A Rewrite Stack Machine foROC!

Georgiana Caltais Eugen-loan Goriac Dorel Lucanu Gheo@yfigoras
Faculty of Computer Science
Alexandru loan Cuza University
lasi, Romania

{gcaltais,egoriac,dlucanu,grigot&@info.uaic.ro

Abstract—ROC! is a deterministic rewrite strategy language The organization of the paper is as follows. Section I
which includes the rewrite rules as basic operators, and the presents a situation where using a strategy language edsuit
deterministic choice and the repetition as high-level stiegy gaction |11 defines the concept oéwriting stack machine
operators. In this paper we present a method which, for a give o . . .
term rewriting system (TRS) R, constructs a new TRSR. such ROC! strategy Iangggge_ls introduced in Sect|0_n IV. Section V
that R-rewriting is equivalent (sound and complete) with R- Presents the specification of a stack machine that evolves
rewriting constrained by ROC! . SinceR uses a stack, it is called according to the strategy language semantics. The sousidnes
a rewrite stack machine. and completeness of the machine are proved in Section VI.
Appendix A includes an example showing how the stack ma-
chine evolves according to a term rewriting system comutin

Rewriting strategies are expressions built over a stratefjie Collatz's function.
language used for controlling the rewrite rule application
Roughly speaking, a strategy expression describes whith co
putations (rewrite sequences), among all the possible anes CIRC [7] is a Maude metalanguage application which
appropriate for a given purpose. A rewriting strategy laaggs implements the circular coinduction algorithm in order to
consists of expressions built using rewrite rules and esgsat prove properties (goals expressed as equations) for a given
operators. Various approaches have been followed, ygldiequational behavioral specificatior€IRC is built using the
slightly different strategy languages such BiSAN [1], [2], patterns described in [6]. The procedure for proving a prtype
Stratego [3], TOM [4], or Maude [5]. All these provide flexible uses a set ofewrite rulesthat can be applied according to
and expressive strategy languages where high-level apsrasomeproof strategy Three of the rules implemented for the
are defined by combining low level primitives, and they alCIRC prover are:

share the concern to provide abstract ways to express ¢ontrq, [comm] processes a goal expressing the commutativity
of rule applications. For instance, f&(LAN or Stratego, of an operator by adding a special operator and some
strategies such as bottom-up, top-down or leftmost-inostm equations in their frozen form to the specification. The
are higher-order features that describe how rewrite riflesls rule fails when the current property to be proved is not
be applied. a commutativity goal.

In this paper we consider a simple strategy language, called [¢qRed] removes an equational goal whenever it can be
ROC! , where the primitives are given by the rewrite rules proved using ordinary equational reduction. The rule fails
applied at top, and the high-level strategy operators age th when the left hand side of an equation is different from

I. INTRODUCTION

Il. MOTIVATING EXAMPLE

deterministic choice, the sequential composition andebeti-
tion. In spite of its simplicity, this language is powerfulaigh
and very efficient for metalanguage applications built ggire
patterns presented in [6]. A particular application of tkiisd
which usesROC! is CIRC [7]. The strategy languageOC! is

the right hand side.

[cestep] implements the circularity principle: an equa-
tion’s frozen normalized form is added to the specification
and its derivatives are added to the set of goals. This rule
fails whenever it finds a visible goal which cannot be

parametric in the term rewriting system (TRS) over whiclsit i proved using ordinary equational reduction.

defined; letROC! (R) denote the particular language built over The following steps describe a possible strategy for the
R, i.e., the primitives are given by the rewrite rulesin The

rover:
idea of implementing a rewriting strategy language is défe P e
from the classical ones. A pai?, ROC! (R)) is “compiled” 1) Try to apply[comm)]. If it fails, leave the system state
’ unchanged.

into a new TRSR, such thatR-rewriting is equivalent withk-
rewriting constrained brOC! (R). The equivalence is showe
by proving thatR is sound and complete with respect to the
semantics of R, ROC! (R)).

d 2) Check whether the first goal is proved usiagRed). If
the check fails try to applycestep).

3) Repeat step 2 for as many times as possible.

The first problem is how to specify this kind of strategies.

This work is partially supported by the PNII grant IDEI 393. There are many ways to define rewriting strategies [4], &, [

[1], [3]. A previous version ofZIRC uses regular strategies [9].rewrite rules:push(E) : S -> E Sandpop : ES -> S.

However, the union, concatenation and iteration operaibrs These operations will be embedded in the definition of the

the regular expressions language are not proper for sjegifyrewriting stack machine.

a behavior like “apply a rule for as many times as possible” Let R be a TRS. Consider a sogt at e for the system

or “apply a rule only if some other rule fails”. states, so that it : v — vif ¢ € R thenu andv are
The solution is to use strategy operators appropriate fof sort St ate. Also let L be a strategy language likeOC!

specifying these kinds of behavior. We prefer to call thehose elements are callexttions We follow the line from

elements of this strategy languagetions A basic action is [10] and we specify the semantics of an actioloy the relation

a rewrite rule. Generally, actions are combined by means @§.,.,71..») = a, meaning that the rewritingy RN

several operators: (orelse),o (composition) and ! (repeat) ... == t,, is accomplished according to actien

resulting in other actions. For the given example, the actio For a given termt¢, and an actiona, the property

described by the steps 1 - 3 is: (Zt1.5,m1.5) (G = 1) A (to.j,7m1.5) = a will be abbreviated

under the formtg 1 = a. In plain English, this means that

; !
([comm] > [id]) o ([eqRed] > [ccstep])! there no rewriting sequence starting fragcan be applied

where according to action. _
« [id] leaves the list of goals unchanged. This rule neverA rewriting stack machindor (R,L) is a TRS R with
fails. rewriting rules of the form\ : (¢,s) — (¢/,¢') i f ¢, wheret,

« > has the semantics of anrelse-like operator. The t' are of sortState ands, s’ are of sortst ack.
system tries to applizomm] in the first place, and only if ~ For each actiomu € L, there are defined an initial term
the action does not succeed should it agpij. The same i ni t (a) of sortStack'™" and a predicate which is used to
strategy is followed for the rulegRed] and [cestep]. identify stacks representing final states (of serack' ™).

« o has the semantics of a sequential composition operat®rpair (t,s) with s of sort Stack'' " cannot be rewritten
For the example above, the full action is successful§ccording toR. Both Stack'™! andstack'' "™ are subsorts
applied if both([comm] > [id]) and ([eqRed] > [cestep])! Of Stack. _
are evaluated exactly in this order with success. The relationship betwee(®?, L) and i is expressed by the

. | imposes that an action is applied for as many timdgllowing properties:
as possible. In our case, the system stops following thel) soundnessif (¢o, i nit(a)) — ... = (tn,s) with s of
strategy only when botfeqRed] and [cestep] fail. sortSt ack "™ then(tg. n,71.n) FEa

It is obvious that once the set of rules is chosen and2) completenessf (to.n,71..») = a then there is a stack

the semantics of the strategy operators is provided, comple s : Stack ™ so that(to, i ni t (a)) = (¢,)
proof strategies can easily be specified in the same manner
previously described.

The second problem is how to implement a system able

to execute a strategy specified using the new Ianguage.%?d in the current implementation ©fRC, calledROC!. The

solution like the one described in [8] is not suitable beeaug’aSiC actions arewriting rules and the strategy operators

applications likeCIRC are metalanguage applications and th@rﬁ_(h)relse,Compogt_lon at\]nd N f theOC! | .

tool described in [8] is used at object level. N grgmm?r”gwlrp the syntax of tTROC! language Is
In this paper we propose a solution which uses a rewritiffgfPr€SS€d as 1ollows.

stack machine to supply an executable operational sensantic act =7 | act>act | act o act | act!

of the language.

IV. THE LANGUAGE ROC!
We present the formal description of the strategy language

wherer is the label of a rule from the initial TRR.
I1l. REWRITING STACK MACHINES The semantics oROC! is given by the next definitions:

In this section we introduce a new way to implement 1) sem, : (to. n,71..n)):r‘iéf
strategy languages. The general idea is as follows: given a n=1Ar =rAty -t
TRS R and a languagd. of strategies over the rules from 2y sepn : (t5 0, 71.0) = a1 >as def
R, a new TRSR is defined. The purpose at is to apply (to.m,T1..m) a1V
the rewrite rules R according to the semantics of the styateg (tol b ay A (to.n,T1.m) = a2)
languageL. Since R is defined using a stack, it is called a e
rewriting stack machine

We assume that the stack data type is specified by the sorts
St ack for stacks andtl t for stack elements, a constamipt y

(
3) semo : (to.5.nsT1.im) = 1 © a2
(to.i,r1.5) Fai A

(

tiimsTitl..n) = Q2

ind .) . de
for the stack with zero elements and an operatipn : El t 4) sem'" : (to.i.n,T1.i.m) = a! Q{
Stack -> Stack, which is associative and has the identity (to..i;71..6) = a A |
enpt y. The stack behavior is a list of transitioas— ', each (tiinsTit1.n) = al

de
transition being accomplished using thesh andpop basic ~ 5) sem™: (t,¢) |= a! Y irita
operators. The operatiompsish andpop are implemented by where¢ from the last definition denotes an empty list.

The following propositions are used for proving propertiest ack' " if it has only one element which can be represented

in Section VI. as(null, a, e, trl). From a final stack we are able to conclude
- . if the actiona has been successfully executed based on the
: !
Prg?gjglon L tol 2 a T tof = o valuetri. As trl is the list of rules that have been successfully
We use the proof by contradiction method for both imp“gpplied according ta, if trl is empty ¢) then the action has
cations: not been executed, and if it is not empty then the action has

1) “=" Assume thattot & a. If (to.n,71.n) = a! then been successfully executed.
there is ani so that(1 < i < n) and (to.;,71.:) E a The behavior of the rewriting stack machine fROC! is
according tosem{"¢, which contradicts the hypothesis.given by two classes of rules. The first class contains rules
2) “<” Assume thatty + £ al. If (3i > 1) so that compiled from the initial TRSR. Given a ruler : u —
(to.i;r1.:) = a, then there must be an > i so vif ¢ € R, we denote a condition* which is semantically
that (¢;.n,7:+1..) = a! holds. Hence the statementequivalent to the negation af. For the uniformity of the

(3n > 1)(to. n,71.n) = a! holds according taem{"?,
which contradicts the hypothesis. .
Proposition 2: (tg.n,71..n) E a! iff (to.n,7m1.n) E a!!
Proof:
If n =0 the proof is trivial:
(to, @) Eal iff (tot b= a) iff (tof £ al) iff (to,9) = all
If n>0:
1) “=" Assume that(tg. ,,7r1.n) E a!
It follows from the hypothesis that, 1 [~ a. Proposi-
tion 1 implies thatt,,1 |~ a!, hence(t,, ¢) E a!l. It fol-
lows from the definitionsemi™? that (to.,,,1..,) E all.
2) “<" Assume that(tg. ,,m1.,) = a!!
There is ani so that(1 <i <n) and(to.;,71.4) E al.

It follows thatt;1 }~ a, which impliest;t [~ a!. Because

t,1T ¥ a! (from the hypothesis), we obtain= n, i.e.

(to.n,71..0) = al. .

V. A STACK MACHINE FORROC!

The syntactical tree for an action can be specified by a list of
equations. For example, the action exemplified in Sectipn I
a = ([comm] > [id]) o ([eqRed] > [ccstep])!, is specified as

follows:
a =ajodas
a1 = comm > id
ag = a3!

a3 = eqRed > ccstep

Let def denote the operator defined as follows: given an 5)
action a, def(a) returns the right hand side of the equation

which definesa. For exampledefa) = a1 o aq, defa;) =
[comm)] o [id], and so on.

We use a stack whose elements are quadruples of the form

(term, action, remainder, trail), where:

o term is either the special termull or the term of the

system before starting the execution of the action;
« action is the label of the action being processed,;

o remainder is the part of the action that remains to be

processed or when there is nothing left to be processed;
e trail is the list of rules that have successfully been

applied so far from the current action (the empty list is

represented by the symbag).

A stack is of sortStack'™! if it has only one element
which has the form ni t (a)=(null, a,defa),) and of sort

notation,c will be referred to ag°*. The next two rules belong
to R:

1) rok : (u, [(1,a,r, ¢); ST]) —
(v,[(1,a,e,7);ST]) i f c°k
2) rko: (u,[(1,a,7,8); ST]) —
(Uv [<Taa757¢>;ST]) if cko

The second class of rules froR give the behavior of
the stack machine according to the action currently being
executed. For the uniformity of the notation, the rules from
this class will be overlined:

1) the start of arorelseaction
Tl;tart .
(t,[(r,a,a1 > asg,trl); ST]) —
(tv [<Ta at, def(al)a ¢>v <Ta a,a; >az, t’l’l>, ST])
2) success for the first choice of amelseaction
riok
(t, [(r,a1,e,trl'y; (T,a,a1 > ag, trl); ST]) —
(t, [{T,a,e,tritrl’); ST])
3) failure for the first choice starts the second choice
riko
(t,[(1,a1,¢,d); (T,a,a1 >asg, trl); ST]) —
(tv [<7_’ asz, def(GQ)a ¢>7 <7‘, a, g, t?‘l); ST])
4) the end of the second choice (success or failure)
merge
|> .
(t, [(T,d e, trl'); (1,a,¢e,trl); ST]) —
(t, [{T,a,e,tritrl’); ST])
the start of asequential compositioaction
Tlcs)tart .
(t, [{T,a,a1 o as,trl); ST]) —
(t, [(t,a1,defar), @); (T, a, a1 o ag,trl); ST))
6) success for the first part ofssequential composition
rigk
', [{(7',a1,e,trl’); (T,a,a1 o ag, trl); ST]) —
(', [(7', az,defaz), #); (7, a, a1 o az, tritrl’); ST))
7) failure for the first part of aequential composition
rikor .
(t/7 [<7Ja ai, €, ¢>7 <Ta a,aj ©az, tTl), ST]) —
(7', [(T, a,e,trl); ST))
8) success for the second part ofequential composition
rigk:

(', [(7',az,e,trl’); (1,a,a1 o ag, trl); ST]) — P,(r) : In order to satisfy the hypothesis, the only possible

', [r,a,e,tritrl’); ST));j > 1 transition is:
9) failure for the second part of sequential composition (¢ [(7,r, 7, ¢); ST)) T, (t,[(r,r,e,0);ST))
kos
rlo ;, o) 4rl): ST It is obvious that’ = ¢ and that we cannot find a transition
() (7', a2, e, d).>’s_<|_7’ a,a1 0 az, trl); ST]) — t s t'. According tosem,., t - r holds, hence(r) holds.
(', [{ms 0,2, 6);])_ Induction step.We consider only the case = a; > as;
10) the start of aepeataction the other cases are proved in a similar way. We prove that
ritert Pi(ay > as) and Py(a;y > as) hold, assuming thatP;(a;),
(t, [(1,a,a1!, trl); ST]) — Pi(as), Ps(a;) and Py(as) hold. Since the syntactical tree
(t, [(r,a1,defa1), §); (1, a,a1!, trl); ST]) includes the equations; = def(a;), P;(def(a;)) also holds
11) success for theepeataction for i,j € {1,2}.
W : Py (aq > az): We have to prove that if
'(t, [(1,a1,¢e,trl'y; (1,a,a1!,trl); ST]) — (to, [(T,a,a1>a2,¢); ST]) = ... = (tn, [(T,a,€,71..0); ST)),
(t,[(7,a, a1, tritrl’); ST)) then (¢9..n,m1..n) | a for somen > 1.

From the initial configuration, the first transition in the

12) failure for therepeataction stack evolution is:

riko -
. TlstaTt
(t7 [<T1 ai, g, ¢>7 <T7 a, (ll!, tTl), ST]) — (t07 [<T’ a,ay > a2, ¢>7 ST]) D—>
(t,[(1,a,¢&,trl); ST] (to, [(T,a1,defay), ¢); (T, a, a1 > az, ¢); ST))
VI. SOUNDNESS ANDCOMPLETENESS The stack evolution for; > aq is:

Generally, a system soundif when proving that something (to, [(1, a1, def(a1), ¢); (7, a, a1 > ag, ¢); ST]) =
is true, it really is true and isompleteif when something is (¢ [(r ay, e, trl'); (7, a, a1 > as, ¢); ST))
true, the system is capable of proving it.

For theROC! stack machine, the soundness and complete-Two situations are identified:
ness properties are expressed by the following equivalence 1) ¢rl’ = ¢

(Vn > 1) (to,[(r,a,defa), $);ST]) — ... — In this case we applyP(def(aq)) and obtaint’ = ¢,
> (ol ae. s o y2ST) andty 1 £ ai. Given the current stack configuration,
w the only possible transition is the one corresponding to
(to.n>71.n) = @ rige:
rig
A. Soundness (to, [(T, a1,€,9); (T, a,a1 > az, ¢); ST]) ——
In order to prove that our stack machine system is sound, (to, [{7, az, def(az), ¢); (7, a, €, ¢); ST])
we have to prove that the following theorem holds: Then the rewriting continues as follows:
Theorem 1:Let a be aROC! action. .
1) If (t07 [<Ta andef(aQ)a¢>; <T,a,€,¢>;ST]) -

(t", [(T,az,e,trl"); (1,a,¢,¢); ST])

(to, [(1,a,defa), @); ST]) — ... = (tn, [(Tya,8,71.1); ST])
The only possible next transition is:
for somen > 1, then(to..n,71..n) E a.

2) If (", (1, a1,6,trl"); (T, a,¢, ¢); ST])
", [{r,a,¢e,trl"); ST))

Tl;nerge

(t, [(7, a,def(a), 9); ST]) = (¢', (7, a, &, ¢); ST])
From the hypothesis ofP;(a; > as) it follows that
t" =t, andtrl” = ry_,. Combining the previous two
rewritings, we obtain:

thent = ¢’ andtf £ a.
Proof: Let P;(defa)) denote the implication 1) and
P»(defla)) denote the implication 2), where all the other

variables are universally quantified. We progé:)P; (a) A (to, [(T, a2, def(az), ¢); ST]) =

P>(a) by structural induction o, wherea ranges over the (tn, [(1,a2,6,71.); ST])

expressions occurring in the description of the syntactiea.

Base stepWe assume: = r. According to Pji(def(az)), we deduce that
Pi(r) : The only rule that can be applied for the initial (to.nsT1..n) F a2. This property, along with the
configuration isr°*. The configuration that follows after true statementy? = a1 leads to(to..n, 71..n) = a1>a2.
(to, [(Ty7, 7, @); ST]) is (t1, [(T,7,€,7r); ST]). The latter is the 2) trl’ =ry ;

final configuration(n = 1). Thereforet, = ¢;, which means The only transition that can be applied is the one

merge.

that (tot1,7) | r. Basically we have shown tha& (r) holds. corresponding taly

|merge

(t/a [<T,(l1,5,’l"1“i>; <T,G,€,¢>;ST]) T>—> 1) (tO..narl..n) ': a1
(', [(r.a,2,71.4): ST)) Q1(def(a1)) holds, so the rewriting that follows is:
(t07 [<Ta at, def(al)a ¢>v <Ta a,ay >az, ¢>v ST]) i)

From the hypothesis ofP;(a; > aq) it follows that (b, (721,271 0): (7, 0y an & a3, 6); ST))

t' = t, andi = n. Now, the following rewriting is

obtained: The only possible transition is the one corresponding
(t07 [<Ta ai, def(al)a ¢>v ST]) i> to ’f'lgk:
th, ,A1,E,T1.n ;ST, Lok
(tn, (01, €,71..n)) (tn, (7, a1, 8,71 0); (7,0, 01 > az, 8); ST]) 2o
It follows that (to. ., 71..») = a1 holds by P (def(a1)), (tn, (T,a,6,71.n); ST])

which implies(tg..n,71..n) = a1 > as.

The proof of Py(a; > as) is realized in a similar way. ® 2) tol |~ a1 and (to.n,m1.n) [= a2 /
By Q2(def(a1)), (to,[{a1,defa1),¢);ST']) evolves

B. Completeness to (to,[{a1,¢,); ST']). The rewriting continues as
In order to prove the completeness of the stack machine follows:

system we have to prove that the following theorem holds: (to, [(T, a1, def(a1), ¢); (7, a, a1 > ay, $); ST]) =
Theorem 2:Let a be aROC! action. T

1) If (tO.Jn Tl..n) ': a then (t07 [<T1 ai, &, ¢>7 <T’ a, a1 > az, ¢>7 ST]) —

(to, [(r, 0, defa), ¢); ST]) = ... = (tu, [(7, @, 2, 71..0); ST]). (to, [(r, az, defaz), 9); (7. . &, 6); ST])

2) If tf I a then Q1 (defaz)) holds, therefore:

(t, [(r, 0, deta), 6); ST]) %+ (&, [(r. a, 2, 6): ST)). (to, [(7, az, delay), 9); (. a,, 92 ST)) =

. . . (tna [<T1 as, &, rl..n); <Ta a,cg, ¢>7 ST])
Proof: Let Q1(def(a)) denote the implication 1) and _ o
Q2(def(a)) denote the implication 2), where all the other ~ Now, the only possible transition is:

variables are universally quantified. We pro@:)Q1(a) A (b [(72 a2, 2,71 0): (7 @, 2, 6): ST]) FimerTe
Q2(a) by structural induction om, wherea ranges over the (b, [(72 0,2, 710); ST])

expressions occurring in the description of the syntactiea.

Base step\We assume: = r- Combining all the rewritings above, we obtaih (a; > az).
Q1(r) : According tosem,. it follows thatn =1 andry = r. In the same manner it can be shown tgata; >a») holds.
Since(tot1) = r means that; is obtained front, by applying -

the ruler, the only possible transition is:
(to, (., 7,6); ST) =55 (11, {7, 7,2,7); ST) VIl ConcLusion

Consequently we obtain tha}, (r) holds. This paper introduces a strategy language for specifying
Q2(r) : If t1 £ r then we cannpt identifyt’ such that iyree kinds of behavior for a TRS:
(tt',r) = r, therefore a transitiom — ¢’ is never possible.))))
The only feasible transition is: « perform an action only if some other action fails
« perform two actions sequentially
« perform an action for as many times as possible

(t7 [<7_’ T, ¢>7 ST]) :} (ta [<7—7 e, ¢>» ST])
where an atomic action is the application of a rule at the top.

(;I’hereforng(r) hoIdsa . v th _ The language is implemented using a stack machine system
Induction step\We consider again only the case= a1 > a2, \ynich is proved to be both sound and complete.

the other cases are proved in a similar way. We prove tha . .
P y P tWe have successfully managed to specify proof strategies

glgzl)b g)(jr;d g\ﬁ% D(GGQ)) r?c?llt;j, \7\23“2!;% ttuz% ((aal)) in this new manner foCIRC after adding the stack machine
L2y 2 22 ' %7 implementation to the prover source code.

implies Q;(def(a;)) fori,j € {1,2}. . - . . .
Q1 (a1 > az): We have to prove that ifto_,.,71.n) = a then It is worth mentioning that if the sequential composi-
e tion operator is not required, the rewriting stack machige i

(to, [(1,a,a1 > a2, ¢); ST]) = ... = (tn, [(T,a,€,71.,); ST]). simplified. In this case, the structure of the stack elements
is simplified from a quadruple to a triple, by eliminating
e the term component. This component is no longer required
(to, [(T,a, a1 > az,); ST]) ——s because during the evolution of the system there is no need
(to, [(r, a1, defa1), ¢); (T, a, a1 > az, ¢); ST)) to turn back to a previous term (this is needed only when
trying to execute an action of the form o a3). An example
By the semantics of, two situations are identified: emphasizing this situation is provided in Appendix A.

The first transition is:

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El
[10]

REFERENCES

C. Kirchner, H. Kirchner, and M. Vittek, “Designing Camaint Logic
Programming Languages using Computational Systems,Primci-
ples and Practice of Constraint Programming. The Newporpé?a,
P. Van Hentenryck and V. Saraswat, Eds. MIT Press, 1995,,0bp.8
131-158.

P. Borovansky, C. Kirchner, H. Kirchner, and C. Ringeis, “Rewriting
with Strategies in ELAN: A Functional Semanticslht. J. Found.
Comput. Scj.vol. 12, no. 1, pp. 69-95, 2001.

E. Visser, “Stratego: A Language for Program Transfdiora based
on Rewriting Strategies. System Description of Stratedy” 0n RTA
ser. Lecture Notes in Computer Science, A. Middeldorp, fal.,2051.
Springer-Verlag, 2001, pp. 357-361.

E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and Aill&e
“Tom: Piggybacking Rewriting on Java,” iRTA ser. Lecture Notes in
Computer Science, F. Baader, Ed., vol. 4533. Springeryer2007,
pp. 36-47.

N. Marti-Oliet, J. Meseguer, and A. Verdejo, “TowardSaategy Lan-
guage for Maude,Electronic Notes in Theoretical Computer Science
vol. 117, pp. 417-441, 2005.

E. Goriac, G. Caltais, D. Lucanu, O. Andrei, and G. Graggr-Patterns
for Maude Metalanguage Applications,” Rroceedings of WRLA008.
D. Lucanu and G. Rosu, “Circ: A Circular Coinductive Ren,” in 2nd
Conference on Algebra and Coalgebra in Computer Sciencd.GTA
2007) ser. Lecture Notes in Computer Science, T. Mossakowski and
et al., Eds., vol. 4624. Springer, 2007, pp. 372-378.

S. Eker, N. Marti-Oliet, J. Meseguer, and A. Verdejo, €tiiction,
strategies, and rewritingElectron. Notes Theor. Comput. Saiol. 174,
no. 11, pp. 3-25, 2007.

D. Lucanu, G. Rosu, and G. Grigoras, “Regular straegis proof tactics
for circ,” Electron. Notes Theor. Comput. Seiol. 204, pp. 83-98, 2008.
J. Meseguer, “The temporal logic of rewriting: A gentigroduction,”
in Concurrency, Graphs and Model2008, pp. 354-382.

APPENDIX rlomn ¢ ot
. - . b —
We consider a term rewriting system inspired fro 4, Tl;” (4
Collatz’s function: a S L L
ri:n—n/2 if n=0(mod2) A n#1 ! € "1 —oF
. D>
ro:n—3n+1if n#£l 2, b |ri>r) I
Let us analyze how the stack machine evolves for the ter a b! T2T1T1
to = 5 and the strategyr; > r2)!. The actions specifying the bl e 1 ik
strategy area = b! andb = rq > ro. 2, a | b | rarir
(5, [a]W[o]) = (2 La[b [rormm |) =——
5 b 71 D> T ¢ W 9 b 71 D> 7o (;5 W
" la b! 10) la b! ToT1T1T]
r1 r1 ¢ % r1 1 ¢ %
9, b | ri>re gf) RN 2, b | ri>re (b L
a b! ¢ a b! roTr1T1T1
71 € 1) 71 € 1
riko g
5, b 71 D> 7o ¢ 1, b 71 D> To (;5 —
a b! d) a b! roTr1T1T1
T2 | T2 (b vy 1 b| e 1 T;’k
T
5 | b|e|o =2 la | bl | roriryry
llstart
a |b]o (1, | a | b! | ToT1T1T1T] |) RAIRIEN
ra | €| 1o e L b ¢ rigtert
16, b E' ¢ "l a b! ToT1T1TIT]
a | b
(b % Tl 7‘1 ¢ Tk'o
(16 ble) iy 1, b 71> T2 gf) —)1
a|b] ¢ T a b! ToTriT1iT1T]
i
(16, (a0 rs]) N R T
16 b 1> T (;5 rigtart 1, b 71> To gf) AN
el b | a | b |reriririn
1 1 ¢ e T2 | T2 ¢ TFo
16, b | riprey | @ 4 L, b e) =2
a b! T a | b | roriririr
1 € 1 — T2 | € ¢ —merge
riok SeTge
87 b 1> T2 gf) 2 1, b e (b -
a b! 2 a | b | rorririr
ble|mn it b|e o ik
8, L,
a|b|ry a | b | roriririr
l;staTt
(8, [alD]reri]) —— (Llale[rsmmmr)
3 b 1> T gf) W
' Al Tor1 According to the machine evolution, the following statemen
" ") _ holds: (5 168421, 7‘27”17”17‘17”1)): (7‘1 > 7‘2)!
T
8, b 71> 7o ¢ 1—>
a b! ToT1
T1 g T1
rlok
47 b | ri>re d) 2
a b! rory

4

)

b' ToT1
TllstaTt

b
a
(4,[afbl Trorr]) —
4 T1P>T2 ¢ rigtert
b! r2T17T1

ISHERS

)

