
Automated Proving of the Behavioral Attributes ∗

Gheorghe Grigoraş
grigoras@info.uaic.ro

Dorel Lucanu
dlucanu@info.uaic.ro

Georgiana Caltais
gcaltais@info.uaic.ro

Eugen-Ioan Goriac
egoriac@info.uaic.ro

Faculty of Computer Science
Alexandru Ioan Cuza University

Iaşi, Romania

Abstract

Behavioral equivalence is indistinguishably under ex-
periments: two elements are behavioral equivalent iff each
experiment returns the same value for the two elements. Be-
havioral equivalence can be proved by coinduction.CIRC
is a theorem prover which implements circular coinduction,
an efficient coinductive technique. Equational attributesre-
fer properties like associativity, commutativity, unity,etc.
If these attributes are behaviorally satisfied, then we re-
fer them as behavioral attributes. Two problems regarding
these properties are important: expressing the commutativ-
ity as a rewrite rule leads to non-termination and their use
as attributes requires a careful handling in the proving pro-
cess. In this paper we present how these attributes are auto-
matically checked inCIRC and we prove that this extension
is sound.

1 Introduction

Proving properties of systems involving infinite amount
of information became a subject of high interest in computer
science in the last years. Lazy functional programs, concur-
rency, transition and reactive systems, software verification
and analysis are only several fields where the infinite data
structures and other infinite objects are frequently used. The
specification of such systems is given in different settings:
process algebra (see, e.g., [16]), coalgebra [1, 12], behav-
ioral equational logic [4, 9, 18, 17], type theory [7], tempo-
ral logic [8] and so on. The most known proof techniques
used to prove properties for these systems are bisimilarity,

∗This work is partially supported by the PNII grant CNCSIS IDEI 393

coinduction, context induction, circular coinduction, coin-
ductive types. Among the tools supporting (some of) these
proof techniques we mention here Coq (coinductive types)
[3], Isabelle/HOL [11], CIRC (circular coinduction) [14],
BOBJ (circular coinduction) [18], Concurrency Workbench
(bisimilarity) [6].

In this paper we refer the behavioral equational logic as a
specification language, the circular coinduction proof tech-
nique [19], and its implementationCIRC [13]. We present
the mechanismCIRC uses for automated proving of the at-
tributesassociativity, commutativity, identity and/oridem-
potency(ACUI) characterizing behaviorally defined opera-
tors over infinite data structures.

Motivating example Let us consider infinite binary trees
with information in nodes from the boolean ringZ2 =
(Z2,+,×, 0, 1). Since these trees carry infinite informa-
tion we prove properties over them in terms ofbehavioral
equivalence. Infinite binary trees are behaviorally specified
by means of ahiddensortTreefor trees, avisiblesortZ2 for
the information in the nodes, the equational specification of
Z2 and the following threeobservers:

• root : Tree→ Z2, returning the information from the
root of the tree;

• left, right : Tree → Tree, returning the left, respec-
tively the right subtrees of a tree

Two trees are behaviorally equivalent if they cannot be dis-
tinguished under all possible experiments,i.e., T1 ≡ T2 if
C[T1] = C[T2] for each experimentC. Here are several ex-
amples of experiments:root(∗:Tree), root(left(∗:Tree)),
root(right(∗:Tree)), root(left(left(∗:Tree))) and so on. In
CIRC, ∗:Tree is a generic notation used for representing
variables of hidden sort (in our case, the sortTree). Note

that an experiment always returns a visible (data) value in
Z2.

The operations over trees are coinductively defined by
means of the observers. For instance, the addition of trees
is defined as follows:

root(T1 + T2) = root(T1) + root(T2)
left(T1 + T2) = left(T1) + left(T2)
right(T1 + T2) = right(T1) + right(T2)

Note that the operator+ is overloaded: it denotes the ad-
dition in the boolean ring and the addition of infinite trees.
CIRC uses circular coinduction to prove behavioral equiv-
alenceT1 ≡ T2. Briefly, the algorithm works as follows:
First try to deduceT1 ≡ T2 using the equations of the
specification as rewrite rules. If it succeeds, then the al-
gorithm successfully terminates. Otherwise, a frozen form
of T1 ≡ T2, T1 = T2 , is added as coinductive hypoth-
esis to the specification and three new subgoals are gener-
ated: root(T1) = root(T2), left(T1) = left(T2), right(T1) =
right(T2). By freezing the coinductive hypothesis, we for-
bid its use under contexts, avoiding in this way unsound
deductions. In order to allow the use of the coinductive
hypotheses, the goals are handled in the frozen form. If
T1 ≡ T2 expresses the commutativity of the addition,i.e.,
T + T ′ = T ′ + T , then the specification becomes non-
terminating after the frozen form of the coinductive hypoth-
esis is added. Therefore the above algorithm does not work
for properties such as commutativity. We decided to handle
the properties like commutativity, associativity, unity and
idempotency as distinguished goals. When provided a goal
such as

op _+_ : Tree Tree -> Tree [assoc comm] .

expressing the associativity and commutativity of the ad-
dition operator, the expanding consist of the following ac-
tions:

1. add to the specification a new operation+AC which
is declared with the same attributes as the goal (here,
associativity and commutativity);

2. add to the specification a set of frozen equations that
express the freezing of the coinductive hypotheses in
terms of the new operator:

T1 + T2 = T1 +
AC T2 (1)

T1 + (T2 + T3) = T1 +
AC T2 +

AC T3 (2)

(T1 + T2) + T3 = T1 +
AC T2 +

AC T3 (3)

where the parentheses in the right hand side are no
longer necessary because the operator+AC is associa-
tive and commutative;

3. compute the new subgoals, in their frozen form, corre-
sponding to the equations defining the operational at-
tributes:

root(T 1 + T 2) = root(T 2 + T 1)

left(T 1 + T 2) = left(T 2 + T 1)

right(T 1 + T 2) = right(T 2 + T 1)

root(T 1 + (T 2 + T 3)) = root((T 1 + T 2) + T 3)

left(T 1 + (T 2 + T 3)) = left((T 1 + T 2) + T 3)

right(T 1 + (T 2 + T 3)) = right((T 1 + T 2) + T 3)

We noticed that it is not sufficient to add the equation
in step 2. Sometimes, due to the new equations, our term
rewriting system is not confluent, so the equalities obtained
by applying the Knuth-Bendix completion procedure [2]
need to be added as well.

For instance, the termleft(T1) + left(T2 + T3) can be
reduced to both:

• T ′

1 = left(T1) +
AC (left(T2) + left(T3)) , according to

(1) and the definition of the addition
• T ′

2
= left(T1) +

AC left(T2) +
AC left(T3) , by applying

the definition of the addition and (2)

These two terms form a critical pair, therefore we need to
add the equationT ′

1 = T ′

2 in order to obtain a confluent term
rewriting system.

In this paper we formally present the extension ofCIRC
with the capability of automatically proving behavioral at-
tributes and we prove that the extension is sound.

The paper is organized as follows. Section 2 briefly re-
calls the behavioral algebraic specifications and the notion
of behavioral equivalence and introduces the infinite binary
trees as the running example. Section 3 presents proce-
dures used byCIRC to automatically prove certain behav-
ioral properties. Section 4 describes the mechanism of prov-
ing behavioral attributes.

2 Behavioral Algebraic Specifications

We assume the reader familiar with basics of many
sorted algebraic specifications [10] and only briefly recall
our notation.

Let Σ be an algebraic signature consisting of a setS of
sortsand anS∗×S-indexed setOp(Σ) = (Op(Σ)w,s | w ∈
S∗, s ∈ S) of operations. LetX be a fixedS-indexed set of
variables. TΣ(X) is theΣ-algebra of terms with variables
in X . A Σ-equationis a sentence(∀X) t = t′ if c, where
t andt′ areΣ-terms over variablesX ⊆ X having the same
result sort, andc is theconditionof the equation consisting
of a finite set of pairs(ui, vi) of terms over variablesX .
The condition can be empty, case in which the equation is
unconditional and written as(∀X) t = t′.

Given a setE of Σ-equations, we say that aΣ-equation
e is deducible(inferable) fromE, and writeE |= e, if e

can be obtained by applying the following rules for a finite
number of times:

1. Assumption. E |=Σ e, for eache in E.

2. Reflexivity. E |=Σ (∀X) t = t.

3. Transitivity. If E |=Σ (∀X) t1 = t2 and E |=Σ

(∀X) t2 = t3, thenE |=Σ (∀X) t1 = t3.

4. Substitution. Given e ∈ E such thate is either
(∀X) t1 = t2 if c or (∀X) t2 = t1 if c, and a
substitutionθ : TΣ(X) → TΣ(Y) such thatE |=
(∀Y)θ(ui) = θ(vi) for each(ui, vi) in c,
thenE |= (∀Y)θ(t1) = θ(t2).

5. Congruence. Given a contextt0 ∈ TΣ(Y ∪ {∗}) with
∗ 6∈ Y , e ∈ E such thate is either(∀X) t1 = t2 if c

or (∀X) t2 = t1 if c,
if E |= e thenE |= (∀X ∪ Y) t0[t1] = t0[t2] if c.

In the last rule,t0[ti] denotes the term obtained fromt0 by
replacingti for the distinguished variable∗. We omit to
write the subscriptΣ for the deduction relation whenever it
is understood from the context.

A derivativeis a termδ ∈ TΣ(X ∪ {∗:h}), where∗:h
is a special variable of sorth. A behavioral specification
is a pair(B,∆), whereB = (S,Σ, E) is a many sorted
equational specification and∆ is a set of derivatives. We
distinguish two disjoint subsetsV,H ⊆ S, whereH is the
subset ofhidden sortsh corresponding to the star variables
in the derivatives, andV = S \ H is the subset ofvisi-
ble sorts. We assume that the equationsE have only visible
conditions. A∆-experimentfor the hidden sorth ∈ H is in-
ductively defined as follows: each derivative for the hidden
sorth ∈ H with visible result sort is a∆-experiment forh;
if C is a∆-experiment forh′ andδ a behavioral operation
for h with result sorth′, thenC[δ] is a∆-experiment forh.
As above,C[δ] denotes the term obtained fromC by replac-
ing δ for the distinguished variable∗:h′. A ∆-experiment
C[∗:h] can be seen as a partially definedequation trans-
former e 7→ C[e]: if e is an equation(∀X) t = t′ if c of
sorts, thenC[e] is the equation(∀X∪Y)C[t] = C[t′] if c,
whereY is the set of non-star variables occurring inC[∗:s].
Moreover,∆[e] = {δ[e] | δ ∈ ∆}.

The notion ofbehavioral equivalenceis an inherently se-
mantic one: there is a behavioral equivalence relation on
each model which can be defined as “indistinguishably un-
der experiments”. For technical simplicity, we here prefer
to avoid introducing models, so we give an alternative proof
theoretic definition. Let(B,∆) be a behavioral specifica-
tion. We say thatB behaviorally satisfiesan equatione,
writtenB � e, iff:

• B |= e if e is visible, and

• B |= C[e] for each appropriate∆-experimentC if e is
hidden.

The behavioral equivalenceof B, is the set of equations
{e | B � e} [19].

Example: Infinite Binary Trees. We use theCIRC syn-
tax for presenting the behavioral specifications. SinceCIRC
extends Maude [5] with behavioral features, the equational
part of these specifications uses only the Maude syntax.
The behavioral specification of infinite binary trees can be
specified as follows. First, the specification module of the
boolean ringZ2 is given:

theory BRING is
sort Z2 .
ops 0 1 : -> Z2 .
op _+_ : Z2 Z2 -> Z2 [assoc comm id: 0] .
op _x_ : Z2 Z2 -> Z2 [assoc comm] .
op ~_ : Z2 -> Z2 .
eq 1 + 1 = 0 .
eq (0 x X:Z2) = 0 .
eq (1 x X:Z2) = X:Z2 .
eq ~ 0 = 1 .
eq ~ 1 = 0 .
eq ~ ~ X:Z2 = X:Z2 .

endtheory

The module with the equations specifying the infinite binary
trees is as follows:

theory EQ-TREE is
including BRING .

sort Tree .
vars T T1 T2 : Tree .
var X : Z2 .

op root : Tree -> Z2 .
ops left right : Tree -> Tree .

op zero : -> Tree . op one : -> Tree .
eq root(zero) = 0 . eq root(one) = 1 .
eq left(zero) = zero . eq left(one) = one .
eq right(zero) = zero . eq right(one) = one .

op ~_ : Tree -> Tree . op thue : -> Tree .
eq root(~T)=~root(T) . eq root(thue) = 0 .
eq left(~T)=~left(T) . eq left(thue) = thue.
eq right(~T)=~right(T) . eq right(thue)=thue+

one .
op _+_ : Tree Tree -> Tree .
eq root(T1 + T2) = root(T1) + root(T2) .
eq left(T1 + T2) = left(T1) + left(T2) .
eq right(T1 + T2) = right(T1) + right(T2) .
...

endtheory

The derivatives (behavioral operations) for infinite treesare
declared in a separateCIRC theory module, which extends
the functionality of a Maude theory module.

ctheory TREE is
including EQ-TREE .
derivative root(*:Tree) .
derivative left(*:Tree) .
derivative right(*:Tree) .

endctheory

The sortTree is a hidden sort while the sortZ2 is visible
with respect toTREE specification. Recall that the result
sort of the experiments is always visible. In this situation,
an experiment is defined as:

1. root(*:Tree) is an experiment;

2. if C[∗:Tree] is an experiment thenC[left(∗:Tree)] and
C[right(∗:Tree)] are experiments.

For instance, the termsroot(∗:Tree), root(left(∗:Tree)),
root(right(∗:Tree)), root(left(left(∗:Tree))) are several
examples of experiments. Two treesT1 andT2 arebehav-
iorally equivalentiff root(T1) = root(T2), root(left(T1)) =
root(left(T2)), root(right(T1)) = root(right(T2)), and so
on.

3 CIRC

CIRC is a tool for automated inductive and coinduc-
tive theorem proving, created as a behavioral extension of
Maude.

The circular coinduction engine ofCIRC implements
the proof system presented in [19] by the reduction rules
given in Fig. 1. Since the equational deduction is recur-
sive enumerable,CIRC uses the decidable entailmentE ⊢��

(∀X)t = t′ if ∧i∈I(ui = vi) iff nf(t) = nf(t′), where
nf(t) is computed as follows:

– the variablesX are turned into fresh constants;
– the condition equalitiesui = vi are added as equations

to the specification;
– the equations in the specification are oriented and used

as rewrite rules.
The reduction rules are defined over triples(B,F ,G),
whereB represents the (original) algebraic specification,F
is the set of frozen axioms andG is the current set of proof
obligations.

[Done]

(B,F , ∅) ⇒ ·

[Reduce]

(B,F ,G ∪ { e }) ⇒ (B,F ,G) if B ∪ F⊢��e

[Derive]

(B,F ,G ∪ { e }) ⇒ (B,F ,G ∪ {∆(e) })

if B ∪ F6⊢��e ande is hidden

[Normalize]

(B,F ,G ∪ { e }) ⇒ (B,F ,G ∪ { nf(e) })

[Fail]

(B,F ,G ∪ { e }) ⇒ fail if B ∪ F6⊢��e ande is visible

Figure 1. Circular Coinduction in CIRC

A brief description of the rules is as follows:
[Done] – is applied whenever the set of proof obligations is
empty and indicates the termination of the process.
[Reduce] – is applied whenever the current goal is a⊢��-
consequence ofB ∪ F and operates by removinge from
the set of goals.
[Derive] – is applied when the current goale is hidden and
it is not a⊢��-consequence. The current goal is added to
the specification and its derivatives to the set of goals.∆(e)

denotes the set{δ[e] | δ ∈ ∆}.
[Normalize] – removes the current goal from the set of
proof obligations and adds its normal form as a new goal.
The normal formnf(e) of an equatione of the form
(∀X)t = t′ if ∧i∈I(ui = vi) is (∀X)nf(t) = nf(t′) if
∧i∈I(ui = vi), where the constants from the normal forms
are turned back into the corresponding variables.
[Fail] – stops the reduction process with failure whenever
the current goale is visible and the corresponding normal
forms are different.

The wrapping operator- : s → Frozen is imple-
mented inCIRC as the operator[* *]. For an equation
(∀X) t = t′ if c, the corresponding frozen equation is:
(∀X)[* t*] = [* t

′
] if c, where[*] : Sort(t) →

Frozen.
A proof of the following theorem can be found in [15].

Theorem 1 (soundness of CIRC) Let (B,∆) be a behav-
ioral specification and letG be a set of frozen equations.
If (B, ∅,G) ⇒∗ (B,F , ∅) applying the reduction rules in
Fig. 1, thenB � G.

We present a session inCIRC for simultaneous proving
thatthue+one = ~thue and ~ ~T = T . After entering the
specification, we need to add these properties as goals:

Maude> (add goal thue + one = ~ thue .)
Goal added: thue + one = ~ thue
Maude> (add goal ~ ~ T:Tree = T:Tree .)
Goal added: ~ ~ T:Tree = T:Tree

Then we introduce the coinduction command to automati-
cally prove the two goals.

Maude> (coinduction .)
Proof succeeded.

Number of derived goals: 9
Number of proving steps performed: 45
Maximum number of proving steps is set to: 256

Proved properties:
~ thue + one = thue
thue + one = ~ thue
~ ~ T:Tree = T:Tree

It is worth noting thatCIRC discovered and automatically
proved a new lemma: ~thue + one = thue. The circular
coinduction cannot terminate in some cases, therefore there
is a parameter which sets the maximum number of reduction
steps (here 256). The rest of the output is self-explanatory.
We may see the complete proof of the above properties:

Maude> (show proof .)
[*right(~thue+one)*]=[*right(thue)*]
------------------------------------- [Reduce]
[*right(~thue+one)*]=[*right(thue)*]

[*left(~thue+one)*] = [*left(thue)*]
------------------------------------- [Reduce]
[*left(~thue+one)*] = [*left(thue)*]

[*root(~thue+one)*] = [*root(thue)*]
------------------------------------- [Reduce]
[*root(~thue+one)*] = [*root(thue)*]

[*root(~thue+one)*] = [*root(thue)*]
[*left(~thue+one)*] = [*left(thue)*]

[*right(~thue+one)*]=[*right(thue)*]
------------------------------------- [Derive]
[*~thue+one*] = [*thue*]

[*~thue+one*] = [*thue*]
------------------------------------- [Normalize]
[*right(thue+one)*]=[*right(~thue)*]

[*left(thue+one)*] = [*left(~thue)*]
------------------------------------- [Reduce]
[*left(thue+one)*] = [*left(~thue)*]

[*root(thue+one)*] = [*root(~thue)*]
------------------------------------- [Reduce]
[*root(thue+one)*] = [*root(~thue)*]

[*right(~~T)*] = [*right(T)*]
------------------------------------- [Reduce]
[*right(~~T)*] = [*right(T)*]

[*left(~~T)*] = [*left(T)*]
------------------------------------- [Reduce]
[*left(~~T)*] = [*left(T)*]

[*root(~~T)*] = [*root(T)*]
------------------------------------- [Reduce]
[*root(~~T)*] = [*root(T)*]

[*root(thue+one)*] = [*root(~thue)*]
[*left(thue+one)*] = [*left(~thue)*]
[*right(thue+one)*]=[*right(~thue)*]
------------------------------------- [Derive]
[*thue+one*] = [*~thue*]

[*root(~~T)*] = [*root(T)*]
[*left(~~T)*] = [*left(T)*]
[*right(~~T)*] = [*right(T)*]
------------------------------------- [Derive]
[*~~T*] = [*T*]

We further provide an example on howCIRC handles
proving properties that do not hold. Let us try to prove that
~zero = zero:
Maude> (add goal ~ zero = zero .)
Goal added: ~ zero = zero

We use the following two commands in order to see all the
proof details and, respectively, start the coinduction algo-
rithm:
Maude> (set show details on .)
Maude> (coinduction .)
Hypo ~ zero = zero added and coexpanded to
1. root(~ zero) = root(zero)
2. left(~ zero) = left(zero)
3. right(~ zero) = right(zero)
Goal root(~ zero) = root(zero) reduced to

1 = 0
Visible goal 1 = 0 failed during coinduction.

Note that after the expansion, one of the derived goals is
root(~zero) = root(zero), which is reduced ac-
cording to the specification to1 = 0. This means that the
initial goal failed to be proved.

All the examples from this paper can be
tested with the on-line version of theCIRC tool
(http://fsl.cs.uiuc.edu/index.php/Special:CircOnline).

4 Proving Behavioral Attributes

Let B be the behavioral specification and let us consider
a new type of goals noted byW (op) whereop is an opera-

tion defined inB andW is any combination of the following
attributes A - associativity, C - commutativity, I - idempo-
tency, U -unity. In fact the goal is to prove the properties in
W for the operationop. For example AC(+) is the taskto
prove that the operation + is associative and commutative,
ACU(+) is the goalto prove that the operation + is associa-
tive, commutative and has unityand so on. We denote by
Eqn(W) the set of equations corresponding toW and by
Fr(W) the set of equations corresponding to freezingW .
According to the attributes, the equations inEqn(W) for a
general operatorop are:

A : (∀X ,Y ,Z)(X opY) opZ = X op (Y opZ)

C : (∀X ,Y)X opY = Y opX

U : (∀X)X op0 = X

(∀X)0 opX = X

I : (∀X)X opX = X

and the equations inFr(W) are:

A : X op (Y opZ) = X opWY opWZ

(X opY) opZ = X opWY opWZ

C,U, I : X opY = X opWY

If E is a set of equations, then letKB(E) denote the com-
pletion ofE obtained by applying Knuth-Bendix comple-
tion procedure[2]. Now we extendCIRC with a new deduc-
tion rule:

[Derive-atts]

(B,F ,G ∪ {W(op)}) ⇒

(B ∪ {opW },F ∪KB(Fr(W)),G ∪ ∆(Eqn(W)))

Theorem 2 Let (B,∆) be a behavioral specification and
W(op) a goal. If(B, ∅, {W(op)}) ⇒⋆ (B∪{opW },F , ∅) us-
ing all the deduction rules introduced, thenB � Eqn(W).

Proof. We have:

(B, ∅, {W(op)}) ⇒[Derive-atts]

(B ∪ {opW },KB(Fr(W)), ∆(Eqn(W))) ⇒⋆

(B ∪ {opW },F , ∅)

LetB1 denote the specificationB ∪{opW }∪KB(Fr(W)).
By Theorem 1,B1 � ∆(Eqn(W)). We show that
B ∪ {Eqn(W)} � e ⇔ B1 � e for each frozenB
equation e . The direct implication follow from the fact
B1 � Eqn(W)). For the inverse implication, we assume
that B1 � e . It follows that B ∪ {opW } ∪ Fr(W) ∪
Eqn(W) � e by the monotonicity and cut rule of�. If
π is a proof (in the equational deduction system) ofe from
B1 ∪ {Eqn(W)}, then we can construct a proofπ′ by re-
placing in each term the occurrences ofopW with opand in

each step using an equation fromFr(W) with a correspond-
ing equation fromEqn(W). For instance,x + y = x+AC y
is replaced with the use of x + y = y + x and (x + y) + z =
x + (y + z). It is easy to see now thatπ′ is in fact a proof of
e fromB ∪ {Eqn(W)}. We have nowB ∪ {Eqn(W)} �

∆(Eqn(W)), which impliesB � Eqn(W) by Theorem 7
in [15]. 2

As an example, we present theCIRC dialog resulted
while proving that+ is both associative and commutative
and has the identity (unit) elementzero:
Maude> (add goal (op _+_ : Tree Tree -> Tree

[assoc comm id: zero] .) .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 12
Number of proving steps performed: 52
Maximum number of proving steps is set to: 256

Maude> (show proof .)
...
[*root((X + Y)+ Z)*] = [*root(X + Y + Z)*]
[*left((X + Y)+ Z)*] = [*left(X + Y + Z)*]
[*right((X + Y)+ Z)*] = [*right(X + Y + Z)*]
[*root(X + Y)*] = [*root(Y + X)*]
[*left(X + Y)*] = [*left(Y + X)*]
[*right(X + Y)*] = [*right(Y + X)*]
[*root(zero + X)*] = [*root(X)*]
[*left(zero + X)*] = [*left(X)*]
[*right(zero + X)*] = [*right(X)*]
[*root(X + zero)*] = [*root(X)*]
[*left(X + zero)*] = [*left(X)*]
[*right(X + zero)*] = [*right(X)*]
----------------------------------- [Derive-atts]
op _+_ : Tree Tree -> Tree

[assoc comm id: zero] .

The output of the proof is not complete, only the first ap-
plied deduction rule,[Derive-atts], is presented here. We
can see that all twelve derived goals are generated by this
rule. Obviously, all these new goals are proved in this case
using only [Reduce]. The rule[Derive-atts] may inter-
fere with the the other rules of circular coinduction during
the automated proving process, increasing in this way the
power of the prover.

5 Conclusion

In this paper we presented some examples of using
CIRC, a theorem prover implementing the circular coinduc-
tion principle, in order to prove a set of properties over in-
finite data structures. The main contribution is providing
a new technique for proving behavioral attributes based on
rewriting modulo commutativity, associativity, unity and/or
idempotency.

References

[1] J. Adámek. Introduction to coalgebra.Theory and Applica-
tions of Categories, 14(8):157–199, 2005.

[2] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion
without failure. In Resolution of Equations in Algebraic
Structures, volume 2, pages 1–30. Academic Press, 1989.

[3] Y. Bertot and E. Komendantskaya. Inductive and coinduc-
tive components of corecursive functions in coq.Electron.
Notes Theor. Comput. Sci., 203(5):25–47, 2008.

[4] M. Bidoit, R. Hennicker, and A. Kurz. Observational logic,
constructor-based logic, and their duality.Theoretical Com-
puter Science, 3(298):471–510, 2003.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet,
J. Meseguer, and C. L. Talcott, editors.All About Maude
- A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic, volume
4350 ofLecture Notes in Computer Science. Springer, 2007.

[6] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency
workbench: a semantics-based tool for the verification of
concurrent systems.ACM Transactions on Programming
Languages and Systems (TOPLAS), 15(1):36–72, 1993.

[7] T. Coquand. Infinite objects in type theory. In H. Baren-
dregt and T. Nipkow, editors,TYPES, volume 806 ofLecture
Notes in Computer Science, pages 62–78. Springer, 1993.

[8] E. A. Emerson. Model checking and the mu-calculus. In
DIMACS Series in Discrete Mathematics, pages 185–214.
American Mathematical Society, 1997.

[9] J. Goguen and G. Malcolm. A hidden agenda.Theoretical
Computer Science, 245(1):55–101, August 2000.

[10] J. Goguen and J. Meseguer. Completeness of Many-
Sorted Equational Logic.Houston Journal of Mathematics,
11(3):307–334, 1985.

[11] D. Hausmann, T. Mossakowski, and L. Schröder. Iterative
circular coinduction for cocasl in isabelle/hol. In M. Cerioli,
editor, FASE, volume 3442 ofLecture Notes in Computer
Science, pages 341–356. Springer, 2005.

[12] B. Jacobs and J. Rutten. A tutorial on (co)algebras and
(co)induction.Bulletin of the European Association for The-
oretical Computer Science, 62:222–259, 1997.

[13] D. Lucanu, E.-I. Goriac, G. Caltais, and G. Roşu. CIRC :
A behavioral verification tool based on circular coinduction.
In CALCO’09, LNCS, 2009. To appear.

[14] D. Lucanu and G. Roşu. Circ : A circular coinductive prover.
In T. Mossakowski, U. Montanari, and M. Haveraaen, edi-
tors, CALCO, volume 4624 ofLecture Notes in Computer
Science, pages 372–378. Springer, 2007.

[15] D. Lucanu and G. Roşu. Circular Coinduction with Special
Contexts. Technical Report UIUCDCS-R-2009-3039, Uni-
versity of Illinois at Urbana-Champaign, 2009. Submitted.

[16] R. Milner. Communicating and Mobile Systems: theπ-
calculus. Cambridge University Press, 1999.

[17] T. Mossakowski, H. Reichel, M. Roggenbach, and
L. Schroder. Algebraic-coalgebraic specification in Co-
CASL. InProceedings of WADT’02, volume 2755 ofLNCS,
pages 376–392. Springer, 2002.

[18] G. Roşu.Hidden Logic. PhD thesis, University of California
at San Diego, 2000.

[19] G. Roşu and D. Lucanu. Circular Coinduction –A Proof
Theoretical Foundation. InCALCO’09, LNCS. Springer,
2009. To appear.

