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Abstract

In concurrency theory, various semantic equivalences on labelled transition systems are based on
traces enriched or decorated with some additional observations. They are generally referred to as
decorated traces, and examples include ready, failure, trace and complete trace equivalence. Using
the generalized powerset construction, recently introduced by a subset of the authors (FSTTCS’10),
we give a coalgebraic presentation of decorated trace semantics. This yields a uniform notion
of canonical, minimal representatives for the various decorated trace equivalences, in terms of
final Moore automata. As a consequence, proofs of decorated trace equivalence can be given by
coinduction, using different types of (Moore-) bisimulation (up-to), which is helpful for automation.

1 Introduction

The study of systems equivalence has been an interesting research topic for
many years now. Several equivalences have been proposed throughout the
years, each of which suitable for use in different contexts of application. Many
of the equivalences that are important in the theory of concurrency were de-
scribed in the well-known paper by van Glabbeek [14].

Proof methods for the different equivalences are an important part of this
research enterprise. In this paper, we propose coinduction as a general proof
method for what van Glabbeek calls decorated trace semantics, which includes
(complete) trace, ready and failure semantics.

Coinduction is a general proof principle which has been uniformly defined
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in the theory of coalgebras for different types of state-based systems and in-
finite data types. Given a functor F : Set → Set, an F-coalgebra is a pair
(X, f) consisting of a set of states X and a function f : X → F(X) defining
the dynamics of the system. The functor F determines the type of the tran-
sition system or data type under study. For a large class of functors F, there
exists a final coalgebra into which every F-coalgebra is mapped by a unique
homomorphism. Intuitively, one can see the final coalgebra as the universe
of all behaviours of systems and the unique morphism as the map assigning
to each system its behaviour. This provides a standard notion of equivalence
called F-behavioural equivalence. Moreover, these canonical behaviours are
minimal, by general coalgebraic considerations [10], in that no two different
states are equivalent.

Labelled transition systems (LTS’s) can be modelled as coalgebras for the
functor F(X) = (PωX)A and the canonical behavioural equivalence associated
with F is precisely the finest equivalence of the spectrum in [14]. In the
recent past, other equivalences of the spectrum have been also cast in the
coalgebraic framework. Notably, trace semantics was widely studied [5,13]
and, more recently, decorated trace semantics was recovered via a coalgebraic
generalization of the classical powerset construction [12].

To get some intuition on the type of distinctions the equivalences above en-
compass, consider the following labelled transition systems over the alphabet
A = {a, b, c}:

p
a

a
q
a

r
aa

s
a

aa

• •
cb

•
cb

•
b

•
c
•
b

•
bc

•
c

• • • • • • • •

The traces of the states p, q, r and s are {a, ab, ac}, and therefore they are
all trace equivalent. Complete trace semantics identifies states that have the
same set of complete traces, that is, traces that lead to states where no further
action are possible. Of the four states above, q and r and s are complete trace
equivalent, but not p since it is the only state that has a as a complete trace.
Failure semantics takes into account the set of actions that cannot be fired
immediately after the execution of a certain trace. Only r and s are failure
equivalent, since after a, state p might not be able to fire actions b and c,
whereas p, r and s might not be able to fire only one of b or c and q never
fails with those two actions. Ready semantics identifies states according to
the set of actions they can trigger immediately after a certain trace has been
executed. None of the states above are ready equivalent, since after a only p

has the option of not executing any action, q and s can choose from b or c but
r cannot and q always has two options b, c whereas s can end in a state where
only b or c can be taken.

The contributions of the paper are three-fold. First, we prove that the
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coalgebraic decorated trace semantics, which are mentioned without proof
in [12] as examples, are equivalent to the corresponding set-theoretic notions
from [14]. Second, we show how the coalgebraic semantic leads to canonical
representatives for the various decorated trace equivalences. Third, we show
how to prove decorated trace equivalence using coinduction, by constructing
bisimulations (up-to congruence) that witness the desired equivalence. The
latter is interesting also from the point of view of tool development: con-
struction of bisimulations is known to be particularly suitable for automation.
Moreover, the up-to congruence technique also increases the efficiency of rea-
soning, as verifications are performed under certain closure properties, which
means the bisimulations that are built are smaller (see Section 3, and Sec-
tion 4 for an example). The techniques we use here for up-to reasoning are an
extension of the recent work by the first author [3].

The paper is organized as follows. In Section 2, we provide the basic
notions from coalgebra and recall the generalized powerset construction. In
Section 3, we show how the powerset construction can be applied for deter-
minizing LTSs in terms of Moore automata (X, f : X → B×XA), in order to
coalgebraically characterize decorated trace semantics. Detailed descriptions
of coalgebraic ready, trace, complete trace and failure semantics are provided
in Section 4 and Appendix C. We also prove that the obtained coalgebraic
models are equivalent to the original definitions of the corresponding seman-
tics, and we illustrate how one can reason about the induced equivalences
by constructing bisimulations up-to congruence. Section 5 discusses that the
canonical representatives of LTSs we obtain coalgebraically coincide with the
minimal LTSs one would obtain by identifying all states equivalent w.r.t. a
particular decorated trace semantics. Section 6 contains concluding remarks
and discusses future work.

2 Preliminaries

In this section, we briefly recall basic notions from coalgebra and the gen-
eralized powerset construction [5,13]. We first introduce some notation on
sets.

We denote sets by capital letters X, Y, . . . and functions by lower case
letters f, g, . . .. The cartesian product of two setsX and Y is denoted byX×Y ,
and has the projection maps X

π1←− X×Y
π2−→ Y . The disjoint union of X and

Y is written X+Y and has the injection maps X
k1−→ X+Y

k2←− Y . By XY we
represent the family of functions f : Y → X , whereas the collection of finite
subsets of X is denoted by PωX . For each of these operations defined on sets,
there is an analogous one on functions (for details see for example [2]). This
turns the operations above into (bi)functors, which we shall use throughout
this paper.
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For an alphabet A, we denote by A∗ the set of all words over A and by ε

the empty word. The concatenation of words w1, w2 ∈ A∗ is written w1w2.

Coalgebras : We consider coalgebras of functors F defined on Set – the
category of sets and functions. An F-coalgebra (or coalgebra, when F is un-
derstood) is a pair (X, c : X → FX), where X ∈ Set. We call X the state
space, and we say that F together with c determine the dynamics, or the
transition structure of the F-coalgebra.

An F-homomorphism between two F-coalgebras (X, f) and (Y, g), is a
function h : X → Y preserving the transition structure, i.e., g ◦ h = F(h) ◦ f .

An F-coalgebra (Ω, ω) is final if for any F-coalgebra (X, f) there exists
a unique F-homomorphism J−KX : X → Ω. A final coalgebra represents the
universe of all possible behaviours of F-coalgebras. The unique morphism
J−KX : X → Ω maps each state in X to its behaviour. Using this mapping,
behavioural equivalence can be defined as follows: for any two coalgebras
(X, f) and (Y, g), the states x ∈ X and y ∈ Y are behaviourally equivalent,
written x ∼F y, if and only if they have the same behaviour, that is

x ∼F y iff JxKX = JyKY . (1)

We think of JxKX as the canonical representative of the behaviour of x. Also it
can be viewed as the minimization of (X, f), since the final coalgebra contains
no pairs of equivalent states.

For an example we consider deterministic automata (DA). A deterministic
automaton over the input alphabet A is a pair (X, 〈o, t〉), where X is a set
of states and 〈o, t〉 : X → 2 × XA is a function with two components: o, the
output function, determines if a state x is final (o(x) = 1) or not (o(x) = 0);
and t, the transition function, returns for each input letter a the next state.
DA’s are coalgebras for the functor D(X) = 2 × XA. The final coalgebra of
this functor is (2A

∗

, 〈ǫ, (−)a〉) where 2A
∗

is the set of languages over A and
〈ǫ, (−)a〉, given a language L, determines whether or not the empty word is
in the language (ǫ(L) = 1 or ǫ(L) = 0, resp.) and, for each input letter a,
returns the derivative of L: La = {w ∈ A∗ | aw ∈ L}. From any DA, there is
a unique map J−K into 2A

∗

which assigns to each state its behaviour (that is,
the language that the state recognizes).

X
J−KX

〈o,t〉

2A
∗

〈ǫ,(−)a〉

2×XA

id×J−KAX
2× (2A

∗

)A

JxKX(ε) = o(x)

JxKX(aw) = Jt(x)(a)KX(w)

Therefore, behavioural equivalence for the functor D coincides with the clas-
sical language equivalence of automata.

Another example (fundamental for the rest of the paper) is given by Moore
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automata. Moore automata with inputs in A and outputs in B are coalgebras
for the functor M(X) = B × XA, that is pairs (X, 〈o, t〉) where X is a set,
t : X → XA is the transition function (like for DA) and o : X → B is the
output function which maps every state in its output. Thus DA can be seen
as a special case of Moore automata where B = 2. The final coalgebra for M is
(BA∗

, 〈ǫ, (−)a〉) where BA∗

is the set of all functions ϕ : A∗ → B, ǫ : BA∗

→ B

maps each ϕ into ϕ(ǫ) and (−)a : B
A∗

→ (BA∗

)A is defined for all ϕ ∈ BA∗

,
a ∈ A and w ∈ A∗ as (ϕ)a(w) = ϕ(aw).

X
J−KX

〈o,t〉

BA∗

〈ǫ,(−)a〉

B ×XA

id×J−KAX
B × (BA∗

)A

JxKX(ε) = o(x)

JxKX(aw) = Jt(x)(a)KX(w)

Coalgebras provide a useful technique for proving behavioural equivalence–
bisimulation. Let (X, f) and (Y, g) be two F-coalgebras. A relation R ⊆
X × Y is a bisimulation if there exists a function αR : R → FR such that
π1 : R → X and π2 : R → Y are coalgebra homomorphisms. In [10], it is
shown that under certain conditions on F (which are met by all the functors
in this paper), bisimulations are a sound and complete proof technique for
behavioural equivalence, namely,

x ∼F y iff there exists a bisimulation R such that xRy. (2)

The generalized powerset construction: As shown above, every functor F

induces both a notion of F-coalgebra and a notion of behavioural equivalence
∼F. Sometimes, it is interesting to consider different equivalences than ∼F

for reasoning about F-coalgebras. This is the case of labeled transition sys-
tems which are coalgebras for the functor L(X) = (PωX)A. The induced
behavioural equivalence ∼L coincides with the standard notion of bisimilarity
by Milner and Park [8,6]. However, in concurrency theory, many other equiva-
lences have been studied, notably, decorated trace equivalences [14]). Another
example is given by non-deterministic automata which are coalgebras for the
functor N(X) = 2 × (PωX)A. The associated equivalence ∼N strictly implies
language equivalence, which is often taken as an intended semantics.

For this reason, a subset of the authors has introduced in [12] the general-
ized powerset construction, for coalgebras f : X → FT (X) for a functor F and
a monad T , with the proviso that that FT (X) is an algebra for the monad T .
In [12], all the technical details are explored and many interesting instances
of the construction are shown. In this paper, we will only be interested in the
case where T = Pω and M(X) = B×XA, for B a join-semilattice, and we will
therefore only explain the concrete picture for the functor and monad of inter-
est. The fact that we take B to be a join-semilattice is enough to guarantee
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that MT (X) = B×(PωX)A is a join-semilattice. This fulfills then the proviso
above, since join-semilattices are precisely the algebras of the monad Pω.

Given a coalgebra f : X → MPωX , and because M has a final coalgebra,
we can extend it uniquely to f ♯ : PωX →MPωX and consider the unique coal-
gebra homomorphism into the final coalgebra, as summarised by the following
diagram:

X

f

{·}
PωX

f♯

[[−]]
BA∗

〈ǫ,(−)a〉

B × (PωX)A
idB×[[−]]A

B × (BA∗

)A

(3)

With this construction, one can coalgebraically characterize language
equivalence for Moore automata and, in particular, for non-deterministic au-
tomata. Take T = Pω and F = D, which is an instance of M for B = 2,
the two-element join-semilattice. An MT -coalgebra is a pair (X, f) with
f : X → 2 × (PωX)A, i.e., an NDA. Therefore every NDA (X, f) is trans-
formed into (PωX, f ♯) which is a DA. This corresponds to the classical power-
set construction for determinizing non-deterministic automata. The language
recognized by a state x can be defined by precomposing the unique morphism
J−K : PωX → 2A

∗

with the unit of Pω, which is the function {−} : X → PωX

mapping each x ∈ X into the singleton set {x} ∈ PωX .

3 Decorated trace semantics via determinization

Our aim is to reason about decorated trace equivalences of labelled transition
systems. In this section, we use the generalized powerset construction and
show how one can determinize arbitrary labelled transition systems obtaining
particular instances of Moore automata (with different output sets) in order
to model ready, failure, trace and complete trace equivalences. This paves
the way to building a general framework for reasoning on decorated trace
equivalences in a uniform fashion, in terms of bisimulations up-tp congruence.

A labeled transition system is a pair (X, δ) where X is a set of states and
δ : X → (PωX)A is a function assigning to each state x ∈ X and to each label
a ∈ A a finite set of possible successors states. We write x

a
−→ y whenever

y ∈ δ(x)(a). We extend the notion of transition to words w = a1 . . . an ∈ A∗

as follows: x
w
−→ y if and only if x

a1−→ . . .
an−→ y. For w = ε, we have x

ε
−→ y if

and only if y = x.

We now define in a nutshell the equivalences we will be dealing with in
this paper. For a function ϕ ∈ (PωX)A, I(ϕ) denotes the set of all labels
“enabled” by ϕ, given by I(ϕ) = {a ∈ A | ϕ(a) 6= ∅}, while Fail(ϕ) denotes
the set {Z ⊆ A | Z ∩ I(ϕ) = ∅}. Let (X, δ) be a LTS and x ∈ X be a state.
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A trace of x is a word w ∈ A∗ such that x
w
→ y for some y. A trace w of x is

complete if x
w
→ y and y stops, i.e., I(δ(y)) = ∅. A failure pair of x is a pair

(w,Z) ∈ A∗ × PωA such that x
w
→ y and Z ∈ Fail(δ(y)). A ready pair of x

is a pair (w,Z) ∈ A∗ × PωA such that x
w
→ y and Z = I(δ(y)). (See [14] for

more details on the classical definition of traces, complete traces, ready and
failure pairs.) We use T (x), CT (x), F(x) and R(x) to denote, respectively,
the set of all traces, complete traces, failure pairs and ready pairs of x.

For I ranging over T , CT ,F and R, two states x and y are I-equivalent
iff I(x) = I(y) [14].

Intuitively, these equivalences can be described as follows:

• ready semantics identifies states of LTSs according to the set Z of actions
they can trigger immediately after a certain action sequence w has been
“consumed”; we call a pair (w,Z) a ready pair,

• failure semantics takes into account the set Z of actions that cannot be
fired immediately after the execution of sequences w; we call a pair (w,Z)
a failure pair,

• trace semantics identifies system states if and only if they can execute the
same sets of action sequences w,

• complete trace semantics identifies system states that perform the same sets
of “complete” traces w; we call an action sequence w a complete trace of a
state p if and only if p

w
−→ q and q cannot execute any further action.

The slight difference between trace and complete trace semantics consists
in the fact that trace semantics does not detect stagnation, whereas the
latter semantics takes into consideration deadlock states.

The coalgebraic characterization of the equivalences above was obtained
in [12] in the following way. Given an arbitrary LTS (X, δ : X → (PωX)A),
we associate a decorated LTS represented by a coalgebra of the functor
FI(X) = BI×(PωX)A, namely (X, 〈oI , id〉◦δ : X → BI×(PωX)A), where the
output operation oI : (PωX)A → BI provides the observations of interest cor-
responding to the original LTS and depending on the equivalence we want to
study. (At this point, BI represents an arbitrary join-semilattice instantiated
later on for each of the semantics under consideration.) Then, we determinize
the decorated LTS, as depicted in Figure 1.
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X
{−}

δ

PωX
o(Y ) =

⋃
y∈Y oI(δ(y))

t(Y )(a) =
⋃

y∈Y δ(y)(a)

[[Y ]](ε) =
⋃

y∈Y

oI(δ(y))

[[Y ]](aw) = [[
⋃

y∈Y

δ(y)(a)]](w)

J−K

〈o,t〉

(BI)
A∗

〈ǫ,(−)a〉(PωX)A

〈oI ,id〉

FIX = BI × (PωX)A
idBI

×J−KA
BI × ((BI)

A∗

)A

Fig. 1. The powerset construction for decorated LTSs.

Note that both the output operation and its image are parameterized by
I ∈ {R,F , T , CT }, depending on the type of decorated trace semantics under
consideration. The explicit instantiations of oI and BI for each of the afore-
mentioned semantics are provided in Section 4 and Appendix C respectively,
where we will show that the coalgebraic semantics in fact coincides with the
original definitions of these equivalences. A fact that was not formally shown
in [12].

The coalgebraic representation of ready, failure, trace and complete trace
models as illustrated in Fig. 1 enables the definition of the corresponding
equivalences as Moore bisimulations (i.e., bisimulations for a functor M =
BI ×XA). This way, checking behavioural equivalence of x1 and x2 reduces
to checking the equality of their unique representatives in the final coalgebra:
J{x1}K and J{x2}K .

Moreover, it is worth observing that when reasoning on behavioural equiv-
alence it is preferable to use relations as small as possible, that are not neces-
sarily bisimulations, but contained in a bisimulation relation. These relations
are referred to as bisimulations up-to [11].

In what follows we exploit the generalized powerset construction summa-
rized in Fig. 1 and get an extension of bisimulation up-to congruence in [3] to
the context of decorated LTS’s determinized in terms of Moore automata.

Let Ldec = (X, 〈oI , id〉 ◦ δ : X → BI × (PωX)A) be a decorated LTS and
(PωX, 〈o, t〉 :PωX → BI × (PωX)A) its associated Moore automaton, as in
Fig. 1. A bisimulation up-to congruence for Ldec is a relation R ⊆ (PωX) ×
(PωX) such that:

X1R X2 ⇒







o(X1) = o(X2)

(∀a ∈ A) . t(X1)(a) c(R) t(X2)(a) (♠)

where c(R) is the smallest equivalence relation which is closed with respect to
set union and which includes R, defined by (A.1) in Appendix (A).
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Remark 3.1 Observe that by replacing c(R) with R in (♠) one gets the
definition of Moore bisimulation.

Theorem 3.2 Any bisimulation up-to congruence for decorated LTS’s is in-

cluded in a bisimulation relation.

Proof. The proof is provided in Appendix A. 2

Remark 3.3 Based on (1), (2) and Theorem 3.2, verifying behavioural equiv-
alence of two states x1, x2 in a decorated LTS consists in identifying a bisim-
ulation up-to congruence Rc relating {x1} and {x2}:

J{x1}K = J{x2}K iff {x1}R
c {x2}. (4)

Also note that Theorem 3.2 is not a very different, but useful generalization
of Theorem 2 in [3] to the context of decorated LTS’s.

More insight on how to derive canonical representatives of decorated trace
semantics and how to apply the bisimulation up-to congruence proof technique
is provided in Section 4 and Appendix C.

4 Ready semantics

In this section we show how the ingredients of Fig. 1 in Section 3 can be in-
stantiated in order to provide a coalgebraic modelling of ready semantics, as
introduced in [12]. Moreover, we prove that the resulting coalgebraic charac-
terization of this semantics is equivalent to the original definition.

Consider an LTS (X, δ : X → (PωX)A) and recall that, for a function
ϕ : A→ PωX , the set of actions enabled by ϕ is given by

I(ϕ) = {a ∈ A | ϕ(a) 6= ∅}. (5)

For the particular case ϕ = δ(x), I(δ(x)) denotes the set of all (initial) actions
ready to be fired by x ∈ X .

Recall also that a ready pair of x is a pair (w,Z) ∈ A∗ × PωA such that
x

w
−→ y and Z = I(δ(y)). We denote by R(x) the set of all ready pairs of x.

Intuitively, ready semantics identifies states in X based on the actions
a ∈ A they can immediately trigger after performing a certain action sequence
w ∈ A∗, i.e., based on their ready pairs. It was originally defined as follows:

Definition 4.1 [R-equivalence [14]] Let (X, δ:X → (PωX)A) be an LTS and
x, y ∈ X two states. States x and y are ready equivalent (R-equivalent) if and
only if they have the same set of ready pairs, that is R(x) = R(y).

Next, we instantiate oI of Fig. 1 to ready semantics, where I = R.
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First note that in the setting of ready semantics, the observations provided
by the output operation, which we denote by oR, refer to the sets of actions
ready to be executed by the states of the LTS. Therefore, oR is defined as
follows:

oR : (PωX)A → Pω(PωA)

oR(ϕ) = {I(ϕ)}.

For the case ϕ = δ(x), where x ∈ X , it holds that:

oR(δ(x)) = {I(δ(x))} = {{a ∈ A | δ(x)(a) 6= ∅}}.

In this particular instace, BI = BR = Pω(PωA) and the final Moore coalgebra

((Pω(PωA))
A∗

, 〈ǫ, (−)a〉)

associates to each state {x} the set of action sequences w ∈ A∗ such that
x

w
−→ x′, together with the sets of actions ready to be triggered by (all such)

x′, for x, x′ ∈ X .

Next, we will prove the equivalence between the coalgebraic modelling of
ready semantics and the original definition, presented above. More explicitly,
given an arbitrary LTS (X, δ : X → (PωX)A) and a state x ∈ X , we want to
show that J{x}K is equal to R(x).

The first remark is that the behaviour of a state x ∈ X is a function
J{x}K : A∗ → Pω(PωA), whereas R(x) is defined as a set of pairs in A∗×PωA.
However, this is no problem since the set of functions A∗ → Pω(PωA) and
P(A∗ × PωA) are isomorphic. The set of all ready pairs R(x) associated to
x ∈ X is equivalently represented by ϕR

{x}, where, for w ∈ A∗ and Y ⊆ X ,

ϕR
Y : A∗ → Pω(PωA)

ϕR
Y (w) = {Z ⊆ A | ∃y ∈ t(Y )(w) ∧ Z = I(δ(y))}

At this point, showing the equivalence between the coalgebraic and the original
definition of ready semantics reduces to proving that

(∀x ∈ X) . J{x}K = ϕR
{x}. (6)

Equality (6) is a direct consequence of the following theorem:

Theorem 4.2 Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and

w ∈ A∗, JY K(w) = ϕR
Y (w).

Proof. We proceed by induction on words w ∈ A∗.
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• Base case. w = ε. Consider an arbitrary set Y ⊆ X . We have:

JY K(ε) = o(Y ) =
⋃

y∈Y

{I(δ(y))}

ϕR
Y (ε) = {Z ⊆ A | ∃y ∈ Y ∧ Z = I(δ(y))} (by def., (∀y ∈ Y ) . y

ε
−→ y)

=
⋃

y∈Y

{I(δ(y))}

Hence, JY K(ε) = ϕR
Y (ε), for all Y ⊆ X .

• Induction step.

Consider w ∈ A∗ and assume JY K(w) = ϕR
Y (w), for all Y ⊆ X . We want to

prove that JY K(aw) = ϕR
Y (aw), where a ∈ A.

JY K(aw) = Jt(Y )(a)K(w)

ϕR
Y (aw) = {Z | ∃y ∈ t(Y )(aw) ∧ Z = I(δ(y))}

= {Z | ∃y ∈ t(t(Y )(a))(w) ∧ Z = I(δ(y))}

= ϕR
t(Y )(a)(w)

By the induction hypothesis, it follows that JY K(aw) = ϕR
Y (aw), for all

Y ⊆ X .

We have that JY K(w) = ϕR
Y (w), for all Y ⊆ X and w ∈ A∗. 2

Example 4.3 In what follows we illustrate the equivalence between the coal-
gebraic and the original definitions of ready semantics by means of an example.
Consider the following LTS.

p0
a

a

p1 bb

p2
c

p3
d

p4 p5

We write an to represent the action sequence aa . . . a of length n ≥ 1, with
n ∈ N. The set of all ready pairs associated to p0 is:

R(p0) = {(ε, {a}), (a
n, {a}), (an, {b}), (anb, {c}), (anb, {d}),

(anbc, ∅), (anbd, ∅) | n ∈ N ∧ n ≥ 1}.

We can construct a Moore automaton, for S = {p0, p1, . . . , p5},

(PωS, 〈o, t〉 : PωS → Pω(PωA)× (PωS)
A)
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by applying the generalized powerset construction on the LTS above. The
automaton will have 26 = 64 states. We depict the accessible part from state
{p0}, where the output sets are indicated by double arrows:

{p0}
a

{{a}}

{p0, p1}
ba

{{a}, {b}}

{p2, p3}
dc

{{c}, {d}}

{∅} {p4} {p5} {∅}

Fig. 2. Ready determinization when starting from {p0}.

The output sets of a state Y of the Moore automaton in Fig. 2 is the
set of actions associated to a certain state y ∈ Y which can immediately be
performed. For example, process p0 in the original LTS above is ready to
perform action a, whereas p1 can immediately perform b. Therefore it holds
that o({p0}) = {{a}} and o({p0, p1}) = {{a}, {b}}.

At this point, by simply looking at the automaton in Fig. 2, one can
easily see that the set of action sequences w ∈ A∗ the state {p0} can execute,
together with the corresponding possible next actions equalsR(p0). Therefore,
the automaton generated according to the generalized powerset construction
captures the set of all ready pairs of the initial LTS.

As we remarked in Section 3, ready equivalence of LTS’s can be established
in terms of bisimulation up-to congruence on Moore automata with output in
Pω(PωA), representing the sets of actions ready to be triggered.

Next, we will explain how one can reason on ready equivalence of two
LTS’s, by constructing bisimulations up-to congruence on the associated
Moore automata generated according to the powerset construction in Fig. 1.

Example 4.4 Consider the following LTS.

q0
a

a

a

a
q3a

q1
b

b

q2
b

q7

a
a

a

q4
c

q5
d

q6
d

q8 q9 q10

It is easy to check that q0 and p0 have the same ready pairs, that is R(q0) =
R(p0), where p0 is the state in the LTS of the previous example.

12
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Since we have shown the coincidence between the original definition in-
volving equality of ready pairs and the coalgebraic representation, we can
now prove that q0 and p0 are ready equivalent by building a bisimulation
up-to congruence relating {p0} and {q0}.

First, we have to determinize the LTS above. We show below the accessible
part of the determinized automaton starting from state {q0}:

{q0}

a

{{a}}

{q1, q2, q3, q7}
a

b

{{a}, {b}}

{{a}, {b}} {q0, q1, q2, q3, q7}

a

b {q4, q5, q6}
c

d

{{c}, {d}}

{∅} {q8} {q9, q10} {∅}

Fig. 3. Ready determinization when starting from {q0}.

The next step is to build a bisimulation up-to congruence R on the sets
of states of the generated Moore automata in Fig. 2 and Fig. 3, such that
({p0}, {q0}) ∈ R.

We start by taking R = {({p0}, {q0})} and check whether this is already
a bisimulation up-to congruence, by considering the output values and transi-
tions, and check whether no new states appear in c(R) in the process. If new
pairs of states appear, we add them to R and repeat the process.

Eventually, we end-up with a bisimulation up-to congruence

R = {({p0}, {q0}), ({p0, p1}, {q1, q2, q3, q7}),

({p2, p3}, {q4, q5, q6}), ({p4}, {q8}), ({p5}, {q9, q10})}

By construction ({p0}, {q0}) ∈ R, so by (4) it follows that [[{p0}]] = [[{q0}]].

Note that R is not a bisimulation relation since {p0, p1}
a
−→ {p0, p1}

and {q1, q2, q3, q7}
a
−→ {q0, q1, q2, q3, q7} but ({p0, p1}, {q0, q1, q2, q3, q7}) 6∈

R. Nevertheless, observe that R is a bisimulation up-to congruence since
({p0, p1}, {q0, q1, q2, q3, q7}) ∈ c(R):

{p0, p1} = {p0} ∪ {p0, p1}

c(R) {q0} ∪ {p0, p1} (({p0}, {q0}) ∈ R)

c(R) {q0} ∪ {q1, q2, q3, q7} (({p0, p1}, {q1, q2, q3, q7}) ∈ R)

= {q0, q1, q2, q3, q7}

13



Bonchi, Bonsangue, Caltais, Rutten, Silva

Also observe that the bisimulation up-to congruence given above is one
pair smaller than the Moore bisimulation relating the automata in Fig. 2 and
Fig. 3, which would also include ({p0, p1}, {q0, q1, q2, q3, q7}).

5 Canonical representatives

Given a decorated LTS (X, 〈oI , id〉 ◦ δ : X → BI × (PωX)A), we showed
in the previous section how to construct a determinized decorated LTS
(PωX, 〈o, t〉 : PωX → BI × (PωX)A). The map J{−}K : PωX → BA∗

I pro-
vides us with a canonical representative of the behaviour of each state in X .
The image (C, δ) of (X, 〈oI , id〉 ◦ δ), via the map J{−}K, can be viewed as the
minimization w.r.t. the equivalence I since the final coalgebra contains no
pairs of equivalent states. We will refer to (C, δ) as the canonical represen-
tative of (X, δ). The natural question now arises on whether the minimized
decorated LTS is consistent with the LTS (X, δ) which is the starting point.
In other words, if we minimize (X, δ) and then decorate it in the same way we
did for the original LTS will this coincide with the canonical representative
obtained from the coalgebraic minimization? Gladly, the following theorem,
whose proof we present in Appendix B, guarantees this consistency and attests
to the adequacy of the coalgebraic view on decorated trace semantics.

Theorem 5.1 Given an LTS (X, δ : X → (PωX)A) and its canonical repre-

sentative obtained by finality (C, δ : C → BI × CA), then the map δ can be

decomposed into 〈oI , id〉 ◦ γ, where γ : C → CA is the determinization of the

minimal LTS obtained from (X, δ) by identifying all the I-equivalent states.

6 Conclusions and future work

In this paper, we have proved that the coalgebraic characterizations of ready,
failure and (complete) trace semantics in [12] are equivalent with the cor-
responding standard definitions. More precisely, we have shown that for a
state x in a labelled transition system, the coalgebraic canonical representa-
tive J{x}K, given by determinisation and finality, coincides with the classical
semantics R(x), T (x), CT (x) and F(x), representing the ready pairs, traces,
complete traces and failure pairs of x, respectively. In addition, we have il-
lustrated how to reason about decorated trace equivalence using coinduction,
by constructing suitable bisimulations up-to congruence. This is a very effi-
cient sound and complete proof technique, and represents an important step
towards automated reasoning, as it opens the way for the use of, for instance,
coinductive theorem provers such as CIRC [9].

A similar idea of system determinization was also applied in [4], in a non-
coalgebraic setting, for the case of testing semantics where must testing co-
incides with failure semantics in the absence of divergence. A coalgebraic
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characterization of the spectrum was also attempted in [7], in a somewhat ad
hoc fashion. Connections with these works are still to be explored.

As future work, we would like to investigate to what extent the coalge-
braic treatment of decorated trace semantics can be applied in the context of
probabilistic systems.
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A Proof of Theorem 3.2

Proof. Let Ldec = (X, δ♯ : X → BI × (PωX)A) be a decorated LTS and
(PωX, 〈o, t〉 :PωX → BI × (PωX)A) be its associated Moore automaton, de-
rived according to the powerset construction.

Let R be a bisimulation up-to congruence for Ldec .

In what follows we want to prove that c(R) – the smallest equivalence
relation such that

X c(R) Y ⇒































X R Y

or

(∃X1, X2, Y1, Y2) .
X = X1 ∪X2, Y = Y1 ∪ Y2

X1 c(R) Y1, X2 c(R) Y2

(A.1)

is a bisimulation relation (that includes R, by definition).

We have to show that

X c(R) Y ⇒







o(X) = o(Y )

(∀a ∈ A) . t(X)(a) c(R) t(Y )(a)
(A.2)

We proceed by structural induction.

(i) Let X R Y . Then (A.2) holds by definition.

(ii) Let X = X1 ∪X2 and Y = Y1 ∪Y2 such that X1 c(R) Y1 and X2 c(R) Y2.
By induction, we have that o(X1) = o(Y1) and o(X2) = o(Y2). We now
need to prove that o(X) = o(Y ).

o(X) = o(X1∪X2) = o(X1)∪ o(X2)
IH
= o(Y1)∪ o(Y2) = o(Y1∪Y2) = o(Y )

We also have, by induction, that

(∀a ∈ A) . t(X1)(a) = t(Y1)(a) and (∀a ∈ A) . t(X2)(a) = t(Y2)(a)

Hence, for all a ∈ A, we can easily prove that t(X)(a) = t(Y )(a):

t(X)(a) = t(X1 ∪X2)(a) = t(X1)(a) ∪ t(X2)(a)

IH
= t(Y1)(a) ∪ t(Y2)(a)

= t(Y1 ∪ Y2)(a) = t(Y )(a)

At this point it holds that c(R) ⊇ R is a bisimulation relation, as (A.2)
holds for all (X, Y ) ∈ c(R). 2
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B Proof of Theorem 5.1

Recall the diagram in Fig. 1 which summarizes the construction of the deter-
minized decorated LTS and its semantics:

X
{−}

δ

PωX
J−K

〈o,t〉

(BI)
A∗

〈ǫ,(−)a〉(PωX)A

〈oI ,id〉

BI × (PωX)A
idBI

×J−KA
BI × ((BI)

A∗

)A

We will start by expanding this diagram, by: (i) factorizing the map J−K into
an epi followed by a mono (here, recall from [10] that factorizations lift to coal-
gebras in Set); (ii) adding the arrow δ♯ obtained in the powerset construction
applied to δ. In this manner, we obtain the following commuting diagram:

X
{−}

δ

PωX

δ♯

e

J−K

〈o,t〉

(BI)
A∗

〈ǫ,(−)a〉

C

δ

m

(PωX)A

〈oI ,id〉

BI × CA

id×mA

BI × (PωX)A

id×eA

idBI
×J−KA

BI × ((BI)
A∗

)A

Note that 〈o, t〉 = 〈oI , id〉 ◦ δ
♯, because 〈oI , id〉 is a join-semilattice homo-

morphism, and the powerset construction guarantees that there is a unique
algebra homomorphism from Pω(X) to BI × (PωX)A such that the triangle
commutes.

We want to show that δ = 〈oI , id〉 ◦γ, where γ = π2 ◦ δ. We will show that
δ ◦ e = 〈oI , id〉 ◦ γ ◦ e which, because e is an epi, implies the intended result.

δ ◦ e = (id× eA) ◦ 〈oI , id〉 ◦ δ
♯ diagram above

= 〈oI , id〉 ◦ e
A ◦ δ♯ naturality of 〈oI , id〉

= 〈oI , id〉 ◦ γ ◦ e (†) below
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We need to show (†) eA ◦ δ♯ = γ ◦ e.

γ ◦ e = π2 ◦ δ ◦ e γ = π2 ◦ δ

= π2 ◦ (id× eA) ◦ 〈oI , id〉 ◦ δ
♯ diagram above

= eA ◦ π2 ◦ 〈oI , id〉 ◦ δ
♯ naturality of π2

= eA ◦ δ♯ π2 ◦ 〈oI , id〉 = id

This concludes the proof that δ can be decomposed into 〈oI , id〉 ◦ γ. Next,
to see that (C, γ) is the determinization of the minimal LTS, we observe the
following. Let (MI , ξ : MI → (PωMI)

A) be the minimal LTS obtaining by
quotienting all states in X which are I-equivalent and let us consider the
application of the power set construction to it.

X

δ

qI
MI

{−}

ξ

PωMI

ξ♯

eM

J−K

〈oM ,tM 〉

(BI)
A∗

〈ǫ,(−)a〉

C0

ξ

mM

(PωX)A
qA
I

(PωMI)
A

〈oI ,id〉

BI × CA
0

id×mA
M

BI × (PωMI)
A

id×eAM

idBI
×J−KA

BI × ((BI)
A∗

)A

Note that we have two strong epi mono factorizations of J−K : PωX → (BI)
A∗

.

J−K = (PωX, 〈o, t〉)
PωqI (PωMI , 〈oM , tM 〉)

eM (C0, ξ)
mM ((BI)

A∗

, 〈ǫ, (−)a〉)

J−K = (PωX, 〈o, t〉) e (C, δ) m ((BI)
A∗

, 〈ǫ, (−)a〉)

Hence, it must be the case that (C0, ξ) ∼= (C, δ). Further, because MI is
the minimal LTS w.r.t. I we must have that eM is an isomorphism. To see
this, note that eM is surjective by definition and injectivity follows from our
Theorem C.1 and the fact that M is minimal.

eM({x}) = eM({x′})⇔ ϕI
{x} = ϕI

{x′} ⇒ x = x′

Hence, (C0, ξ) ∼= (PωMI , 〈oM , tM〉) ∼= (C, δ). In words, the canonical rep-
resentative is isomorphic to the determinization of the minimal LTS.

C (Complete) trace and failure semantics

In what follows we provide in a nutshell the coalgebraic modelling of (com-
plete) trace and failure semantics, as introduced in [12]. We also show that
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the coalgebraic characterizations are equivalent to the corresponding original
definitions [14].

The aforementioned equivalences were originally defined as follows:
Let (X, δ :X → (PωX)A) be an LTS and x, y two states. States x and y are

• trace equivalent (T equivalent) if and only if T (x) = T (y), where

T (x) = {w ∈ A∗ | ∃x′ ∈ X. x
w
−→ x′} [14]

• complete trace equivalent (CT -equivalent) if and only if CT (x) = CT (y),
where

CT (x) = {w ∈ A∗ | ∃x′ ∈ X. x
w
−→ x′ ∧ I(δ(x′)) = ∅} [1]

• failure equivalent (F-equivalent) if and only if F(x) = F(y), where

F(x) = {(w,Z) ∈ A∗ × PωA | ∃x
′ ∈ X. x

w
−→ x′ ∧ Z ∈ F (δ(x′))} [14].

Next, we instantiate the ingredients of Fig. 1, for each I ∈ {T , CT ,F}.
We start with the output function oI :

• I = T :
oT : (PωX)A → 2

oT (ϕ) = 1

as for trace semantics, one does not distinguish between traces and complete
traces. Intuitively, all states are accepting, so they have the same observable
behaviour, no matter the transitions they perform.

• I = CT :

oCT : (PωX)A → 2

oCT (ϕ) =







1 if I(ϕ) = ∅

0 otherwise

as one has to distinguish between deadlock states (I(δ(x)) = ∅) and states
that can still execute actions a ∈ A.

• I = F :

oF : (PωX)A → Pω(PωA)

oF(ϕ) = F (ϕ).

gives the sets of actions the states of a LTS cannot immediately fire.

Consequently, BI and Ω (the decorated behaviours in the final Moore
coalgebra) are instantiated as follows:

• for I ∈ {T , CT }, BI = 2 and Ω = 2A
∗

represents the set of languages over
A
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• for I = F , BI = Pω(PωA) and Ω = (Pω(PωA))
A∗

associates to each state
{x} the set of words w ∈ A∗ such that x

w
−→ x′, together with the actions

(all such) x′ cannot trigger.

Similarly to the approach in Section 4, we “capture” the complete traces
CT (x), traces T (x), and respectively, the failure pairs F(x) associated to states
x ∈ X in the LTS, in terms of functions ϕI

Y defined (for I ∈ {T , CT ,F}) as
follows:

• I= T
ϕT
Y : A∗ → 2

ϕT
Y (w) = 1 if (∃y ∈ Y, y′ ∈ X) . y

w
−→ y′

• I= CT
ϕCT
Y : A∗ → 2

ϕCT
Y (w) =



















1 if (∃y ∈ t(Y )(w)) . I(δ(y)) = ∅

(w is a complete trace of Y )

0 otherwise

• I= F

ϕF
Y : A∗ → Pω(PωA)

ϕF
Y (w) = {Z ⊆ A | ∃y ∈ t(Y )(w) ∧ Z ∈ F (δ(y))}.

Recall that (no matter the semantics under consideration) the behaviour
of a state x ∈ X (i.e., the set of traces, complete traces or failure pairs of
x) is represented in the final coalgebra by J{x}K. Therefore, at this point,
proving the equivalence between the coalgebraic and the original definitions
of (complete) trace and failure semantics, respectively, reduces to showing that

(∀x ∈ X) . J{x}K = ϕI
{x} (C.1)

where I is instantiated accordingly.

Equality (C.1) is a direct result of the following (generic) theorem:

Theorem C.1 Let (X, δ : X → (PωX)A) be an LTS. Then for all Y ⊆ X and

w ∈ A∗, JY K(w) = ϕI
Y (w), for I ranging over T , CT ,F .

The proof of this theorem is similar to the proof of Theorem 4.2, by in-
duction on words w ∈ A∗.

At this stage, based on Theorem C.1, one can reason on I-equivalence
by coinduction, in terms of bisimulations up-to congruence on the Moore au-
tomata derived according to the generalized powerset construction (as also
illustrated by means of examples in Section 4, for the case of ready equiva-
lence).
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