
CIRC: A Behavioral Verification Tool based on
Circular Coinduction

Dorel Lucanu1, Eugen-Ioan Goriac1, Georgiana Caltais1, and Grigore Roşu2

1 Faculty of Computer Science
Alexandru Ioan Cuza University, Iaşi, Romania,
[dlucanu,egoriac,gcaltais]@info.uaic.ro

2 Department of Computer Science
University of Illinois at Urbana-Champaign, USA, grosu@cs.uiuc.edu

Abstract. CIRC is a tool for automated inductive and coinductive the-
orem proving. It includes an engine based on circular coinduction, which
makes CIRC particularly well-suited for proving behavioral properties
of infinite data-structures. This paper presents the current status of the
coinductive features of the CIRC prover, focusing on new features added
over the last two years. The presentation is by examples, showing how
CIRC can automatically prove behavioral properties.

1 Introduction

The first version of the coinductive engine of CIRC was presented in [7]. Mean-
while, important contributions have been made to the tool. One of the contri-
butions is the implementation of the deterministic language ROC! [3] used for
specifying proof strategies. This language provides a flexible way to combine ba-
sic proof actions, such as reduction and coinduction expansion, into coinductive
proof schemata. ROC! was designed so that the combination of different proving
techniques is possible.

Another contribution was the extension of the tool with special contexts [6], as
explained below. An important technical aspect of our previous implementation
of circular coinduction in CIRC [7] (see also [8]) was a freezing operator · used
to add frozen versions e of dynamically discovered coinductive hypotheses e
to the behavioral specification. The role of the freezing operator is to enforce
the use of coinductive hypotheses in a sound manner, forbidding their use in
contextual reasoning. However, many experiments with CIRC have shown that
this constraint to completely forbid the use of coinductive hypotheses in all
contexts is too strong, in that some contexts are actually safe. The novel special
context extension of CIRC allows the user to specify contexts in which the frozen
coinductive hypotheses can be used. CIRC can be used to check that those
contexts are indeed safe. Moreover, the current version of CIRC includes an
algorithm for automatically computing a set of special contexts, which are then,
also automatically, used in circular coinductive proofs.

The CIRC tool, user manual and many examples can be downloaded from
http://fsl.cs.uiuc.edu/CIRC. CIRC can also be used online through its web
interface at http://fsl.cs.uiuc.edu/index.php/Special:CircOnline.

The theoretical foundation for the coinductive engine included in CIRC is
presented in [8]. So, many concepts and notations used in this paper are presented
in detail there. In this paper we present a set of examples aiming to illustrate
the main features of CIRC. These include non-trivial properties of streams,
bisimulation of automata, how to handle goals when a possible infinite proof is
detected, the use of special contexts.

2 Behavioral Specifications and CIRC

Behavioral specifications are pairs of the form (B, ∆), where B = (S,Σ,E) is a
many sorted algebraic specification and ∆ is a set of Σ-contexts, called deriva-
tives. A derivative in ∆ is written as δ[∗:h], where ∗:h is a special variable of
sort h designating the place-holder in the context δ. The sorts S are split in two
classes: hidden sorts, H = {h | δ[∗:h] ∈ ∆}, and visible sorts, V = S \ H. A
∆-context is inductively defined as follows: 1) each δ[∗:h] ∈ ∆ is a context for
h; and 2) if C[∗:h′] is a a context for h′ and δ[∗:h] ∈ ∆h′ , then C[δ[∗:h]] is a
context for h, where ∆h′ is the subset of derivatives of sort h′. A ∆-experiment
is a ∆-context of visible sort. If e is an equation of the form (∀X)t = t′ and C a
∆-context appropriate for t and t′, then C[e] denotes the equation
(∀X)C[t] = C[t′]. If δ ∈ ∆, then δ[e] is called a derivative of e. Given an entail-
ment relation ` over B, the behavioral entailment relation is defined as follows:
B � e iff B ` C[e] for each ∆-context C appropriate for the equation e. In this
case, we say that B behaviorally satisfies the equation e. The reader is referred
to [8] for more rigorous definitions, properties and other technical details.

Several of the examples we present in this paper are based on infinite streams.
To specify the streams, we consider two sorts: a hidden sort Stream for the
streams and a visible sort Data for the stream elements. The streams are defined
in terms of head and tail, i.e., hd(∗:Stream) and tl(∗:Stream) are derivatives. For
instance, the stream (1 : 0 : 1)∞ = 1 : 0 : 1 : 1 : 0 : 1 . . . , which is mathematically
defined by the equation ozo = 1:0:1 :ozo, is behaviorally specified by the follow-
ing equations written in terms of head and tail: hd(ozo) = 1, hd(tl(ozo)) = 0,
hd(tl2(ozo)) = 1 and tl3(ozo) = ozo. The specifications of other hidden struc-
tures are obtained in a similar manner, by defining their behavior in terms of
the derivatives.

CIRC is developed as an extension of the Full Maude language. The under-
lying entailment relation used in CIRC is E �̀� (∀X)t = t′ if ∧i∈I(ui = vi) iff
nf(t) = nf(t′), where nf(t) is computed as follows:

– the variables X of the equations are turned into fresh constants;
– the condition equalities ui = vi are added as equations to the specification;
– the equations in the specification are oriented and used as rewrite rules.

The circular coinduction engine implements the proof system given in [8] by a
set of reduction rules (B,F ,G) ⇒ (B,F ′,G′), where B represents the (original)
algebraic specification, F is the set of frozen axioms and G is the current set of
proof obligations. Here is a brief description of the reduction rules:

2

[Done]: (B,F , ∅)⇒ ·
This rule is applied whenever the set of proof obligations is empty and indi-
cates the termination of the reduction process.
[Reduce]: (B,F ,G ∪ { e })⇒ (B,F ,G) if B ∪ F �̀�e
This rule is applied whenever the current goal is a �̀�-consequence of B∪F
and operates by removing e from the set of goals.
[Derive]: (B,F ,G ∪ { e })⇒ (B,F ∪ { e },G ∪ {∆(e) }) if B ∪ F6 �̀�e
This rule is applied when the current goal e is hidden and it is not a
�̀�-consequence. The current goal is added to the specification and its
derivatives to the set of goals. ∆(e) denotes the set {δ[e] | δ ∈ ∆}.
[Normalize]: (B,F ,G ∪ { e })⇒ (B,F ,G ∪ { nf(e) })
This rule removes the current goal from the set of proof obligations and adds
its normal form as a new goal. The normal form nf(e) of an equation e of
the form (∀X)t = t′ if ∧i∈I(ui = vi) is (∀X)nf(t) = nf(t′) if ∧i∈I(ui =
vi), where the constants from the normal forms are turned back into the
corresponding variables.
[Fail]: (B,F ,G ∪ { e })⇒ fail if B ∪ F6 �̀�e and e is visible
This rule stops the reduction process with failure whenever the current goal
e is visible and the corresponding normal forms are different.

It is easy to see that the reduction rules [Done], [Reduce], and [Derive] implement
the proof rules with the same names given in [8]. The reduction rules [Normalize]
and [Fail] have no correspondent in the proof system. [Normalize] is directly
related to the particular definition for the basic entailment relation used in CIRC.
[Fail] signals a failing stop of the reduction process and such a case needs (human)
analysis in order to know the source of the failure. The soundness of CIRC follows
by showing that the proof system in [8] is equivalent to its extension with the
rule:

B ∪ F ` G ∪ nf(e)
B ∪ F ` G ∪ e

[Normalize]

The use of CIRC is very simple. First the user must define (or load if al-
ready defined) the equational specification B using a Full Maude-like syntax.
For instance, the equational description of streams can be given as follows:

(theory STREAM-EQ is
sorts Data Stream . op hd : Stream -> Data .
ops 0 1 : -> Data . op tl : Stream -> Stream .
op not : Data -> Data .
eq not(0) = 1 . eq not(1) = 0 .
op ozo : -> Stream .
eq hd(ozo) = 0 . eq hd(tl(tl(ozo))) = 0 .
eq hd(tl(ozo)) = 1 . eq tl(tl(tl(ozo))) = ozo .
...

endtheory)

Since Full Maude has no support for behavioral specifications, CIRC uses a new
kind of modules, called c-theories, where the specific syntactic constructs are
included. Here is a c-theory specifying the derivatives ∆ for streams:

3

(ctheory STREAM is including STREAM-EQ .
derivative hd(*:Stream) .
derivative tl(*:Stream) .

endctheory)

As c-theories extend Full-Maude theories, the whole specification (B, ∆) may be
included into a single c-theory.

The user continues by loading several goals, expressed as (conditional) equa-
tions, using the command (add goal .) and then launches the coinductive
proving engine using the command (coinduction .). The coinductive engine of
CIRC has three ways to terminate:

– successful termination: the initial goals are behavioral consequences of the
specification;

– failing termination: the system fails to prove a visible equation (in this case
we do not know if the initial goals hold or not);

– the maximum number of steps was exceeded : either the execution does not
terminate or the maximum number of steps is set to a too small value and
should be increased.

However, the termination of CIRC is conditioned by the terminating property of
the equational specification B. For instance, CIRC does not terminate if Maude
falls into a infinite rewriting when it computes a certain normal form.

3 CIRC at work

In this section we present several scenarios on how to interact with the tool in
order to prove behavioral properties. The definitions of the stream operations
are given by mathematical specifications. The behavioral variants, expressed in
terms of head and tail derivatives, are obtained in a similar way to that used for
the definition of the stream ozo in Section 2.

Example 1. This example illustrates how CIRC implements the proof system
given in [8]. The operations even and odd over streams are defined as follows:
odd(a :s) = a :even(s) and even(a :s) = odd(s). Supposing that the file including
the c-theory STREAM has the name stream.maude, we present how the user can
verify that zip(odd(S), even(S)) = S :
Maude> in stream.maude
Maude> (add goal zip(odd(S:Stream), even(S:Stream)) = S:Stream .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 2
Number of proving steps performed: 13
Maximum number of proving steps is set to: 256

Proved properties:
zip(odd(S:Stream),odd(tl(S:Stream))) = S:Stream

From the output we conclude that CIRC needs to prove 2 extra derived sub-
goals in order to prove the initial property and that it performs 13 basic steps
([Reduce], [Derive], etc). Note that the superior limit for the number of basic

4

steps is set to 256. The command (set max no steps .) is used to change
this number. Exceeding this limit is a good clue for possible infinite computa-
tions.

The command (show proof .) can be used in order to visualize the applied
rules from the proof system:

Maude> (show proof .)

|- [* tl(zip(odd(S),odd(tl(S)))) *] = [* tl(S) *]
-- [Reduce]
|||- [* tl(zip(odd(S),odd(tl(S)))) *] = [* tl(S) *]

|- [* hd zip(odd(S),odd(tl(S))) *] = [* hd S *]
-- [Reduce]
|||- [* hd zip(odd(S),odd(tl(S))) *] = [* hd S *]

1. |||- [* hd zip(odd(S),odd(tl(S))) *] = [* hd S *]
2. |||- [* tl(zip(odd(S),odd(tl(S)))) *] = [* tl(S) *]
-- [Derive]
|||- [* zip(odd(S),odd(tl(S))) *] = [* S *]

|- [* zip(odd(S),odd(tl(S))) *] = [* S *]
-- [Normalize]
|- [* zip(odd(S),even(S)) *] = [* S *]

Comparing with the proof tree given in [8], we see that the [Derive] step is
accompanied by a [Normalize] step.

Example 2. This is a non-trivial example of coinductive property over streams
automatically proved with the circular coinduction. Let s denote the First Feigen-
baum sequence: (1 : 0 : 1 : 1 : 1 : 0 : 1 : 0 : 1 : 0 : 1 : 1)∞ and 31zip an operation defined
by the equation 31zip(a0 :a1 : . . . , b0 : b1 : . . .) = a0 :a1 :a2 : b0 :a3 :a4 :a5 : b1 :
We present below how the user can verify that 31zip(ozo, ozo) = s:

Maude> (add goal 31zip(ozo, ozo) = s .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 24
Number of proving steps performed: 102
Maximum number of proving steps is set to: 256

Proved properties:
tl(tl(tl(31zip(ozo,tl(tl(ozo)))))) =
tl(tl(tl(tl(tl(tl(tl(tl(tl(tl(tl(s)))))))))))

tl(tl(31zip(ozo,tl(tl(ozo))))) =
tl(tl(tl(tl(tl(tl(tl(tl(tl(tl(s))))))))))

tl(31zip(ozo,tl(tl(ozo)))) = tl(tl(tl(tl(tl(tl(tl(tl(tl(s)))))))))
31zip(ozo,tl(tl(ozo))) = tl(tl(tl(tl(tl(tl(tl(tl(s))))))))
tl(tl(tl(31zip(ozo,tl(ozo))))) = tl(tl(tl(tl(tl(tl(tl(s)))))))
tl(tl(31zip(ozo,tl(ozo)))) = tl(tl(tl(tl(tl(tl(s))))))
tl(31zip(ozo,tl(ozo))) = tl(tl(tl(tl(tl(s)))))
31zip(ozo,tl(ozo)) = tl(tl(tl(tl(s))))
tl(tl(tl(31zip(ozo,ozo)))) = tl(tl(tl(s)))
tl(tl(31zip(ozo,ozo))) = tl(tl(s))
tl(31zip(ozo,ozo)) = tl(s)
31zip(ozo,ozo) = s

5

The “proved properties” constitute the set F of the intermediate lemmas the
circular coinduction discovered during the derivation process. The set F of
their frozen forms satisfies the Circularity Principle [8]: STREAM ∪ F ` ∆[F] ,
which implies STREAM � F .

Example 3. In this example we show how CIRC can be used for proving si-
multaneous several properties related to the famous Thue-Morse sequence. We
first introduce the operations not , zip, and f , mathematically described by the
following equations:

not(a :s) = not(a) :not(s)
zip(a :s, s′) = a :zip(s′, s)

f (a :s) = a :not(a) : f (s)
Note that the operation not is overloaded over data and streams, the right
meaning resulting from the type of the argument. The Thue-Morse sequence
is morse = 0 : zip(not(morse), tl(morse)). It is known that morse and its com-
plement are the only fixed points of the function f . If we try to prove this
property with CIRC, then we obtain the following output:
Maude> (add goal f(morse) = morse .)
Maude> (coinduction .)
Stopped: the number of prover steps was exceeded.

Often, this message indicates that the execution of the circular coinductive
engine does not terminate for the given goal(s). Analyzing the derived goals
(these are obtained either by calling the command (set show details on .)

before starting the coinduction engine or the command (show proof .) at the
end), we observe that the fourth derived goal is normalized to f (tl(morse)) =
zip(tl(morse),not(tl(morse))). If we replace the subterm tl(morse) with a free
variable S, then we obtain a more general lemma: f (S) = zip(S ,not(S)). CIRC
can prove by circular coinduction simultaneously a set of goals. So, we try to
simultaneously prove the two properties and we see that this time CIRC suc-
cessfully terminates:
Maude> in stream.maude
Maude> (add goal f(morse) = morse .)
Maude> (add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 8
Number of proving steps performed: 41
Maximum number of proving steps is set to: 256

Proved properties:
tl(f(morse)) = tl(morse)
tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))
f(morse) = morse
f(S:Stream) = zip(S:Stream,not(S:Stream))

A similar reasoning is used for proving the following properties:

31zip(ozo, g(altMorse)) = g(altMorse) and 31zip(ozo, g(S)) = g(f (f (S)))

where altMorse is Thue-Morse sequence but defined using the alternative defi-
nition altMorse = f (0 : tl(altMorse)) and g is the function over streams defined
by g(a0 :a1 :a2 : . . .) = (a0 + a1) :g(a1 :a2 : . . .). Here is the dialog with CIRC:

6

Maude> (add goal 31zip(ozo, g(altMorse)) = g(altMorse) .)
Maude> (add goal 31zip(ozo, g(S:Stream)) = g(f(f(S:Stream))) .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 16
Number of proving steps performed: 79
Maximum number of proving steps is set to: 256

Proved properties:
g(tl(f(tl(f(altMorse))))) = g(tl(f(tl(altMorse))))
tl(tl(tl(31zip(ozo,g(S:Stream))))) = g(tl(f(tl(f(S:Stream)))))
g(f(tl(f(altMorse)))) = g(f(tl(altMorse)))
tl(tl(31zip(ozo,g(S:Stream)))) = g(f(tl(f(S:Stream))))
g(tl(f(f(altMorse)))) = g(tl(altMorse))
tl(31zip(ozo,g(S:Stream))) = g(tl(f(f(S:Stream))))
g(f(f(altMorse))) = g(altMorse)
31zip(ozo,g(S:Stream)) = g(f(f(S:Stream)))

The stream g(altMorse) is studied in [9] and its equivalent definition with 31zip
and g is given in [1].

Example 4. This example illustrates CIRC capabilities of proving fairness prop-
erties. Let g1, g2 and g3 be three infinite streams defined in a mutually-recursive
manner by the following equations: g1 = 0 : not(g3), g2 = 0 : not(g1) and
g3 = 0:not(g2). The three streams model a ring of three gates, where the output
of each gate is the negation of its current input, except for the initial output
which is 0. We introduce the infinite stream ones representing the sequence
1∞, defined by the equation ones = 1 : ones. We also consider the operator
extractOnes that filters all the occurrences of the element 1 when provided a
certain stream:

extractOnes(b0 :b1 :b2 . . .) =

{
1:extractOnes(b1 :b2 . . .), if b0 = 1
extractOnes(b1 :b2 . . .), otherwise

We want to use CIRC in order to prove the property that g1 includes an infinite
number of occurrences of the element 1. For proving this property the tool needs
the lemma not(not(a0 :a1 . . .)) = a0 :a1 . . . that can be also proved with CIRC in
one derivation step and several equational reductions. Finally, the goal we want
to prove is extractOnes(g1) = ones:
Maude> (add goal extractOnes(g1) = ones .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 6
Number of proving steps performed: 30
Maximum number of proving steps is set to: 256

Proved properties:
extractOnes(g3) = ones
extractOnes(g2) = ones
extractOnes(g1) = ones

From the provided output, one can see that CIRC needed also to automatically
prove two other similar fairness properties for the streams g2 and g3. However,
the specification of extractOnes should be used with care because is not always
terminating.

7

Example 5. CIRC is also used for proving automata bisimilarity. In our example,
we consider the two deterministic automata presented in Fig. 1.

0
2

1

b

a

b

a

a
b a

b
99

Fig. 1. Two bisimilar automata

The transition function delta is defined over states modeled as elements from
the hidden sort State, and respectively over the alphabet elements (a and b)
modeled as elements from the visible sort Alph. The function is defined in
terms of equations such as: delta(0, a) = 1, delta(0, b) = 2, delta(99, a) = 99,
delta(99, b) = 99 and so on. In this case delta is the only observer, so the deriva-
tive set consists of delta-derivatives defined for every element from the alphabet:
delta(*:State, a) and delta(*:State, b). CIRC manages to prove that the
state 0 of the first automaton is bisimilar to state 99 of the second automaton:

Maude> (add goal 0 = 99 .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 6
Number of proving steps performed: 30
Maximum number of proving steps is set to: 256

Proved properties:
2 = 99
1 = 99
0 = 99

The tool needs in this case to automatically prove two other bisimilarity
relations between the states 2 and 99 and respectively 1 and 99.

Example 6. In this scenario we exhibit the use of the special contexts. A par-
ticular definition for special contexts was given for the first time in [4]. A more
detailed presentation of special contexts and of how they are used to extend
circular coinduction is given in [6].

We assume that we want to prove simultaneously the following goals: morse =
altMorse and f (S) = zip(S ,not(S)). Here is dialog with CIRC:

Maude> in streams.maude
Maude> (add goal morse = altMorse .)
Maude> (add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)
Maude> (coinduction .)
Stopped: the number of prover steps was exceeded.

At this moment, the command (show proof .) lists all the steps it managed
to perform before reaching the limit. Two of the frozen hypotheses added to
the specification are: zip(S ,not(S)) = f (S) and tl(morse) = tl(altMorse) .
In order to see what is happening, let us consider the complete definitions for
morse and altMorse:

8

hd(morse) = 0 hd(altMorse) = 0
hd(tl(morse)) = 1 hd(tl(altMorse)) = 1

tl2(morse) = zip(tl(morse),not(tl(morse))) tl2(altMorse) = f (tl(altMorse))

CIRC cannot reduce tl2(morse) = tl2(altMorse) because the above frozen
hypotheses cannot be applied under zip and not . However, for this case, the
deductions

` tl(morse) = tl(altMorse)

` not(tl(morse)) = not(tl(altMorse))

` tl(morse) = tl(altMorse) , not(tl(morse)) = not(tl(altMorse))

` zip(tl(morse),not(tl(morse))) = zip(tl(altMorse),not(tl(altMorse)))

are sound. We say that the contexts not(∗:Stream), zip(∗:Stream,S :Stream), and
zip(S :Stream, ∗:Stream) are special, because they allow to use frozen hypotheses
under them in the deduction process.

The current version of CIRC includes an algorithm for computing special
contexts for a given specification. To activate this algorithm, we have to set
on the switch auto contexts before loading the c-theory, using the command
(set auto contexts on .). After the c-theory is loaded, CIRC outputs the com-
puted special contexts:
The special contexts are:
not *:Stream
zip(V#1:Stream,*:Stream)
zip(*:Stream,V#2:Stream)

Having the special contexts computed, CIRC successfully terminates the proof
computation for the above property:
Maude> (add goal morse = altMorse .)
Maude> (add goal f(S:Stream) = zip(S:Stream, not(S:Stream)) .)
Maude> (coinduction .)
Proof succeeded.
Number of derived goals: 8
Number of proving steps performed: 41
Maximum number of proving steps is set to: 256

Proved properties:
tl(morse) = tl(altMorse)
tl(f(S:Stream)) = zip(not(S:Stream),tl(S:Stream))
morse = altMorse
f(S:Stream) = zip(S:Stream,not(S:Stream))

We see above that CIRC does not report the context f(∗:Stream) as being
special. The problem of computing the special contexts is not decidable, so the
algorithm implemented in CIRC is not able to always find all the special contexts.
CIRC includes the facility to declare a context as special, provided that the user
guarantees for that.

Other examples of properties which can be proved using the special contexts
are: S1 × (S2 + S3) = S1 × S2 + S1 ×S3 and (S1 + S2)× S3 = S1 × S3 +S2 ×S3

for streams, similar properties for infinite binary trees [5], the equivalence for
basic process algebra, and well-definedness of stream definitions [10]. All these
examples are available on the web site of the tool.

9

4 Conclusions

The development of CIRC started about three years ago. The main focus up to
now was to implement the circular coinduction engine and to use it on many
examples. The experience we gained in this period helped us better understand
how circular coinduction and its extension with special contexts can be recast
as a formal proof system [8, 6].

The special contexts were useful for proving many properties of streams and
infinite binary trees. They were also useful for proving the well-definedness of
several stream definitions inspired from [10].

The potential of the ideas included in [4] is not exhausted. For instance, the
case analysis is not included in the current version. A former version of CIRC
included some facilities in this respect, but it needed manual assistance. One of
our future aim is to extend CIRC with automated case analysis.
Acknowledgment. The paper is supported in part by NSF grants CCF-
0448501, CNS-0509321 and CNS-0720512, by NASA contract NNL08AA23C,
by the Microsoft/Intel funded Universal Parallel Computing Research Center at
UIUC, and by CNCSIS grant PN-II-ID-393.

References

1. J.-P. Allouche, A. Arnold, J. Berstel, S. Brlek, W. Jockusch, S. Plouffe, and B. E.
Sagan. A sequence related to that of Thue-Morse. Discrete Mathematics, 139:455–
461, 1995.

2. J.-P. Allouche and J. Shallit. The ubiquitous prouhet-thue-morse sequence. In
C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their applica-
tions (Proc. SETA’98), pages 1–16. Springer-Verlag, 1999.

3. G. Caltais, E.-I. Goriac, D. Lucanu, and G. Grigoraş. A Rewrite Stack Machine
for ROC! Technical Report TR 08-02, “Al.I.Cuza” University of Iaşi, Faculty of
Computer Science, 2008. URL:http://www.infoiasi.ro/ tr/tr.pl.cgi.

4. J. Goguen, K. Lin, and G. Rosu. Conditional circular coinductive rewriting with
case analysis. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, WADT,
volume 2755 of Lecture Notes in Computer Science, pages 216–232. Springer, 2002.

5. G. Grigoraş and D. L. G. Caltais, E. Goriac. Automated proving of the behavioral
attributes. Accepted for the 4th Balkan Conference in Informatics (BCI’09), 2009.

6. D. Lucanu and G. Roşu. Circular Coinduction with Special Contexts. Technical
Report UIUCDCS-R-2009-3039, University of Illinois at Urbana-Champaign, 2009.
Submitted.

7. D. Lucanu and G. Rosu. Circ : A circular coinductive prover. In T. Mossakowski,
U. Montanari, and M. Haveraaen, editors, CALCO, volume 4624 of Lecture Notes
in Computer Science, pages 372–378. Springer, 2007.

8. G. Roşu and D. Lucanu. Circular Coinduction –A Proof Theoretical Foundation.
In CALCO’09, LNCS, 2009. This volume.

9. M. R. Schroeder. Fractals, Chaos, Power Laws. W. H. Freeman, 1991.
10. H. Zantema. Well-definedness of streams by termination. Submitted, 2009.

10

