a1 ◦ a2, trl〉;ST]) →
(τ ′, [〈τ, a, ε, φ〉;ST])

10) the start of arepeataction
rlstart

!
:

(t, [〈τ, a, a1!, trl〉;ST]) →
(t, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1!, trl〉;ST])

11) success for therepeataction
rlok

!
:

(t, [〈τ, a1, ε, trl
′〉; 〈τ, a, a1!, trl〉;ST]) →

(t, [〈τ, a, a1!, trl trl
′〉;ST])

12) failure for therepeataction
rlko

!
:

(t, [〈τ, a1, ε, φ〉; 〈τ, a, a1!, trl〉;ST]) →
(t, [〈τ, a, ε, trl〉;ST])

VI. SOUNDNESS ANDCOMPLETENESS

Generally, a system issoundif when proving that something
is true, it really is true and iscompleteif when something is
true, the system is capable of proving it.

For theROC! stack machine, the soundness and complete-
ness properties are expressed by the following equivalence:

(∀n ≥ 1) (t0, [〈τ, a, def(a), φ〉;ST]) −→ . . . −→
(tn, [〈τ, a, ε, r1..n〉;ST])
iff
(t0..n, r1..n) |= a.

A. Soundness

In order to prove that our stack machine system is sound,
we have to prove that the following theorem holds:

Theorem 1:Let a be aROC! action.
1) If

(t0, [〈τ, a, def(a), φ〉;ST]) −→ . . . −→ (tn, [〈τ, a, ε, r1..n〉;ST])

for somen ≥ 1, then(t0..n, r1..n) |= a.
2) If

(t, [〈τ, a, def(a), φ〉;ST])
∗

−→ (t′, [〈τ, a, ε, φ〉;ST])

then t = t′ and t↑ 6|= a.
Proof: Let P1(def(a)) denote the implication 1) and

P2(def(a)) denote the implication 2), where all the other
variables are universally quantified. We prove(∀a)P1(a) ∧
P2(a) by structural induction ona, wherea ranges over the
expressions occurring in the description of the syntactical tree.
Base step.We assumea = r.
P1(r) : The only rule that can be applied for the initial
configuration is rok. The configuration that follows after
(t0, [〈τ, r, r, φ〉;ST]) is (t1, [〈τ, r, ε, r〉;ST]). The latter is the
final configuration(n = 1). Thereforet0

r
−→ t1, which means

that (t0t1, r) |= r. Basically we have shown thatP1(r) holds.

P2(r) : In order to satisfy the hypothesis, the only possible
transition is:

(t, [〈τ, r, r, φ〉;ST])
rko

−−→ (t, [〈τ, r, ε, φ〉;ST])

It is obvious thatt′ = t and that we cannot find a transition
t

r
−→ t′. According tosemr, t↑ 6|= r holds, henceP2(r) holds.

Induction step.We consider only the casea = a1 ⊲ a2;
the other cases are proved in a similar way. We prove that
P1(a1 ⊲ a2) and P2(a1 ⊲ a2) hold, assuming thatP1(a1),
P1(a2), P2(a1) and P2(a2) hold. Since the syntactical tree
includes the equationsai = def(ai), Pi(def(aj)) also holds
for i, j ∈ {1, 2}.
P1(a1 ⊲ a2): We have to prove that if
(t0, [〈τ, a, a1 ⊲a2, φ〉; ST]) −→ . . . −→ (tn, [〈τ, a, ε, r1..n〉;ST]),
then (t0..n, r1..n) |= a for somen ≥ 1.

From the initial configuration, the first transition in the
stack evolution is:

(t0, [〈τ, a, a1 ⊲ a2, φ〉;ST])
rlstart

⊲−−−−→

(t0, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])

The stack evolution fora1 ⊲ a2 is:

(t0, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])
∗

−→

(t′, [〈τ, a1, ε, trl
′〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])

Two situations are identified:
1) trl′ = φ

In this case we applyP2(def(a1)) and obtaint′ = t0
and t0 ↑ 6|= a1. Given the current stack configuration,
the only possible transition is the one corresponding to
rlko⊲ :

(t0, [〈τ, a1, ε, φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])
rlko

⊲−−→

(t0, [〈τ, a2, def(a2), φ〉; 〈τ, a, ε, φ〉;ST])

Then the rewriting continues as follows:

(t0, [〈τ, a2, def(a2), φ〉; 〈τ, a, ε, φ〉;ST])
∗

−→

(t′′, [〈τ, a2, ε, trl
′′〉; 〈τ, a, ε, φ〉;ST])

The only possible next transition is:

(t′′, [〈τ, a1, ε, trl
′′〉; 〈τ, a, ε, φ〉;ST])

rl
merge
⊲−−−−−→

(t′′, [〈τ, a, ε, trl′′〉;ST])

From the hypothesis ofP1(a1 ⊲ a2) it follows that
t′′ = tn and trl′′ = r1..n. Combining the previous two
rewritings, we obtain:

(t0, [〈τ, a2, def(a2), φ〉;ST’])
∗

−→

(tn, [〈τ, a2, ε, r1..n〉;ST’])

According to P1(def(a2)), we deduce that
(t0..n, r1..n) |= a2. This property, along with the
true statementt0↑ 6|= a1 leads to(t0..n, r1..n) |= a1 ⊲a2.

2) trl′ = r1..i
The only transition that can be applied is the one
corresponding torlmerge

⊲ :

(t′, [〈τ, a1, ε, r1..i〉; 〈τ, a, ε, φ〉;ST])
rl

merge
⊲−−−−−→

(t′, [〈τ, a, ε, r1..i〉;ST])

From the hypothesis ofP1(a1 ⊲ a2) it follows that
t′ = tn and i = n. Now, the following rewriting is
obtained:

(t0, [〈τ, a1, def(a1), φ〉;ST’])
∗

−→

(tn, [〈τ, a1, ε, r1..n〉;ST’])

It follows that (t0..n, r1..n) |= a1 holds byP1(def(a1)),
which implies(t0..n, r1..n) |= a1 ⊲ a2.

The proof ofP2(a1 ⊲ a2) is realized in a similar way.

B. Completeness

In order to prove the completeness of the stack machine
system we have to prove that the following theorem holds:

Theorem 2:Let a be aROC! action.
1) If (t0..n, r1..n) |= a then

(t0, [〈τ, a, def(a), φ〉;ST]) −→ . . . −→ (tn, [〈τ, a, ε, r1..n〉;ST]).

2) If t↑ 6|= a then

(t, [〈τ, a, def(a), φ〉;ST])
∗

−→ (t, [〈τ, a, ε, φ〉;ST]).

Proof: Let Q1(def(a)) denote the implication 1) and
Q2(def(a)) denote the implication 2), where all the other
variables are universally quantified. We prove(∀a)Q1(a) ∧
Q2(a) by structural induction ona, wherea ranges over the
expressions occurring in the description of the syntactical tree.
Base step.We assumea = r.
Q1(r) : According tosemr it follows thatn = 1 andr1 = r.
Since(t0t1) |= r means thatt1 is obtained fromt0 by applying
the ruler, the only possible transition is:

(t0, [〈τ, r, r, φ〉;ST])
rlokr−−→ (t1, [〈τ, r, ε, r〉;ST])

Consequently we obtain thatQ1(r) holds.
Q2(r) : If t ↑ 6|= r then we cannot identifyt′ such that
(tt′, r) |= r, therefore a transitiont

r
−→ t′ is never possible.

The only feasible transition is:

(t, [〈τ, r, r, φ〉;ST])
rko

−−→ (t, [〈τ, r, ε, φ〉;ST])

ThereforeQ2(r) holds.
Induction step.We consider again only the casea = a1 ⊲ a2;
the other cases are proved in a similar way. We prove that
Q1(a1 ⊲ a2) and Q2(a1 ⊲ a2) hold, assuming thatQ1(a1),
Q1(a2), Q2(a1) and Q2(a2) hold. We recall thatQi(aj)
impliesQi(def(aj)) for i, j ∈ {1, 2}.
Q1(a1 ⊲ a2): We have to prove that if(t0..n, r1..n) |= a then

(t0, [〈τ, a, a1 ⊲ a2, φ〉;ST]) −→ . . . −→ (tn, [〈τ, a, ε, r1..n〉;ST]).

The first transition is:

(t0, [〈τ, a, a1 ⊲ a2, φ〉;ST])
rlstart

⊲−−−−→

(t0, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])

By the semantics of⊲, two situations are identified:

1) (t0..n, r1..n) |= a1
Q1(def(a1)) holds, so the rewriting that follows is:

(t0, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])
∗

−→

(tn, [〈τ, a1, ε, r1..n〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])

The only possible transition is the one corresponding
to rlok⊲ :

(tn, [〈τ, a1, ε, r1..n〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])
rlok⊲−−→

(tn, 〈τ, a, ε, r1..n〉;ST])

2) t0↑ 6|= a1 and (t0..n, r1..n) |= a2
By Q2(def(a1)), (t0, [〈a1, def(a1), φ〉;ST′]) evolves
to (t0, [〈a1, ε, φ〉;ST′]). The rewriting continues as
follows:

(t0, [〈τ, a1, def(a1), φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])
∗

−→

(t0, [〈τ, a1, ε, φ〉; 〈τ, a, a1 ⊲ a2, φ〉;ST])
rlko

⊲−−→

(t0, [〈τ, a2, def(a2), φ〉; 〈τ, a, ε, φ〉;ST])

Q1(def(a2)) holds, therefore:

(t0, [〈τ, a2, def(a2), φ〉; 〈τ, a, ε, φ〉;ST])
∗

−→

(tn, [〈τ, a2, ε, r1..n〉; 〈τ, a, ε, φ〉;ST])

Now, the only possible transition is:

(tn, [〈τ, a2, ε, r1..n〉; 〈τ, a, ε, φ〉;ST])
rl

merge
⊲−−−−−→

(tn, [〈τ, a, ε, r1..n〉;ST])

Combining all the rewritings above, we obtainQ1(a1 ⊲a2).
In the same manner it can be shown thatQ2(a1 ⊲a2) holds.

VII. C ONCLUSION

This paper introduces a strategy language for specifying
three kinds of behavior for a TRS:

• perform an action only if some other action fails
• perform two actions sequentially
• perform an action for as many times as possible

where an atomic action is the application of a rule at the top.
The language is implemented using a stack machine system
which is proved to be both sound and complete.

We have successfully managed to specify proof strategies
in this new manner forCIRC after adding the stack machine
implementation to the prover source code.

It is worth mentioning that if the sequential composi-
tion operator is not required, the rewriting stack machine is
simplified. In this case, the structure of the stack elements
is simplified from a quadruple to a triple, by eliminating
the term component. This component is no longer required
because during the evolution of the system there is no need
to turn back to a previous term (this is needed only when
trying to execute an action of the forma1 ◦ a2). An example
emphasizing this situation is provided in Appendix A.

REFERENCES

[1] C. Kirchner, H. Kirchner, and M. Vittek, “Designing Constraint Logic
Programming Languages using Computational Systems,” inPrinci-
ples and Practice of Constraint Programming. The Newport Papers.,
P. Van Hentenryck and V. Saraswat, Eds. MIT Press, 1995, ch. 8, pp.
131–158.

[2] P. Borovanský, C. Kirchner, H. Kirchner, and C. Ringeissen, “Rewriting
with Strategies in ELAN: A Functional Semantics,”Int. J. Found.
Comput. Sci., vol. 12, no. 1, pp. 69–95, 2001.

[3] E. Visser, “Stratego: A Language for Program Transformation based
on Rewriting Strategies. System Description of Stratego 0.5,” in RTA,
ser. Lecture Notes in Computer Science, A. Middeldorp, Ed.,vol. 2051.
Springer-Verlag, 2001, pp. 357–361.

[4] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles,
“Tom: Piggybacking Rewriting on Java,” inRTA, ser. Lecture Notes in
Computer Science, F. Baader, Ed., vol. 4533. Springer-Verlag, 2007,
pp. 36–47.

[5] N. Martı́-Oliet, J. Meseguer, and A. Verdejo, “Towards aStrategy Lan-
guage for Maude,”Electronic Notes in Theoretical Computer Science,
vol. 117, pp. 417–441, 2005.

[6] E. Goriac, G. Caltais, D. Lucanu, O. Andrei, and G. Grigoraş, “Patterns
for Maude Metalanguage Applications,” inProceedings of WRLA, 2008.

[7] D. Lucanu and G. Roşu, “Circ: A Circular Coinductive Prover,” in 2nd
Conference on Algebra and Coalgebra in Computer Science (CALCO
2007), ser. Lecture Notes in Computer Science, T. Mossakowski and
et al., Eds., vol. 4624. Springer, 2007, pp. 372–378.

[8] S. Eker, N. Martı́-Oliet, J. Meseguer, and A. Verdejo, “Deduction,
strategies, and rewriting,”Electron. Notes Theor. Comput. Sci., vol. 174,
no. 11, pp. 3–25, 2007.

[9] D. Lucanu, G. Roşu, and G. Grigoraş, “Regular strategies as proof tactics
for circ,” Electron. Notes Theor. Comput. Sci., vol. 204, pp. 83–98, 2008.

[10] J. Meseguer, “The temporal logic of rewriting: A gentleintroduction,”
in Concurrency, Graphs and Models, 2008, pp. 354–382.

APPENDIX

We consider a term rewriting system inspired from
Collatz’s function:

r1 : n → n/2 if n ≡ 0 (mod2) ∧ n 6= 1
r2 : n → 3n+ 1 if n 6= 1

Let us analyze how the stack machine evolves for the term
t0 = 5 and the strategy(r1 ⊲ r2)!. The actions specifying the
strategy are:a = b! andb = r1 ⊲ r2.
(

5, a b! φ
) rlstart

!−−−−→
(

5,
b r1 ⊲ r2 φ
a b! φ

)

rlstart
⊲−−−−→



5,

r1 r1 φ
b r1 ⊲ r2 φ
a b! φ





rko
1−−→



5,

r1 ε φ
b r1 ⊲ r2 φ
a b! φ





rlko
⊲−−→



5,
r2 r2 φ
b ε φ
a b! φ





rok
2−−→



16,

r2 ε r2
b ε φ
a b! φ





rl
merge
⊲−−−−−→

(

16,
b ε r2
a b! φ

)

rlok
!−−→

(

16, a b! r2
) rlstart

!−−−−→
(

16,
b r1 ⊲ r2 φ
a b! r2

)

rlstart
⊲−−−−→



16,

r1 r1 φ
b r1 ⊲ r2 φ
a b! r2





rok
1−−→



8,

r1 ε r1
b r1 ⊲ r2 φ
a b! r2





rlok⊲−−→

(

8,
b ε r1
a b! r2

)

rlok
!−−→

(

8, a b! r2r1
) rlstart

!−−−−→
(

8,
b r1 ⊲ r2 φ
a b! r2r1

)

rlstart
⊲−−−−→



8,

r1 r1 φ
b r1 ⊲ r2 φ
a b! r2r1





rok
1−−→



4,

r1 ε r1
b r1 ⊲ r2 φ
a b! r2r1





rlok⊲−−→

(

4,
b ε r1
a b! r2r1

)

rlok
!−−→

(

4, a b! r2r1r1
) rlstart

!−−−−→
(

4,
b r1 ⊲ r2 φ
a b! r2r1r1

)

rlstart
⊲−−−−→



4,

r1 r1 φ
b r1 ⊲ r2 φ
a b! r2r1r1





rok
1−−→



2,

r1 ε r1
b r1 ⊲ r2 φ
a b! r2r1r1





rlok⊲−−→

(

2,
b ε r1
a b! r2r1r1

)

rlok
!−−→

(

2, a b! r2r1r1r1
) rlstart

!−−−−→
(

2,
b r1 ⊲ r2 φ
a b! r2r1r1r1

)

rlstart
⊲−−−−→



2,

r1 r1 φ
b r1 ⊲ r2 φ
a b! r2r1r1r1





rok
1−−→



1,
r1 ε r1
b r1 ⊲ r2 φ
a b! r2r1r1r1





rlok⊲−−→

(

1,
b ε r1
a b! r2r1r1r1

)

rlok
!−−→

(

1, a b! r2r1r1r1r1
) rlstart

!−−−−→
(

1,
b r1 ⊲ r2 φ
a b! r2r1r1r1r1

)

rlstart
⊲−−−−→



1,
r1 r1 φ
b r1 ⊲ r2 φ
a b! r2r1r1r1r1





rko
1−−→



1,

r1 ε φ
b r1 ⊲ r2 φ
a b! r2r1r1r1r1





rlko
⊲−−→



1,

r2 r2 φ
b ε φ
a b! r2r1r1r1r1





rko
2−−→



1,

r2 ε φ
b ε φ
a b! r2r1r1r1r1





rl
merge
⊲−−−−−→

(

1,
b ε φ
a b! r2r1r1r1r1

)

rlko
!−−→

(

1, a ε r2r1r1r1r1
)

According to the machine evolution, the following statement
holds:(5 16 8 4 2 1, r2r1r1r1r1) |= (r1 ⊲ r2)!

